CHIRAL PERTURBATION THEORY OF HYPERFINE SPLITTING IN MUONIC HYDROGEN

FRANZISKA HAGELSTENN
INSTITUT FÜR KERNPHYSIK, UNIVERSITÄT MAINZ, GERMANY

Proton Size Puzzle

\longmapsto Hydrogen spectroscopy [2]
\longmapsto CODATA (2010) [2]
${ }^{n}$) $\}$ Muonic hydrogen spectroscopy $[3,4]$
[1] J. C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010). [2] P. J. Mohr, et al., Rev. Mod. Phys. 84, 1527 (2012).
[3] R. Pohl, A. Antognini et al., Nature 466, 213 (2010).
[4] A. Antognini et al., Science 339, 417 (2013).

seven standard-deviation discrepancy (7б) !!!

$\left[R_{E}^{\mu \mathrm{H}}=0.84087(39) \mathrm{fm}\right]$

$\left[R_{E}^{\text {CODATA } 2010}=0.8775(51) \mathrm{fm}\right]$
uH Spectroscopy $\Delta E_{\mathrm{LS}}^{\mathrm{th}}=206.0336(15)-5.2275(10)\left(R_{E} / \mathrm{fm}\right)^{2}+\Delta E_{\mathrm{LS}}^{\mathrm{TPE}}, \quad$ with $\Delta E_{\mathrm{LS}}^{\mathrm{TPE}}=0.0332(20)$, $\Delta E_{\mathrm{HFS}}^{\mathrm{th}}=22.9763(15)-0.1621(10)\left(R_{Z} / \mathrm{fm}\right)+\Delta E_{\mathrm{HFS}}^{(\mathrm{pol})}, \quad$ with $\Delta E_{\mathrm{HFS}}^{(\mathrm{pol})}=0.0080(26)$,

radiative, relativistic
and recoil effects

two-photon exchange (TPE) effects,

 including the proton polarizability$$
\begin{aligned}
\Delta E_{\mathrm{LS}}^{\exp } & =202.3706(23) \mathrm{meV} \\
\Delta E_{\mathrm{HFS}}^{\exp } & =22.8089(51) \mathrm{meV}
\end{aligned}
$$

Finite Size Effects

* HFS:

$$
\Delta E_{n S}(\mathrm{LO}+\mathrm{NLO})=E_{F}\left[1-2 Z \alpha m_{r} R_{Z}\right]
$$

Fermi - Energy:
$E_{F}(n S)=\frac{8}{3} \frac{Z \alpha}{a^{3}} \frac{1+\kappa}{m M} \frac{1}{n^{3}}$ with Bohr radius $a=1 /\left(Z \alpha m_{r}\right)$

NLO becomes appreciable in $\mu \mathrm{H}$

* Lamb shift:

$$
\begin{array}{r}
\Delta E_{n l}(L O)=\delta_{l 0} \frac{2 \pi Z \alpha}{3} \frac{1}{\pi(a n)^{3}} R_{E}^{2}
\end{array} \begin{aligned}
& \Delta E_{n S}(\mathrm{NLO})=-\frac{Z \alpha}{3 n^{3} a^{4}} R_{E(2)}^{3} \\
& \begin{array}{c}
\text { wave function } \\
\text { at the origin }
\end{array} \\
& \begin{array}{l}
\text { J. L. Friar, Annals Phys. 122 (1979) 151. }
\end{array} \\
& R_{E}^{2}=-6 \lim _{Q^{2} \rightarrow 0} \frac{\mathrm{~d}}{\mathrm{~d} Q^{2}} G_{E}\left(Q^{2}\right) \\
& R_{E(2)}^{3}=\frac{48}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{4}}\left\{G_{E}^{2}\left(Q^{2}\right)-1+\frac{1}{3}\left\langle r^{2}\right\rangle_{E} Q^{2}\right\}
\end{aligned}
$$

Breakdown of the expansion of finite-size corrections to the hydrogen Lamb shift in moments of charge distribution

Franziska Hagelstein and Vladimir Pascalutsa
Institut für Kernphysik, Cluster of Excellence PRISMA, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
(Received 13 February 2015; published 20 April 2015)

* the finite-size effects are not always expandable in the moments of charge distribution
- a tiny non-smoothness of the electric form factor $G_{E}\left(Q^{2}\right)$ at scales comparable to the inverse Bohr radius can break down this expansion

$$
E_{2 P-2 S}^{\mathrm{FF}(1)}=\int_{0}^{\infty} \mathrm{d} Q w(Q) G_{E}\left(Q^{2}\right) \quad \text { with } \quad w(Q)=-\frac{4}{\pi}(Z \alpha)^{5} m_{r}^{4} Q^{2} \frac{\left(Z \alpha m_{r}\right)^{2}-Q^{2}}{\left[\left(Z \alpha m_{r}\right)^{2}+Q^{2}\right]^{4}}
$$

* one needs to know all the "soft" (below several MeV) contributions to proton electric FF to pcm accuracy

