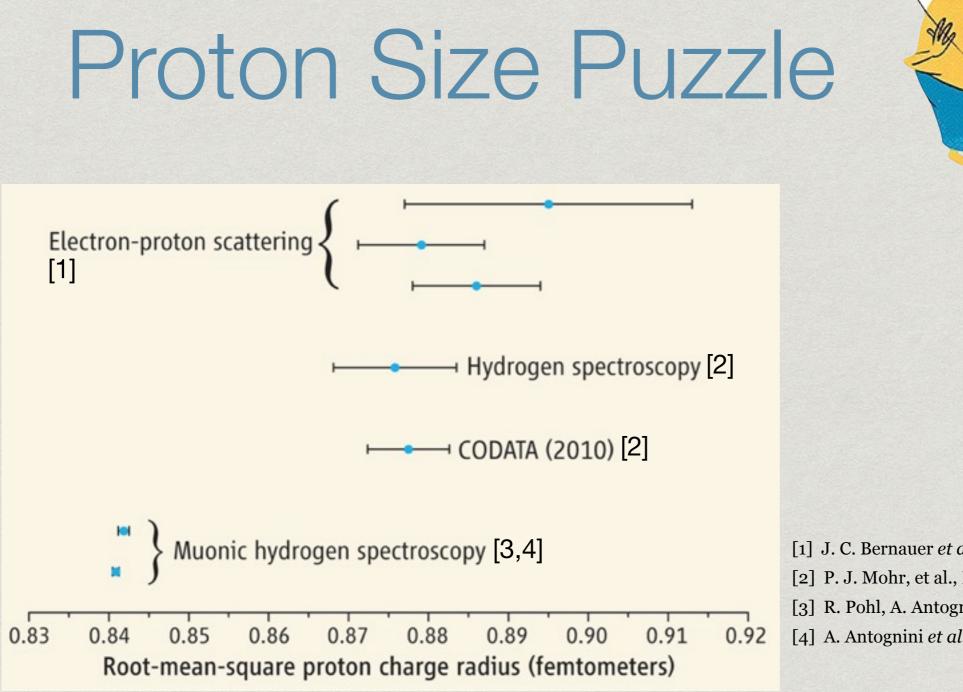
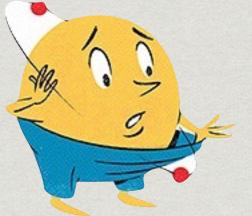