Structure Effects through TPE

* proton structure effects at subleading orders arise through multi-photon processes

"polarizability" contribution: "inelastic" contribution,
"subtraction" term (Lamb shift)

"elastic" contribution:
finite-size recoil,
3rd Zemach moment (Lamb shift),
Zemach radius (HFS)
* "blob" corresponds to doubly-virtual Compton scattering (VVCS):

$$
\begin{aligned}
T^{\mu \nu}(q, p)= & \left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) T_{1}\left(\nu, Q^{2}\right)+\frac{1}{M^{2}}\left(p^{\mu}-\frac{p \cdot q}{q^{2}} q^{\mu}\right)\left(p^{\nu}-\frac{p \cdot q}{q^{2}} q^{\nu}\right) T_{2}\left(\nu, Q^{2}\right) \\
& +\frac{1}{M} \gamma^{\mu \nu \alpha} q_{\alpha} S_{1}\left(\nu, Q^{2}\right)+\frac{1}{M^{2}}\left(\gamma^{\mu \nu} q^{2}+q^{\mu} \gamma^{\nu \alpha} q_{\alpha}-q^{\nu} \gamma^{\mu \alpha} q_{\alpha}\right) S_{2}\left(\nu, Q^{2}\right) \\
\text { or: } T_{A}^{\mu \nu}(q, p)= & \frac{i}{M} \epsilon^{\mu \nu \alpha \beta} q_{\alpha} s_{\beta} S_{1}\left(\nu, Q^{2}\right)+\frac{i}{M^{3}} \epsilon^{\mu \nu \alpha \beta} q_{\alpha}\left(p \cdot q s_{\beta}-s \cdot q p_{\beta}\right) S_{2}\left(\nu, Q^{2}\right)
\end{aligned}
$$

Chiral perturbation theory of muonic-hydrogen Lamb shift: polarizability contribution

Jose Manuel Alarcón ${ }^{1, a}$, Vadim Lensky ${ }^{2,3}$, Vladimir Pascalutsa ${ }^{1}$

${ }^{1}$ Cluster of Excellence PRISMA Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz 55099, Germany
${ }^{2}$ Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
${ }^{3}$ Institute for Theoretical and Experimental Physics, Bol'shaya Cheremushkinskaya 25, 117218 Moscow, Russia

$$
\Delta E_{n S}=\frac{\alpha m}{i \pi^{3}} \phi_{n}^{2} \int_{0}^{\infty} \mathrm{d} \nu \int \mathrm{~d} \boldsymbol{q} \frac{\left(Q^{2}-2 \nu^{2}\right) T_{1}\left(\nu, Q^{2}\right)-\left(Q^{2}+\nu^{2}\right) T_{2}\left(\nu, Q^{2}\right)}{Q^{4}\left(Q^{4}-4 m^{2} \nu^{2}\right)}
$$

(a)

(h)

(c)

(j)
with corrections due to "elastic" proton FFs subtracted, i.e., "polarizability" contribution alone

TPE in $\mu \mathrm{H}$ Lamb Shift: Polarizability Contribution

```
Disp. Rel.
(Pachucki '99)
(Martynenko '06)
(Carlson-Vanderhaeghen '11)
Disp. Rel. + HB\chiPT
(Birse-McGovern '12)
Finite-Energy SR
(Gorchtein et al. '13)
HB\chiPT LO
(Nevado-Pineda '08)
HB\chiPT NLO
(Peset-Pineda '14)
B\chiPT LO
(Alarcon et al. '14)
\begin{tabular}{llllllllll}
-35 & -30 & -25 & -20 & -15 & -10 & -5 & \\
\hline
\end{tabular}
```

* $\mathrm{B} \chi \mathrm{Pt}$ result is in good agreement with calculations based on dispersive sum rules

χ Pt Calculations for TPE in $\mu \mathrm{H}$ Lamb Shift

[2] A. Pineda, Physical Review C71 (2005) 065205.
[3] C. Peset, A. Pineda (2014).
[4] J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C74 (2014) 2852.

	Nevado \& Pineda $\mathrm{HB} \chi \mathrm{PT}$	$\begin{gathered} \text { Alarcón et al. } \\ \mathrm{B} \chi \mathrm{PT} \end{gathered}$	Alarcón et al $\mathrm{HB} \chi \mathrm{PT}$	Peset \& Pineda $\mathrm{HB} \chi \mathrm{PT}^{a}$
$\Delta E_{2 S}^{\text {(subt) }}$	$\begin{array}{rrr}-3.0 & 1.3 \\ \ldots-5.2 & -19 .\end{array}$			
$\Delta E_{2 S}^{\text {(inel) }}$				
$\Delta E_{2 S}^{\text {(pol) }}$	$-\overline{18.5}(\underline{9.3})$	$-8.2 \overline{\left({ }_{-2.5}^{+1}\right)}$	-17.85	-26.2(10.0)
$\Delta E_{2 S}^{(\mathrm{el})}$	-10.1(5.1)			-8.3(4.3)
$\Delta E_{2 S}$	-28.6			-34.4(12.5)

${ }^{a}$ prediction at LO and NLO (including pions and deltas)
Table 1: Summary of available χ PT calculations for the TPE correction to the Lamb shift in $\mu \mathrm{H}$. Energy shifts are given in $\mu \mathrm{V}, \beta_{M 1}$ is given as $\times 10^{-4} \mathrm{fm}^{3}$.

"polarizability" contribution:

$$
\begin{array}{ll}
\bar{T}_{1}\left(\nu, Q^{2}\right)=\bar{T}_{1}\left(0, Q^{2}\right)+\frac{2 \nu^{2}}{\pi} f_{\nu_{0}}^{\infty} \mathrm{d} \nu^{\prime} \frac{\sigma_{T}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}}, & \text { subtraction function must be modelled! } \\
\bar{T}_{2}\left(\nu, Q^{2}\right)=\frac{2}{\pi} f_{\nu_{0}}^{\infty} \mathrm{d} \nu^{\prime} \frac{\nu^{\prime 2} Q^{2}}{\nu^{\prime 2}+Q^{2}} \frac{\sigma_{T}\left(\nu^{\prime}, Q^{2}\right)+\sigma_{L}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}} &
\end{array}
$$

TPE in uH HFS

$$
\begin{aligned}
\Delta E_{\mathrm{HFS}}=\left[1+\Delta_{\mathrm{QED}}+\Delta_{\mathrm{weak}}^{p}+\Delta_{\mathrm{FSE}}\right] E_{F} \quad \begin{array}{l}
\text { Fermi - Energy: } \\
E_{F}(n S)=\frac{8}{3} \frac{Z \alpha}{a^{3}} \frac{1+\kappa}{m M} \frac{1}{n^{3}}
\end{array} \\
\downarrow^{2} \\
\text { with } \Delta_{\mathrm{FSE}}=\Delta_{Z}+\Delta_{\mathrm{recoil}}^{p}+\Delta_{\mathrm{pol}}
\end{aligned}
$$

* TPE in HFS: $\frac{E^{\mathrm{TPE}}}{E_{F}^{p}}=\frac{m}{2(1+\varkappa) \pi^{4} i} \int_{0}^{\infty} \mathrm{d} \nu \int \mathrm{d} \boldsymbol{q} \frac{1}{\left(Q^{4}-4 m^{2} \nu^{2}\right)}\left\{\frac{\left(2 Q^{2}-\nu^{2}\right)}{Q^{2}} S_{1}\left(\nu, Q^{2}\right)+3 \frac{\nu}{M} S_{2}\left(\nu, Q^{2}\right)\right\}$
- TPE effect on the HFS is completely constrained by empirical information
- a $\mathrm{B} \chi \mathrm{Pt}$ calculation of the HFS in $\mu \mathrm{H}$ will put the reliability of both $\chi \mathrm{Pt}$ and dispersive calculations to the test

$$
S_{1}\left(\nu, Q^{2}\right)=8 \pi \alpha\left\{\frac{M Q^{2} F_{1}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{Q^{4}-4 M^{2} \nu^{2}}+\int_{\nu_{0}}^{\infty} \frac{\mathrm{d} \nu^{\prime}}{\nu^{\prime 2}-\nu^{2}} g_{1}\left(\nu^{\prime}, Q^{2}\right)\right\}
$$

$$
S_{2}\left(\nu, Q^{2}\right)=8 \pi \alpha M \nu\left\{-\frac{M F_{2}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{Q^{4}-4 M^{2} \nu^{2}}+\int_{\nu_{0}}^{\infty} \frac{\mathrm{d} \nu^{\prime}}{\nu^{\prime 2}-\nu^{2}} \frac{g_{2}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}}\right\}
$$

TPE in μH HFS

$$
\begin{aligned}
\frac{E^{\mathrm{TPE}}}{E_{F}^{p}}= & \frac{m}{2(1+\varkappa) \pi^{4}} \frac{1}{i} \int_{0}^{\infty} \mathrm{d} \nu \int \mathrm{~d} \boldsymbol{q} \frac{1}{Q^{4}-4 m^{2} \nu^{2}}\left\{\frac{\left(2 Q^{2}-\nu^{2}\right)}{Q^{2}} S_{1}\left(\nu, Q^{2}\right)+3 \frac{\nu}{M} S_{2}\left(\nu, Q^{2}\right)\right\} \\
= & \frac{m}{4(1+\varkappa) \pi^{4}} \int_{0}^{\infty} \mathrm{d} Q \int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\pi} \mathrm{d} \theta \int_{0}^{\pi} \mathrm{d} \chi \sin ^{2} \chi \sin \theta \times \\
& \times \frac{Q}{Q^{2}+4 m^{2} \cos ^{2} \chi}\left\{\left(2+\cos ^{2} \chi\right) S_{1}\left(\nu, Q^{2}\right)+\frac{3 i Q \cos \chi}{M} S_{2}\left(\nu, Q^{2}\right)\right\}
\end{aligned}
$$