Precision Physics, Fundamental Interactions and Structure of Matter

CHIRAL PERTURBATION THEORY OF HYPERFINE SPLITTING IN MUONIC HYDROGEN

FRANZISKA HAGELSTEIN INSTITUT FÜR KERNPHYSIK, UNIVERSITÄT MAINZ, GERMANY

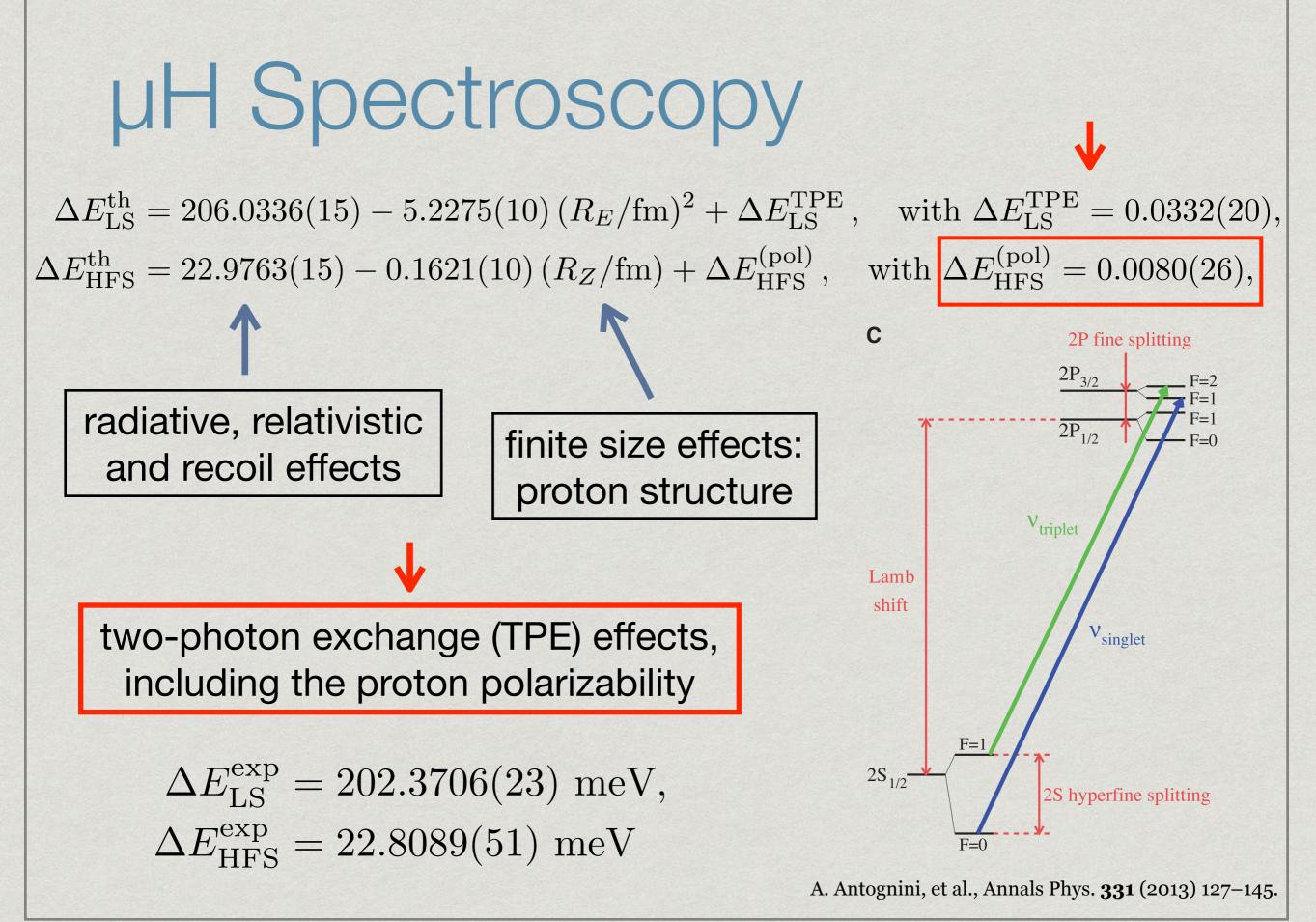


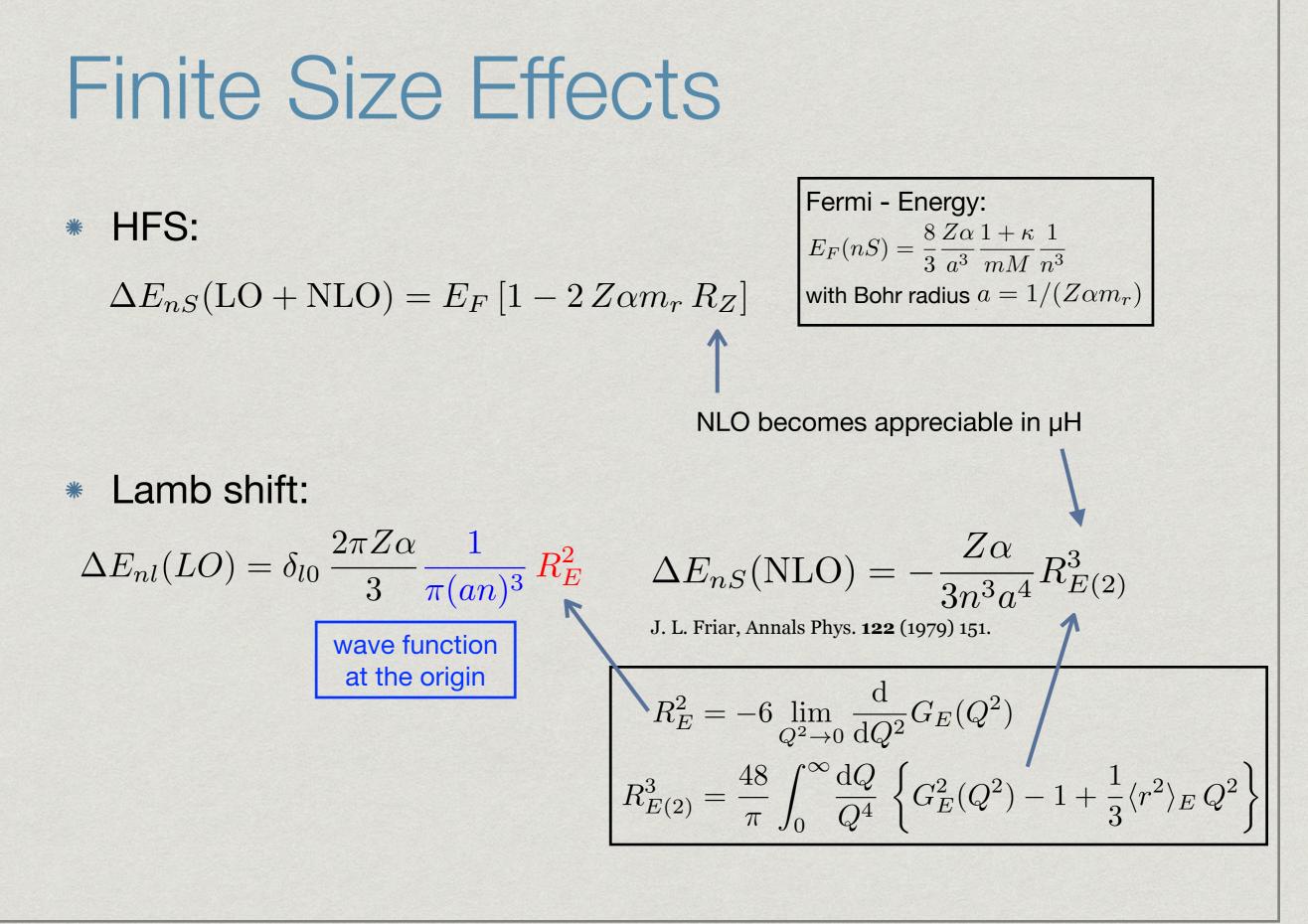


[1] J. C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010). [2] P. J. Mohr, et al., Rev. Mod. Phys. 84, 1527 (2012). [3] R. Pohl, A. Antognini et al., Nature 466, 213 (2010). [4] A. Antognini et al., Science **339**, 417 (2013).

seven standard-deviation discrepancy (7σ) !!!

CD 2015, 29.06.2015





RAPID COMMUNICATIONS

PHYSICAL REVIEW A 91, 040502(R) (2015)

Breakdown of the expansion of finite-size corrections to the hydrogen Lamb shift in moments of charge distribution

Franziska Hagelstein and Vladimir Pascalutsa Institut für Kernphysik, Cluster of Excellence PRISMA, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany (Received 13 February 2015; published 20 April 2015)

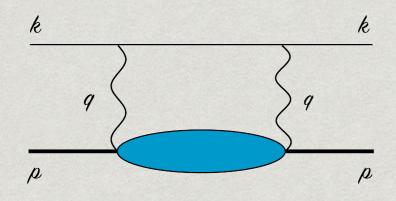
- the <u>finite-size effects</u> are <u>not always expandable</u> in the moments of charge distribution
 - a tiny non-smoothness of the electric form factor $G_E(Q^2)$ at scales comparable to the inverse Bohr radius can break down this expansion

$$E_{2P-2S}^{\rm FF(1)} = \int_0^\infty \mathrm{d}Q \, w(Q) \, G_E(Q^2) \quad \text{with} \quad w(Q) = -\frac{4}{\pi} (Z\alpha)^5 m_r^4 \, Q^2 \frac{(Z\alpha m_r)^2 - Q^2}{\left[(Z\alpha m_r)^2 + Q^2\right]^4}$$

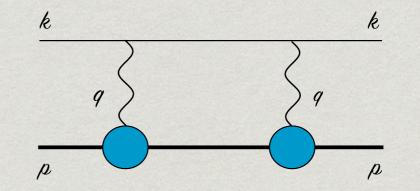
 one needs to know all the <u>"soft"</u> (below several MeV) <u>contributions</u> to proton electric FF to pcm accuracy