* "polarizability" / "inelastic" contribution:

$$
\begin{aligned}
S_{1}\left(\nu, Q^{2}\right) & =8 \pi \alpha\left\{\frac{M Q^{2} F_{1}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{Q^{4}-4 M^{2} \nu^{2}}+f_{\nu_{0}}^{\infty} \frac{\mathrm{d} \nu^{\prime}}{\nu^{\prime 2}-\nu^{2}} g_{1}\left(\nu^{\prime}, Q^{2}\right)\right\} \\
& =S_{1}^{\text {Born }}\left(\nu, Q^{2}\right)+\frac{2 \pi \alpha}{M} F_{2}^{2}\left(Q^{2}\right)+8 \pi \alpha f_{\nu_{0}}^{\infty} \frac{\mathrm{d} \nu^{\prime}}{\nu^{\prime 2}-\nu^{2}} g_{1}\left(\nu^{\prime}, Q^{2}\right) \\
S_{2}\left(\nu, Q^{2}\right) & =8 \pi \alpha M \nu\left\{-\frac{M F_{2}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{Q^{4}-4 M^{2} \nu^{2}}+f_{\nu_{0}}^{\infty} \frac{\mathrm{d} \nu^{\prime}}{\nu^{\prime 2}-\nu^{2}} \frac{g_{2}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}}\right\} \\
& =S_{2}^{\text {Born }}\left(\nu, Q^{2}\right)+8 \pi \alpha M \nu f_{\nu_{0}}^{\infty} \frac{\mathrm{d} \nu^{\prime}}{\nu^{\prime 2}-\nu^{2}} g_{2}\left(\nu^{\prime}, Q^{2}\right)
\end{aligned} \Delta_{2}
$$

Pion-Nucleon-Loop Contribution

* cutoff dependence:
$E_{\mathrm{HFS}} / E_{\text {Fermi }}[\mathrm{ppm}]$

--- $\Delta_{\text {Pol }}$--- Δ_{1}--- Δ_{2}

Fermi - Energy:
$E_{F}(2 S)=\frac{1}{3} \frac{Z \alpha}{a^{3}} \frac{1+\kappa}{m M}=22.8054 \mathrm{meV}$

χ Pt Results for TPE in $\mu \mathrm{H} \mathrm{HFS}$

$$
\begin{aligned}
E_{\mathrm{HFS}}^{\pi} & =0.44 \pm 0.04 \mu \mathrm{eV} \text { び } \\
E_{\mathrm{HFS}}^{\pi N-\text { loops }} & =0.85 \pm 0.42 \mu \mathrm{eV}
\end{aligned}
$$

$$
E_{\mathrm{HFS}}^{\pi \& \pi N-\text { loops }}=1.29 \pm 0.42 \mu \mathrm{eV}
$$

B χ PT LO
(Hagelstein et al. '15)
Disp. Rel.
(Martynenko et al. '02)
(Faustov et al. '06)
(Carlson et al. '08)

Fermi - Energy:
$E_{F}(2 S)=\frac{1}{3} \frac{Z \alpha}{a^{3}} \frac{1+\kappa}{m M}=22.8054 \mathrm{meV}$

(a)

(c)

(j)
[1] C. E. Carlson, et al., Phys. Rev. A83 (2011) 042509.
[2] C. E. Carlson, et al., Phys. Rev. A78 (2008) 022517.
[3] R. Faustov, et al., Proc. SPIE Int. Soc. Opt. Eng. 6165 (2006) oM.
[4] A. Martynenko et al., Nucl. Phys. A703 (2002) 365-377.
[5] A. Martynenko, Phys. Rev. A71 (2005) 022506.

Dispersive Calculations for TPE in $\mu \mathrm{H}$ HFS

[1] C. E. Carlson, et al., Phys. Rev. A83 (2011) 042509.
[2] C. E. Carlson, et al., Phys. Rev. A78 (2008) 022517.
[3] R. Faustov, et al., Proc. SPIE Int. Soc. Opt. Eng. 6165 (2006) oM.
[4] A. Martynenko et al., Nucl. Phys. A703 (2002) 365-377.
[5] A. Martynenko, Phys. Rev. A71 (2005) 022506.

Reference	FF	$\begin{aligned} & R_{Z} \\ & {[\mathrm{fm}]} \end{aligned}$	$\begin{aligned} & \Delta_{Z} \\ & {[\mathrm{ppm}]} \end{aligned}$	$\begin{aligned} & \hline \Delta_{\text {recoil }}^{p} \\ & {[\mathrm{ppm}]} \end{aligned}$	$\begin{aligned} & \Delta_{\mathrm{pol}} \\ & {[\mathrm{ppm}]} \end{aligned}$	$\begin{aligned} & \delta_{1} \\ & {[\mathrm{ppm}]} \end{aligned}$	$\begin{aligned} & \delta_{2} \\ & {[\mathrm{ppm}]} \end{aligned}$	$\begin{aligned} & \Delta_{\mathrm{FSE}} \\ & {[\mathrm{ppm}]} \end{aligned}$	$\begin{aligned} & E_{2 S \mathrm{HFS}} \\ & {[\mathrm{meV}]} \end{aligned}$
Carlson et al. ${ }^{\text {a }}$	AMT	1.080	-7703	931	351(114)	370(112)	-19(19)	-6421(140)	22.8123
	AS	1.091	-7782	931	353			-6498	22.8105
	Kelly	1.069	-7622	931	353			-6338	22.8141
	MAMI	1.045							22.8187
	combined b								22.8146(49)
Faustov et al. ${ }^{\text {c }}$					470(104)	518	-48		
Martynenko et al. ${ }^{\text {d }}$	Dipole	1.022	-7180		460(80)	514	-58		$22.8138(78)^{e}$
Experiment		1.082							22.8089(51)