Structure Effects through TPE

 proton structure effects at subleading orders arise through multi-photon processes



"polarizability" contribution: "inelastic" contribution, "subtraction" term (Lamb shift)



"elastic" contribution: finite-size recoil, 3rd Zemach moment (Lamb shift), Zemach radius (HFS)

"blob" corresponds to doubly-virtual Compton scattering (VVCS):

$$\begin{split} T^{\mu\nu}(q,p) &= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu,Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu}\right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu}\right) T_2(\nu,Q^2), \\ &+ \frac{1}{M} \gamma^{\mu\nu\alpha} q_{\alpha} S_1(\nu,Q^2) + \frac{1}{M^2} \left(\gamma^{\mu\nu}q^2 + q^{\mu}\gamma^{\nu\alpha}q_{\alpha} - q^{\nu}\gamma^{\mu\alpha}q_{\alpha}\right) S_2(\nu,Q^2) \\ \text{or:} \ T^{\mu\nu}_A(q,p) &= \frac{i}{M} \epsilon^{\mu\nu\alpha\beta} q_{\alpha} s_{\beta} S_1(\nu,Q^2) + \frac{i}{M^3} \epsilon^{\mu\nu\alpha\beta} q_{\alpha}(p \cdot q \ s_{\beta} - s \cdot q \ p_{\beta}) S_2(\nu,Q^2) \end{split}$$

Eur. Phys. J. C (2014) 74:2852 DOI 10.1140/epjc/s10052-014-2852-0 THE EUROPEAN PHYSICAL JOURNAL C

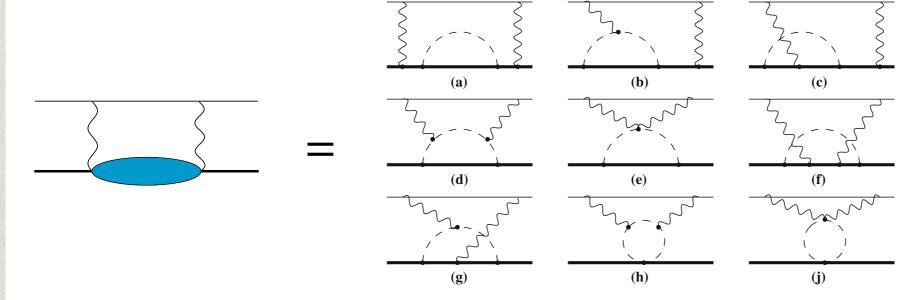
Regular Article - Theoretical Physics

Chiral perturbation theory of muonic-hydrogen Lamb shift: polarizability contribution

Jose Manuel Alarcón^{1,a}, Vadim Lensky^{2,3}, Vladimir Pascalutsa¹

¹ Cluster of Excellence PRISMA Institut f
ür Kernphysik, Johannes Gutenberg-Universit
ät, Mainz 55099, Germany
 ² Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
 ³ Institute for Theoretical and Experimental Physics, Bol'shaya Cheremushkinskaya 25, 117218 Moscow, Russia

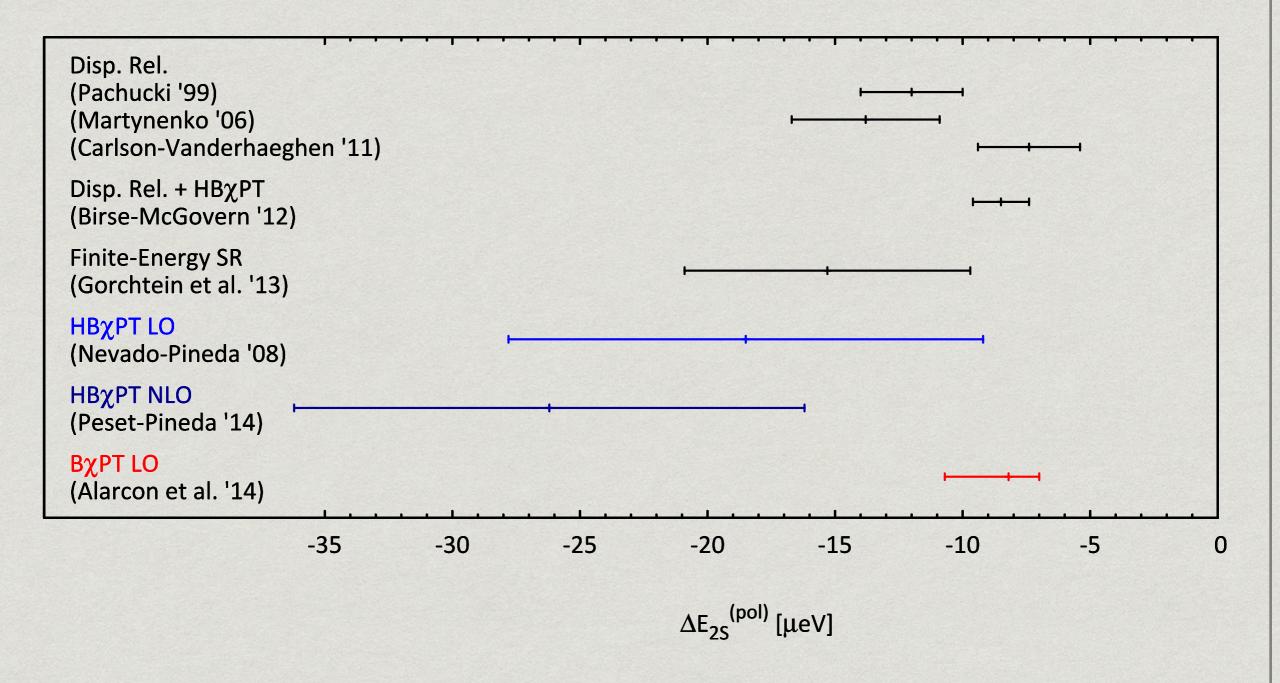
$$\Delta E_{nS} = \frac{\alpha m}{i\pi^3} \phi_n^2 \int_0^\infty \mathrm{d}\nu \int \mathrm{d}\boldsymbol{q} \, \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - (Q^2 + \nu^2) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$$



with corrections due to "elastic" proton FFs subtracted, i.e., "polarizability" contribution alone

CD 2015, 29.06.2015

TPE in µH Lamb Shift: Polarizability Contribution



• $B_{\chi}Pt$ result is in good agreement with calculations based on dispersive sum rules

χ Pt Calculations for TPE in μ H Lamb Shift

- [1] D. Nevado, A. Pineda, Phys. Rev. C77 (2008) 035202.
- [2] A. Pineda, Physical Review C71 (2005) 065205.
- [3] C. Peset, A. Pineda (2014).

[4] J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C74 (2014) 2852.

	Nevado & Pineda HB χ PT	Alarcón <i>et al.</i> B χ PT	Alarcón $et al.$ HB χ PT	Peset & Pineda HB χ PT ^a
$\begin{array}{c} \Delta E_{2S}^{(\mathrm{subt})} \\ \Delta E_{2S}^{(\mathrm{inel})} \end{array}$		-3.0	1.3	
$\left[\Delta E_{2S}^{(\text{pol})} \right]$	-18.5(9.3)	$-8.2(^{+1.2}_{-2.5})$	-17.85	-26.2(10.0)
$\Delta E_{2S}^{(\mathrm{el})}$	-10.1(5.1)			-8.3(4.3)
ΔE_{2S}	-28.6			-34.4(12.5)

^aprediction at LO and NLO (including pions and deltas)

Table 1: Summary of available χPT calculations for the TPE correction to the Lamb shift in μH . Energy shifts are given in μeV , β_{M1} is given as $\times 10^{-4}$ fm³.

"polarizability" contribution:

 $\overline{T}_{1}(\nu,Q^{2}) = \overline{T}_{1}(0,Q^{2}) + \frac{2\nu^{2}}{\pi} \int_{\nu_{0}}^{\infty} d\nu' \frac{\sigma_{T}(\nu',Q^{2})}{\nu'^{2} - \nu^{2}},$ $\overline{T}_{2}(\nu,Q^{2}) = \frac{2}{\pi} \int_{\nu_{0}}^{\infty} d\nu' \frac{\nu'^{2}Q^{2}}{\nu'^{2} + Q^{2}} \frac{\sigma_{T}(\nu',Q^{2}) + \sigma_{L}(\nu',Q^{2})}{\nu'^{2} - \nu^{2}}$

subtraction function must be modelled!

$$TPE in HFS: \begin{bmatrix} \frac{F^{TPE}}{E_{F}^{p}} = \frac{m}{2(1+z)\pi^{4}} \frac{1}{i} \int_{0}^{\infty} d\nu \int dq \frac{1}{(Q^{4} - 4m^{2}\nu^{2})} \begin{cases} \frac{(2Q^{2} - \nu^{2})}{Q^{2}} S_{1}(\nu, Q^{2}) + 3\frac{\nu}{M} S_{2}(\nu, Q^{2}) \end{cases}$$

$$(1, \nu, Q^{2}) = 8\pi\alpha \left\{ \frac{MQ^{2}F_{1}(Q^{2})G_{M}(Q^{2})}{Q^{4} - 4M^{2}\nu^{2}} + \int_{\nu_{0}}^{\infty} \frac{d\nu'}{\nu'^{2} - \nu^{2}} g_{1}(\nu', Q^{2}) \right\}$$

TPE in µH HFS

$$\begin{aligned} \frac{E^{\text{TPE}}}{E_F^p} &= \frac{m}{2(1+\varkappa)\pi^4} \frac{1}{i} \int_0^\infty \mathrm{d}\nu \int \mathrm{d}q \, \frac{1}{Q^4 - 4m^2\nu^2} \left\{ \frac{\left(2Q^2 - \nu^2\right)}{Q^2} S_1(\nu, Q^2) + 3\frac{\nu}{M} S_2(\nu, Q^2) \right\} \\ &= \frac{m}{4(1+\varkappa)\pi^4} \int_0^\infty \mathrm{d}Q \int_0^{2\pi} \mathrm{d}\phi \int_0^\pi \mathrm{d}\theta \int_0^\pi \mathrm{d}\chi \, \sin^2\chi \sin\theta \times \\ &\times \frac{Q}{Q^2 + 4m^2\cos^2\chi} \left\{ (2 + \cos^2\chi)S_1(\nu, Q^2) + \frac{3iQ\cos\chi}{M}S_2(\nu, Q^2) \right\} \end{aligned}$$

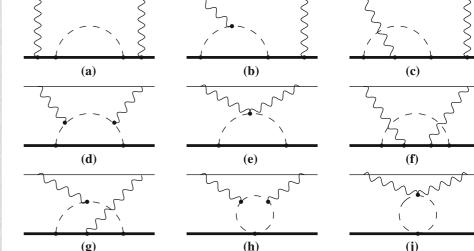
* "polarizability" / "inelastic" contribution:

$$S_{1}(\nu,Q^{2}) = 8\pi\alpha \left\{ \frac{MQ^{2}F_{1}(Q^{2})G_{M}(Q^{2})}{Q^{4} - 4M^{2}\nu^{2}} + \int_{\nu_{0}}^{\infty} \frac{d\nu'}{\nu'^{2} - \nu^{2}}g_{1}(\nu',Q^{2}) \right\}$$