[^0]Table 1: Summary of available dispersive calculations for the TPE correction to the HFS in $\mu \mathrm{H}$.

Δ-Exchange Contribution

* TPE effect on the Lamb shift is dominated by the electric dipole polarizability $\alpha_{E 1}$, while the contribution from the magnetic dipole polarizability $\beta_{M 1}$ is suppressed
$\Delta E_{n S}^{(\mathrm{pol})}=\frac{\alpha}{\pi} \phi_{n}^{2} \int_{0}^{\infty} \frac{\mathrm{d} Q}{Q^{2}} w(\tau)\left[\bar{T}_{1}\left(0, Q^{2}\right)-\bar{T}_{2}\left(0, Q^{2}\right)\right] \quad$ with $\phi_{n}^{2}=1 /\left(\pi n^{3} a^{3}\right)$
low-energy theorem:

$$
\begin{aligned}
& \lim _{\nu, Q^{2} \rightarrow 0} \bar{T}_{1}\left(\nu, Q^{2}\right)=4 \pi \nu^{2}\left(\alpha_{E 1}+\beta_{M 1}\right)+4 \pi Q^{2} \beta_{M 1}+O\left(q^{4}\right) \\
& \lim _{\nu, Q^{2} \rightarrow 0} \bar{T}_{2}\left(\nu, Q^{2}\right)=4 \pi Q^{2}\left(\alpha_{E 1}+\beta_{M 1}\right)+O\left(q^{4}\right)
\end{aligned}
$$

* Does the Δ-excitation contribute significantly to the TPE effect in HFS?

$$
\mathcal{L}=\frac{3 e}{2 M\left(M+M_{\Delta}\right)} \bar{N} T_{3}\left\{i g_{M}\left(\partial_{\mu} \Delta_{\nu}\right) \tilde{F}^{\mu \nu}-g_{E} \gamma_{5}\left(\partial_{\mu} \Delta_{\nu}\right) F^{\mu \nu}-i \frac{g_{C}}{M_{\Delta}} \gamma_{5} \gamma^{\alpha}\left(\partial_{\alpha} \Delta_{\nu}-\partial_{\nu} \Delta_{\alpha}\right) \partial_{\mu} F^{\mu \nu}\right\}+\text { H.c. }
$$

Polarizabilties: Δ-Exchange Contribution

$$
\begin{gathered}
g_{M}=2.88 \\
g_{E}=-1.04 \\
g_{C}=-2.6
\end{gathered}
$$

* scalar dipole polarizabilties:

$$
\begin{aligned}
& \alpha_{E 1}=\frac{e^{2} g_{E}^{2}}{2 \pi M_{+}^{3}} \approx 0.1 \times 10^{-4} \mathrm{fm}^{3} \\
& \beta_{M 1}=-\frac{e^{2} g_{M}^{2}}{2 \pi \Delta M_{+}^{2}} \approx-6.7 \times 10^{-4} \mathrm{fm}^{3}
\end{aligned}
$$

* spin polarizabilties:

$$
\begin{aligned}
\gamma_{0} & =-\frac{e^{2}}{4 \pi M_{+}^{2}}\left(\frac{g_{E}^{2}}{M_{+}^{2}}+\frac{g_{M}^{2}}{\Delta^{2}}-\frac{4 g_{M} g_{E}}{M_{+} \Delta}\right) \approx-2.7 \times 10^{-4} \mathrm{fm}^{4} \\
\delta_{\mathrm{LT}} & =\frac{e^{2}}{4 \pi M_{+}^{3}}\left(g_{E}^{2} \frac{M_{\Delta}}{M_{+} M}+g_{E} g_{M} \frac{M_{\Delta}}{M \Delta}+g_{E} g_{C} \frac{1}{M_{\Delta}}\right) \\
& \approx(-0.138+0.023) \times 10^{-4} \mathrm{fm}^{4}=-0.114 \times 10^{-4} \mathrm{fm}^{4}
\end{aligned}
$$

Conclusions

Why disagreement in HFS ???

* effect of the Δ-excitation might not be negligible

B $\chi \mathrm{Pt}$ result is smaller than calculations based on dispersive sum rules		
$\mathrm{B} \chi \mathrm{PT}$ LO (Hagelstein et al. '15) Disp. Rel. (Martynenko et al. '02) (Faustov et al. '06) (Carlson et al. '08)	0	2

* empirical information on polarized (spin) structure functions is limited
- little data on g_{2}
* problem in $\mathrm{B} \chi \mathrm{PT}$?

Backup Slides

\section*{ASFBZ PROTON FORM FACTOR IN

HYDROGEN LAMB SHIFT

}
HYDROGEN LAMB SHIFT

}

$$
\text { with } w(Q)=-\frac{4}{\pi}(Z \alpha)^{5} m_{r}^{4} Q^{2} \frac{\left(Z \alpha m_{r}\right)^{2}-Q^{2}}{\left[\left(Z \alpha m_{r}\right)^{2}+Q^{2}\right]^{4}}
$$

FH, V. Pascalutsa, Phys. Rev. A91 (2015) 040502
"soft" contributions to the proton or lepton electric form factor could be able to explain the proton size puzzle ?!?

Yukawa-type potential:

$$
\begin{aligned}
& V_{Y}(r)=\frac{Z \alpha}{r} \frac{1}{\pi} \int_{t_{0}}^{\infty} \frac{\mathrm{d} t}{t} e^{-r \sqrt{t}} \operatorname{Im} G_{E}(t) \\
& \qquad \Delta E_{2 P-2 S}^{\mathrm{FF}(1)}=\left\langle 2 P_{1 / 2}\right| V_{Y}\left|2 P_{1 / 2}\right\rangle-\left\langle 2 S_{1 / 2}\right| V_{Y}\left|2 S_{1 / 2}\right\rangle \\
& \begin{array}{l}
\text { convergence } \\
\text { radius of the } \\
\text { expansion } \\
\text { is limited by }
\end{array} \quad-\frac{(Z \alpha)^{4} m_{r}^{3}}{2 \pi} \int_{t_{0}}^{\infty} \mathrm{d} t \frac{\operatorname{Im} G_{E}(t)}{\left(\sqrt{t}+Z \alpha m_{r}\right)^{4}} \\
& =-\frac{(Z \alpha)^{4} m_{r}^{3}}{12} \sum_{k=0}^{\infty} \frac{\left(-Z \alpha m_{r}\right)^{k}}{k!}\left\langle r^{k+2}\right\rangle_{E}
\end{aligned}
$$

- the finite-size effects are not always expandable in the moments of charge distribution
a small variation in the form factor around the inverse Bohr radius scale may lead to significant effects !!!

Theory of $\mu \mathrm{H}$ Lamb Shift

$$
\Delta E_{\mathrm{LS}}^{\mathrm{th}}=206.0668(25)-5.2275(10)\left(R_{E} / \mathrm{fm}\right)^{2}
$$

```
theory uncertainty:
    2.5 \mueV
```

numerical values reviewed in: A. Antognini et al., Annals Phys. 331, 127-145 (2013).

TPE in μH Lamb Shift

** Lamb shift: $\Delta E_{n S}=\frac{\alpha m}{i \pi^{3}} \phi_{n}^{2} \int_{0}^{\infty} \mathrm{d} \nu \int \mathrm{d} \boldsymbol{q} \frac{\left(Q^{2}-2 \nu^{2}\right) T_{1}\left(\nu, Q^{2}\right)-\left(Q^{2}+\nu^{2}\right) T_{2}\left(\nu, Q^{2}\right)}{Q^{4}\left(Q^{4}-4 m^{2} \nu^{2}\right)}$
with the hydrogen wavefunction at the origin $\phi_{n}^{2}=1 /\left(\pi n^{3} a^{3}\right)$

> unitarity relations:
> $\operatorname{Im} T_{1}\left(\nu, Q^{2}\right)=\frac{4 \pi^{2} \alpha}{M} f_{1}\left(\nu, Q^{2}\right)=\nu \sigma_{T}\left(\nu, Q^{2}\right)$
> $\operatorname{Im} T_{2}\left(\nu, Q^{2}\right)=\frac{4 \pi^{2} \alpha}{\nu} f_{2}\left(\nu, Q^{2}\right)=\frac{Q^{2} \nu}{\nu^{2}+Q^{2}}\left[\sigma_{T}+\sigma_{L}\right]\left(\nu, Q^{2}\right)$

"polarizability" contribution:
$\bar{T}_{1}\left(\nu, Q^{2}\right)=\bar{T}_{1}\left(0, Q^{2}\right)+\frac{2 \nu^{2}}{\pi} f_{\nu_{0}}^{\infty} \mathrm{d} \nu^{\prime} \frac{\sigma_{T}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}}$,
$\bar{T}_{2}\left(\nu, Q^{2}\right)=\frac{2}{\pi} f_{\nu_{0}}^{\infty} \mathrm{d} \nu^{\prime} \frac{\nu^{\prime 2} Q^{2}}{\nu^{\prime 2}+Q^{2}} \frac{\sigma_{T}\left(\nu^{\prime}, Q^{2}\right)+\sigma_{L}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}}$

subtraction function must be modelled!