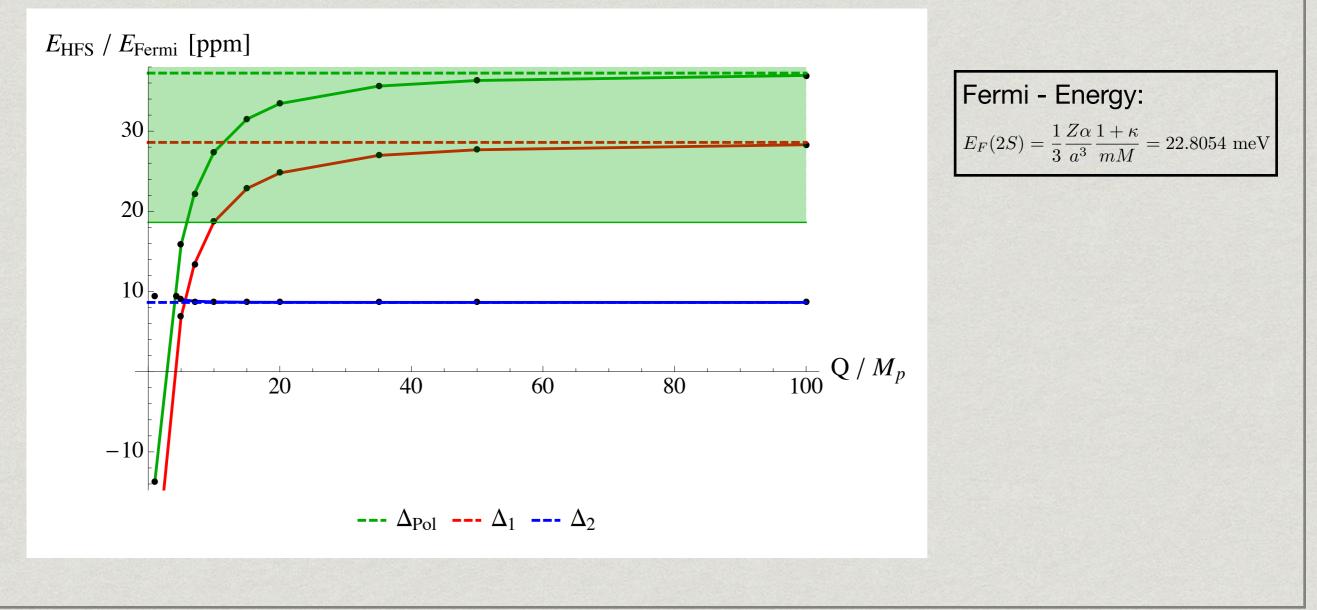
$$= S_{1}^{\text{Born}}(\nu,Q^{2}) \left\{ + \frac{2\pi\alpha}{M}F_{2}^{2}(Q^{2}) + 8\pi\alpha \int_{\nu_{0}}^{\infty} \frac{d\nu'}{\nu'^{2} - \nu^{2}}g_{1}(\nu',Q^{2})}{\nu'^{2} - \nu^{2}}g_{1}(\nu',Q^{2})} \right\}$$

$$S_{2}(\nu,Q^{2}) = 8\pi\alpha M\nu \left\{ -\frac{MF_{2}(Q^{2})G_{M}(Q^{2})}{Q^{4} - 4M^{2}\nu^{2}} + \int_{\nu_{0}}^{\infty} \frac{d\nu'}{\nu'^{2} - \nu^{2}}\frac{g_{2}(\nu',Q^{2})}{\nu'^{2}} \right\}$$

$$= S_{2}^{\text{Born}}(\nu,Q^{2}) \left\{ + 8\pi\alpha M\nu \int_{\nu_{0}}^{\infty} \frac{d\nu'}{\nu'^{2} - \nu^{2}}g_{2}(\nu',Q^{2})}{Q^{4} - 4M^{2}\nu^{2}} \right\} \Delta_{2}$$



* cutoff dependence:



$$\begin{aligned} \sum_{\substack{k \in \mathbb{N}^{2} \\ k \neq k \\ k \end{pmatrix} k \\ k \neq k$$

Dispersive Calculations for TPE in µH HFS

[1] C. E. Carlson, et al., Phys. Rev. A83 (2011) 042509.

[2] C. E. Carlson, et al., Phys. Rev. A78 (2008) 022517.

[3] R. Faustov, et al., Proc. SPIE Int. Soc. Opt. Eng. 6165 (2006) oM.

[4] A. Martynenko et al., Nucl. Phys. A703 (2002) 365–377.

[5] A. Martynenko, Phys. Rev. A71 (2005) 022506.

Reference	FF	R_Z [fm]	Δ_Z [ppm]	$\begin{array}{c} \Delta^p_{\rm recoil} \\ [\rm ppm] \end{array}$	$\Delta_{\rm pol}$ [ppm]	δ_1 [ppm]	δ_2 [ppm]	$\Delta_{\rm FSE}$ [ppm]	$\frac{E_{2S\rm HFS}}{[\rm meV]}$
	AMT	1.080	-7703	931	351(114)	370(112)	-19(19)	-6421(140)	22.8123
	AS	1.091	-7782	931	353			-6498	22.8105
Carlson et al. ^{a}	Kelly	1.069	-7622	931	353			-6338	22.8141
	MAMI	1.045							22.8187
	$\operatorname{combined}^{b}$								22.8146(49)
Faustov et al. ^c					470(104)	518	-48		
Martynenko et al. d	Dipole	1.022	-7180		460(80)	514	-58		$22.8138(78)^e$
Experiment		1.082(37)							22.8089(51)

^{*a*}QED, higher-order and other small corrections included in $E_{2S \text{ HFS}}$ are taken from Martynenko. The Zemach term includes radiative corrections: $\Delta_Z = -2\alpha m_r R_Z (1 + \delta_Z^{\text{rad}})$.

^bslightly moved average of the selected form factors

^cThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN.

^dThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN.

^eAdjusted value; the original value, 22.8148(78) meV, is corrected by adding -1μ eV, because the conventions of "elastic" and "inelastic" contributions, applied in Martynenko, are inconsistent.

Table 1: Summary of available dispersive calculations for the TPE correction to the HFS in μ H.

Fermi - Energy: $E_F(2S) = \frac{1}{3} \frac{Z\alpha}{a^3} \frac{1+\kappa}{mM} = 22.8054 \text{ meV}$

Δ-Exchange Contribution

* TPE effect on the Lamb shift is dominated by the electric dipole polarizability α_{E1} , while the contribution from the magnetic dipole polarizability β_{M1} is suppressed

$$\Delta E_{nS}^{(\text{pol})} = \frac{\alpha}{\pi} \, \phi_n^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \, w(\tau) \left[\overline{T}_1(0, Q^2) - \overline{T}_2(0, Q^2) \right] \qquad \text{with} \ \phi_n^2 = 1/(\pi n^3 a^3)$$

low-energy theorem:

$$\lim_{\nu,Q^2 \to 0} \overline{T}_1(\nu,Q^2) = 4\pi \,\nu^2 \left(\alpha_{E1} + \beta_{M1}\right) + 4\pi \,Q^2 \beta_{M1} + O(q^4)$$
$$\lim_{\nu,Q^2 \to 0} \overline{T}_2(\nu,Q^2) = 4\pi \,Q^2 \left(\alpha_{E1} + \beta_{M1}\right) + O(q^4)$$