"elastic" contribution:

$$
\begin{aligned}
& T_{1}^{\mathrm{Born}}\left(\nu, Q^{2}\right)=\frac{4 \pi \alpha}{M}\left\{\frac{Q^{4}\left[F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)\right]^{2}}{Q^{4}-4 M^{2} \nu^{2}}-F_{1}^{2}\left(Q^{2}\right)\right\} \\
& T_{2}^{\text {Born }}\left(\nu, Q^{2}\right)=\frac{16 \pi \alpha M Q^{2}}{Q^{4}-4 M^{2} \nu^{2}}\left\{F_{1}^{2}\left(Q^{2}\right)+\frac{Q^{2}}{4 M^{2}} F_{2}^{2}\left(Q^{2}\right)\right\}
\end{aligned}
$$

"elastic" and "inelastic" contributions are wellconstrained by empirical information

Dispersive Calculations for TPE in $\mu \mathrm{H}$ Lamb Shift

[1] K. Pachucki, Phys. Rev. A60 (1999) 3593-3598.
[2] A. Martynenko, Phys. Atom. Nucl. 69 (2006) 1309-1316.
[3] C. E. Carlson, M. Vanderhaeghen, hep-ph/1101.5965 (2011).
[4] M. C. Birse, J. A. McGovern, Eur. Phys. J. A48 (2012) 120.
[5] M. Gorchtein, et al., Phys. Rev. A87 (2013) 052501.

	Pachucki	Martynenko	 Vanderhaeghen	 McGovern	Gorchtein et al. ${ }^{a}$
$\beta_{M 1}$	$1.56(57)$	$1.9(5)$	$3.4(1.2)$	$3.1(5)$	
$\Delta E_{2 S}^{(\text {subt })}$	1.9	2.3	$5.3(1.9)$	$4.2(1.0)$	$-2.3(4.6)$
$\Delta E_{2 S}^{(\text {inel })}$	-13.9	-16.1	$-12.7(5)$	$-12.7(5)^{b}$	$-13.0(6)$
$\Delta E_{2 S}^{(\text {pol })}$	$-12(2)$	$-13.8(2.9)$	$-7.4(2.0)$	$-8.5(1.1)$	$-15.3(4.6)$
			-27.8		
$\Delta E_{2 S}^{(\text {el })}$	$-23.2(1.0)$		$-\mathbf{2 9 . 5 (1 . 3)}$	$-24.7(1.6)^{c}$	$-24.5(1.2)$
		-30.8			
$\Delta E_{2 S}$	$-35.2(2.2)$		$-36.9(2.4)$	$-33(2)$	$-39.8(4.8)$

${ }^{a}$ Adjusted values; the original values, $\Delta E_{2 S}^{(\text {subt })}=3.3$ and $\Delta E_{2 S}^{(\mathrm{el})}=-30.1$, are based on a different decomposition into the "elastic" and polarizability contributions.
${ }^{b}$ taken from Carlson \& Vanderhaeghen
${ }^{c}$ Result taken from Carlson \& Vanderhaeghen with reinstated "non-pole" Born piece.
Table 1: Summary of available dispersive calculations for the TPE correction to the Lamb shift in $\mu \mathrm{H}$. Energy shifts are given in $\mu \mathrm{eV}, \beta_{M 1}$ is given as $\times 10^{-4} \mathrm{fm}^{3}$.

$$
\begin{aligned}
& \lim _{Q^{2} \rightarrow 0} \frac{\bar{T}_{1}\left(0, Q^{2}\right)}{Q^{2}}=4 \pi \beta_{M 1} \\
& \beta_{M 1}\left(Q^{2}\right)=\beta_{M 1} \frac{\Lambda^{8}}{\left(\Lambda^{2}+Q^{2}\right)^{4}}
\end{aligned}
$$

TPE in $\mu \mathrm{H}$ HFS
 Fermi - Energy: $E_{F}(n S)=\frac{8}{3} \frac{Z \alpha}{a^{3}} \frac{1+\kappa}{m M} \frac{1}{n^{3}}$

* HFS: $\Delta E_{\mathrm{HFS}}=\left[1+\Delta_{\mathrm{QED}}+\Delta_{\text {weak }}^{p}+\Delta_{\mathrm{FSE}}\right] E_{F}$

$$
\text { with } \Delta_{\mathrm{FSE}}=\Delta_{Z}+\Delta_{\mathrm{recoil}}^{p}+\Delta_{\mathrm{pol}}
$$