 \sum_{Δ}

Does the Δ-excitation contribute significantly to the TPE effect in HFS?

$$\mathcal{L} = \frac{3e}{2M(M+M_{\Delta})}\bar{N}T_3\left\{ig_M(\partial_\mu\Delta_\nu)\tilde{F}^{\mu\nu} - g_E\gamma_5(\partial_\mu\Delta_\nu)F^{\mu\nu} - i\frac{g_C}{M_{\Delta}}\gamma_5\gamma^\alpha(\partial_\alpha\Delta_\nu - \partial_\nu\Delta_\alpha)\partial_\mu F^{\mu\nu}\right\} + \text{H.c.},$$

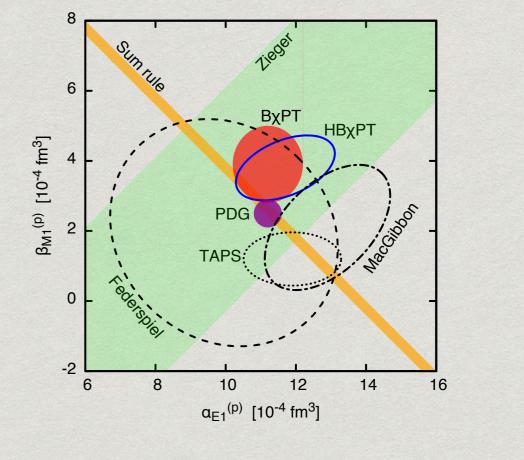
Polarizabilties: Δ-Exchange Contribution

$$g_M = 2.88$$

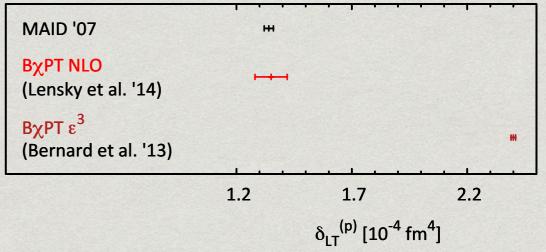
 $g_E = -1.04$
 $g_C = -2.6$

* scalar dipole polarizabilties:

$$\alpha_{E1} = \frac{e^2 g_E^2}{2\pi M_+^3} \approx 0.1 \times 10^{-4} \,\mathrm{fm}^3$$
$$\beta_{M1} = -\frac{e^2 g_M^2}{2\pi \Delta M_+^2} \approx -6.7 \times 10^{-4} \,\mathrm{fm}^3$$



$$\gamma_{0} = -\frac{e^{2}}{4\pi M_{+}^{2}} \left(\frac{g_{E}^{2}}{M_{+}^{2}} + \frac{g_{M}^{2}}{\Delta^{2}} - \frac{4g_{M}g_{E}}{M_{+}\Delta} \right) \approx -2.7 \times 10^{-4} \,\mathrm{fm}^{4}$$
$$\delta_{\mathrm{LT}} = \frac{e^{2}}{4\pi M_{+}^{3}} \left(g_{E}^{2} \frac{M_{\Delta}}{M_{+}M} + g_{E}g_{M} \frac{M_{\Delta}}{M\Delta} + g_{E}g_{C} \frac{1}{M_{\Delta}} \right)$$
$$\approx (-0.138 + 0.023) \times 10^{-4} \,\mathrm{fm}^{4} = -0.114 \times 10^{-4} \,\mathrm{fm}^{4}$$

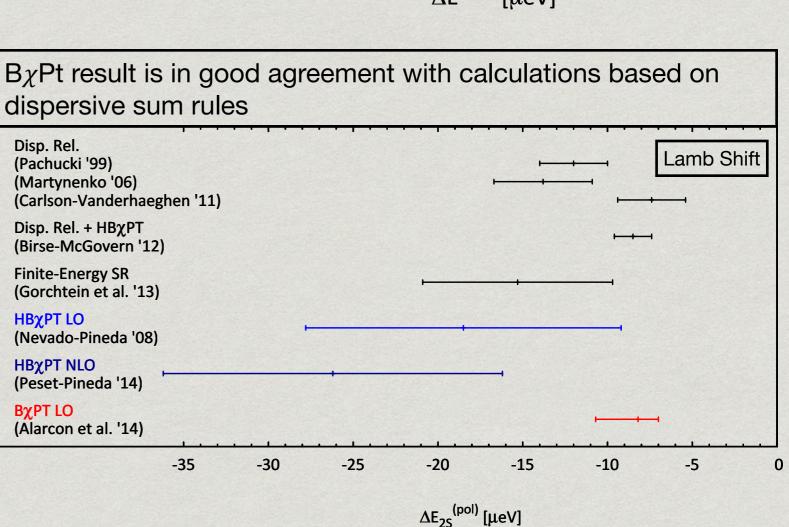


Conclusions

Why disagreement in HFS ???

- effect of the Δ-excitation might not be negligible
- empirical information on polarized (spin) structure functions is limited
 - little data on g_2
- * problem in $B\chi PT$?

$B\chi Pt$ result is smaller than calculations based on dispersive sum rules **B**χPT LO HFS (Hagelstein et al. '15) ----Disp. Rel. (Martynenko et al. '02) (Faustov et al. '06) (Carlson et al. '08) 12 0 2 4 8 10 14 6 $\Delta E^{(pol)}$ [µeV]



Backup Slides

PROTON FORM FACTOR IN HYDROGEN LAMB SHIFT

$$E_{2P-2S}^{\rm FF(1)} = \int_{0}^{\infty} dQ \, w(Q) \, G_E(Q^2)$$

$$= \int_{0}^{0} \frac{1}{a_{\rm eff}} \int_{-2}^{0} \frac{1}{a$$

with
$$w(Q) = -\frac{4}{\pi} (Z\alpha)^5 m_r^4 Q^2 \frac{(Z\alpha m_r)^2 - Q^2}{\left[(Z\alpha m_r)^2 + Q^2\right]^4}$$

FH, V. Pascalutsa, Phys. Rev. A91 (2015) 040502

"soft" contributions to the proton or lepton electric form factor could be able to explain the proton size puzzle ?!?