* TPE in HFS: $\frac{E^{\mathrm{TPE}}}{E_{F}^{p}}=\frac{m}{2(1+\varkappa) \pi^{4} i} \int_{0}^{\infty} \mathrm{d} \nu \int \mathrm{d} q \frac{1}{\left(Q^{4}-4 m^{2} \nu^{2}\right)}\left\{\frac{\left(2 Q^{2}-\nu^{2}\right)}{Q^{2}} S_{1}\left(\nu, Q^{2}\right)+3 \frac{\nu}{M} S_{2}\left(\nu, Q^{2}\right)\right\}$

$$
\begin{aligned}
& S_{1}\left(\nu, Q^{2}\right)=8 \pi \alpha\left\{\frac{M Q^{2} F_{1}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{Q^{4}-4 M^{2} \nu^{2}}+\int_{\nu_{0}}^{\infty} \frac{\mathrm{d} \nu^{\prime}}{\nu^{\prime 2}-\nu^{2}} g_{1}\left(\nu^{\prime}, Q^{2}\right)\right\} \\
& S_{2}\left(\nu, Q^{2}\right)=8 \pi \alpha M \nu\left\{-\frac{M F_{2}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{Q^{4}-4 M^{2} \nu^{2}}+\int_{\nu_{0}}^{\infty} \frac{\mathrm{d} \nu^{\prime}}{\nu^{\prime 2}-\nu^{2}} \frac{g_{2}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}}\right\}
\end{aligned}
$$

unitarity relations:
$\operatorname{Im} S_{1}\left(\nu, Q^{2}\right)=\frac{4 \pi^{2} \alpha}{\nu} g_{1}\left(\nu, Q^{2}\right)=\frac{M \nu^{2}}{\nu^{2}+Q^{2}}\left[\frac{Q}{\nu} \sigma_{L T}+\sigma_{T T}\right]\left(\nu, Q^{2}\right)$,
$\operatorname{Im} S_{2}\left(\nu, Q^{2}\right)=\frac{4 \pi^{2} \alpha M}{\nu^{2}} g_{2}\left(\nu, Q^{2}\right)=\frac{M^{2} \nu}{\nu^{2}+Q^{2}}\left[\frac{\nu}{Q} \sigma_{L T}-\sigma_{T T}\right]\left(\nu, Q^{2}\right)$

$$
\begin{aligned}
& g_{1}^{\text {el }}\left(x, Q^{2}\right)=1 / 2 F_{1}\left(Q^{2}\right) G_{M}\left(Q^{2}\right) \delta(1-x) \\
& g_{2}^{\text {el }}\left(x, Q^{2}\right)=-1 / 2 \tau F_{2}\left(Q^{2}\right) G_{M}\left(Q^{2}\right) \delta(1-x)
\end{aligned}
$$

* TPE effect on the HFS is completely constrained by empirical information

HFS Formalism

$$
\Delta_{Z}=\frac{8 \alpha m_{r}}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} Q^{2}}{Q^{2}}\left[\frac{G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right)}{1+\varkappa}-1\right] \equiv-2 \alpha m_{r} R_{Z}
$$

$$
\Delta_{\mathrm{FSE}}=\Delta_{Z}+\Delta_{\mathrm{recoil}}^{p}+\Delta_{\mathrm{pol}}=\frac{E^{\mathrm{TPE}}}{E_{F}^{p}}-\frac{8 \alpha m_{r}}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} Q^{2}}{Q^{2}}
$$

$$
\begin{aligned}
\Delta_{\mathrm{pol}} & =\frac{\alpha m}{2(1+\varkappa) \pi M}\left[\Delta_{1}+\Delta_{2}\right]=\delta_{1}+\delta_{2} \\
\Delta_{1} & =\int_{0}^{\infty} \frac{\mathrm{d} Q^{2}}{Q^{2}}\left\{\beta_{1}\left(\tau_{l}\right) F_{2}^{2}\left(Q^{2}\right)+4 M \int_{\nu_{0}}^{\infty} \frac{\mathrm{d} \nu}{\nu^{2}} \frac{Q^{4} \beta_{1}(\tau)-4 m^{2} \nu^{2} \beta_{1}\left(\tau_{l}\right)}{Q^{4}-4 m^{2} \nu^{2}} g_{1}\left(\nu, Q^{2}\right)\right\} \\
\Delta_{2} & =-12 M^{2} \int_{0}^{\infty} \frac{\mathrm{d} Q^{2}}{Q^{2}} \int_{\nu_{0}}^{\infty} \frac{\mathrm{d} \nu}{\nu^{2}} \frac{Q^{4}\left[\beta_{2}(\tau)-\beta_{2}\left(\tau_{l}\right)\right]}{Q^{4}-4 m^{2} \nu^{2}} g_{2}\left(\nu, Q^{2}\right)
\end{aligned}
$$

[^0]: ${ }^{a}$ QED, higher-order and other small corrections included in $E_{2 S}$ HFS are taken from Martynenko. The Zemach term includes radiative corrections: $\Delta_{Z}=-2 \alpha m_{r} R_{Z}\left(1+\delta_{Z}^{\text {rad }}\right)$.
 ${ }^{b}$ slightly moved average of the selected form factors
 ${ }^{c}$ The calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN.
 ${ }^{d}$ The calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN.
 ${ }^{e}$ Adjusted value; the original value, $22.8148(78) \mathrm{meV}$, is corrected by adding $-1 \mu \mathrm{eV}$, because the conventions of "elastic" and "inelastic" contributions, applied in Martynenko, are inconsistent.