FRANZISKA HAGELSTEIN

Yukawa-type potential:

$$V_Y(r) = \frac{Z\alpha}{r} \frac{1}{\pi} \int_{t_0}^{\infty} \frac{\mathrm{d}t}{t} \, e^{-r\sqrt{t}} \, \mathrm{Im} \, G_E(t)$$

 $\Delta E_{2P-2S}^{\text{FF}(1)} = \langle 2P_{1/2} | V_Y | 2P_{1/2} \rangle - \langle 2S_{1/2} | V_Y | 2S_{1/2} \rangle$ Invergence
dius of the
pansion
imited by t_0 $= -\frac{(Z\alpha)^4 m_r^3}{12} \sum_{k=0}^{\infty} \frac{(-Z\alpha m_r)^k}{k!} \langle r^{k+2} \rangle_E$ $= -\frac{(Z\alpha)^4 m_r^3}{12} \left[\langle r^2 \rangle_E - Z\alpha m_r \langle r^3 \rangle_E \right] + O(\alpha^4)$

- the <u>finite-size effects</u> are <u>not always</u> <u>expandable</u> in the moments of charge distribution
- a small variation in the form factor around the inverse Bohr radius scale may lead to significant effects !!!

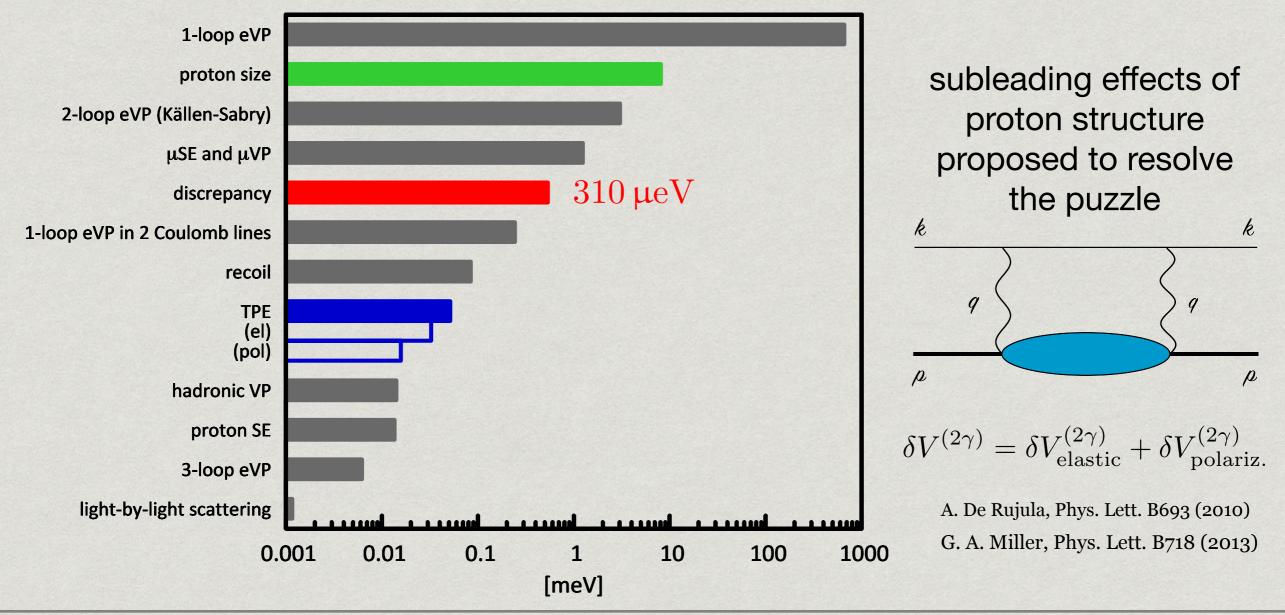
INSTITUT FÜR KERNPHYSIK, UNIVERSITÄT MAINZ, GERMANY

Theory of µH Lamb Shift

 $\Delta E_{\rm LS}^{\rm th} = 206.0668(25) - 5.2275(10) \, (R_E/{\rm fm})^2$

theory uncertainty: $2.5 \,\mu eV$

numerical values reviewed in: A. Antognini et al., Annals Phys. 331, 127-145 (2013).



TPE in µH Lamb Shift

* Lamb shift:
$$\Delta E_{nS} = \frac{\alpha m}{i\pi^3} \phi_n^2 \int_0^\infty d\nu \int dq \, \frac{(Q^2 - 2\nu^2) T_1(\nu, Q^2) - (Q^2 + \nu^2) T_2(\nu, Q^2)}{Q^4 (Q^4 - 4m^2\nu^2)}$$

with the hydrogen wavefunction at the origin $\phi_n^2 = 1/(\pi n^3 a^3)$

unitarity relations:
Im
$$T_1(\nu, Q^2) = \frac{4\pi^2 \alpha}{M} f_1(\nu, Q^2) = \nu \sigma_T(\nu, Q^2)$$

Im $T_2(\nu, Q^2) = \frac{4\pi^2 \alpha}{\nu} f_2(\nu, Q^2) = \frac{Q^2 \nu}{\nu^2 + Q^2} [\sigma_T + \sigma_L](\nu, Q)$
"polarizability" contribution:
 $\overline{T}_1(\nu, Q^2) = \overline{T}_1(0, Q^2) + \frac{2\nu^2}{\pi} \int_{\nu_0}^{\infty} d\nu' \frac{\sigma_T(\nu', Q^2)}{\nu'^2 - \nu^2},$
 $\overline{T}_2(\nu, Q^2) = \frac{2}{\pi} \int_{\nu_0}^{\infty} d\nu' \frac{\nu'^2 Q^2}{\nu'^2 + Q^2} \frac{\sigma_T(\nu', Q^2) + \sigma_L(\nu', Q^2)}{\nu'^2 - \nu^2}$

subtraction function must be modelled!

$$f_{1}^{\text{el}}(x,Q^{2}) = \frac{1}{2}G_{M}^{2}(Q^{2})\delta(1-x)$$

$$f_{2}^{\text{el}}(x,Q^{2}) = \frac{1}{1+\tau} [G_{E}^{2}(Q^{2}) + \tau G_{M}^{2}(Q^{2})]\delta(1-x)$$

$$\underbrace{\text{"elastic" contribution:}}_{\text{T}_{1}^{\text{Born}}(\nu,Q^{2}) = \frac{4\pi\alpha}{M} \left\{ \frac{Q^{4} [F_{1}(Q^{2}) + F_{2}(Q^{2})]^{2}}{Q^{4} - 4M^{2}\nu^{2}} - F_{1}^{2}(Q^{2}) \right\}$$

$$T_{2}^{\text{Born}}(\nu,Q^{2}) = \frac{16\pi\alpha MQ^{2}}{Q^{4} - 4M^{2}\nu^{2}} \left\{ F_{1}^{2}(Q^{2}) + \frac{Q^{2}}{4M^{2}}F_{2}^{2}(Q^{2}) \right\}$$

$$\underbrace{\text{"elastic" and "inelastic"}}_{\text{Hence in the equation of the equ$$

contributions are wellconstrained by empirical information

 \overline{T}

Dispersive Calculations for TPE in µH Lamb Shift

K. Pachucki, Phys. Rev. A60 (1999) 3593-3598.
 A. Martynenko, Phys. Atom. Nucl. 69 (2006) 1309-1316.
 C. E. Carlson, M. Vanderhaeghen, hep-ph/1101.5965 (2011).
 M. C. Birse, J. A. McGovern, Eur. Phys. J. A48 (2012) 120.
 M. Gorchtein, et al., Phys. Rev. A87 (2013) 052501.

	Pachucki	Martynenko	Carlson &	Birse &	Gorchtein
			Vanderhaeghen	McGovern	$et \ al.^a$
β_{M1}	1.56(57)	1.9(5)	3.4(1.2)	3.1(5)	
$\Delta E_{2S}^{(\text{subt})}$	1.9	2.3	5.3(1.9)	4.2(1.0)	-2.3(4.6)
$\Delta E_{2S}^{(\text{inel})}$	-13.9	-16.1	-12.7(5)	$-12.7(5)^{b}$	-13.0(6)
$\begin{bmatrix} \Delta E_{2S}^{(\text{pol})} \end{bmatrix}$	-12(2)	-13.8(2.9)	-7.4(2.0)	-8.5(1.1)	$\begin{bmatrix} -15.3(4.6) \end{bmatrix}$
			(-27.8)		
$\Delta E_{2S}^{(\mathrm{el})}$	-23.2(1.0)		-29.5(1.3)	$-24.7(1.6)^{c}$	-24.5(1.2)
			-30.8		
ΔE_{2S}	-35.2(2.2)		-36.9(2.4)	-33(2)	-39.8(4.8)

^{*a*}Adjusted values; the original values, $\Delta E_{2S}^{(\text{subt})} = 3.3$ and $\Delta E_{2S}^{(\text{el})} = -30.1$, are based on a different decomposition into the "elastic" and polarizability contributions.

^btaken from Carlson & Vanderhaeghen

^cResult taken from Carlson & Vanderhaeghen with reinstated "non-pole" Born piece.

Table 1: Summary of available dispersive calculations for the TPE correction to the Lamb shift in μ H. Energy shifts are given in μ eV, β_{M1} is given as $\times 10^{-4}$ fm³.

$$\lim_{Q^2 \to 0} \frac{\overline{T}_1(0, Q^2)}{Q^2} = 4\pi \,\beta_{M1}$$
$$\beta_{M1}(Q^2) = \beta_{M1} \frac{\Lambda^8}{(\Lambda^2 + Q^2)^4}$$

Fermi - Energy:

$$E_F(nS) = \frac{8}{3} \frac{Z\alpha}{a^3} \frac{1+\kappa}{mM} \frac{1}{n^3}$$

* HFS: $\Delta E_{\text{HFS}} = [1 + \Delta_{\text{QED}} + \Delta_{\text{weak}}^p + \Delta_{\text{FSE}}] E_F$

with
$$\Delta_{
m FSE} = \Delta_Z + \Delta_{
m recoil}^p + \Delta_{
m pol}$$

* TPE in HFS:
$$\frac{E^{\text{TPE}}}{E_F^p} = \frac{m}{2(1+\varkappa)\pi^4} \frac{1}{i} \int_0^\infty d\nu \int dq \, \frac{1}{(Q^4 - 4m^2\nu^2)} \left\{ \frac{(2Q^2 - \nu^2)}{Q^2} S_1(\nu, Q^2) + 3\frac{\nu}{M} S_2(\nu, Q^2) \right\}$$
$$S_1(\nu, Q^2) = 8\pi\alpha \left\{ \frac{MQ^2 F_1(Q^2) G_M(Q^2)}{Q^4 - 4M^2\nu^2} + \int_{\nu_0}^\infty \frac{d\nu'}{\nu'^2 - \nu^2} g_1(\nu', Q^2) \right\}$$

$$S_2(\nu, Q^2) = 8\pi\alpha \, M\nu \left\{ -\frac{MF_2(Q^2)G_M(Q^2)}{Q^4 - 4M^2\nu^2} + \int_{\nu_0}^{\infty} \frac{\mathrm{d}\nu'}{\nu'^2 - \nu^2} \frac{g_2(\nu', Q^2)}{\nu'^2} \right\}$$

unitarity relations:

$$\operatorname{Im} S_{1}(\nu, Q^{2}) = \frac{4\pi^{2}\alpha}{\nu} g_{1}(\nu, Q^{2}) = \frac{M\nu^{2}}{\nu^{2} + Q^{2}} \Big[\frac{Q}{\nu} \sigma_{LT} + \sigma_{TT} \Big] (\nu, Q^{2}), \\
\operatorname{Im} S_{2}(\nu, Q^{2}) = \frac{4\pi^{2}\alpha M}{\nu^{2}} g_{2}(\nu, Q^{2}) = \frac{M^{2}\nu}{\nu^{2} + Q^{2}} \Big[\frac{\nu}{Q} \sigma_{LT} - \sigma_{TT} \Big] (\nu, Q^{2})$$

$$g_1^{\text{el}}(x,Q^2) = \frac{1}{2} F_1(Q^2) G_M(Q^2) \delta(1-x)$$

$$g_2^{\text{el}}(x,Q^2) = -\frac{1}{2} \tau F_2(Q^2) G_M(Q^2) \delta(1-x)$$

TPE effect on the HFS is completely constrained by empirical information

24