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Tackling the flux uncertainty problem

Last 10 years: knowledge of σ(ν
μ
) improved 

enormously (SCIBooNE, MiniBooNE, T2K, MINERvA) 

 Still:

● In particular for σ(ν
e
) data are sparse/old (Gargamelle, T2K, NOvA) being 

based on the beam contamination (no intense/pure sources of GeV ν
e
). 

● No absolute measurement with < 10% error.
● The flux systematics “wall” 

● Mitigations and flux constraints already in place:

➢ hadro-production experiments (SPY, HARP, NA61)
➢ interactions on electrons (but small rates and only useful @ high-E)

NuMI beam by MINERvA Coll.  hep-
ex//1607.00704
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Impact of 
precision on σ(ν

e
)

7%

M. Hartz @ NuFact 2015

Exotic: sterile ν, Non-Standard Interactions and 
3ν scheme have a similar phenomenology  →
precise knowledge of σ(ν

e
) vs E  → a deeper 

insight of the underlying physics.

CP violation: poor knowledge of σ(ν
e
) can 

significantly spoil the discovery potential of 
future ν

μ
→ ν

e 
experiments.

NSI

3+1 

DUNE

HK

 → Monitored beams: a ν source employing conventional 
technologies reaching a precision on the initial flux < 1%

De Gouvea et al.,  1605.0937 

● Moreover: “derivation” from σ(ν
μ
) is 

“delicate” expecially @ low-E (sub-GeV)
● Ideal solution? D.I.F. of stored  as in 

nuSTORM/nuPIL! but NOT easy
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Monitored beams

(K+, π+) ν
e

protons
e+

neutrino 
detector

K decays

● Fully instrumented decay region 

K+  e→ + ν
e 
π0  large angle e→ + 

● ν
e
 flux prediction = e+ counting

Traditional beams
●  Passive decay region

● ν
e
 flux relies on ab-initio 

simulations of the full chain

● large uncertainties

↔ 

Monitored beams

● Idea of existing /hadron monitors extended to the ultimate step:
  → monitoring (~ inclusively) the decays in which ν are produced.

● By-pass uncertainties from: 
hadro-production, PoT, beam-line efficiency (“before” the tagging)
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Working principle and setup

● 1) Hadron beam-line: charge selection, focusing, transfer of π+/K+ to an 
instrumented decay tunnel (e+ tagger)

● 2) Tagger: real-time, ''inclusive'' monitoring of K decay products

● Profiting of a good focusing (important!) and decay kinematics we can have:
● only K decay products (at large angles) being measured and π and μ decaying at 

small angles and reaching the dump without hitting the instrumented walls. 
● This allows:

✔ tolerable rates and irradiation (< 500 kHz/cm2, O(1 kGy) )
✔ full/continuous control of the bulk of the produced ν

e
 from the K

e3
 rates

✔ contribution of ν
e 

from μ decays is < 2% using a “short” decay tunnel
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Baseline design parameters

π+

● Good acceptance for K decays thanks to 
the large emission angle (~ m

K
)

● Positrons from K
e3

 emitted at ~90 mrad

Baseline design:
➢ p

K,π
 = 8.5 ± 20% GeV/c

➢ θ < 3 mrad over 10 x 10 cm2

➢ Tagger: L = 50 m, r = 40 cm

● E
ν
 in R.O.I. with few ν

e 
from μ decays

● limited K losses in the beam-line
● an “easy” e/π separation at reduced costs

K+


e

e+

0



ν
e
/ν

μ

Parent momentum

FLUKA
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Role of other K decays and ν
μ  
flux

● σ(ν
e
) 

✔ K
e3

 (golden sample)
● π+/0 from K+ can mimic an e+ 

 → discriminate e/π with:
1) longitudinal profile of showers
2) reconstruct vertices by timing

● veto e+ candidates if compatible with K+  → π+π-π+ and 
K+  → π+π0 vertices (needs σ

t 
O(100 ps) ~ σ

zVTX
 O(1m)) 

✔ non K
e3

 (silver sample): only additional 
systematics from the K

e3
  B.R.

● σ(ν
μ
) 

● μ tagging in the calorimeter
● ν

μ 
from K selected at the ν-detector with 
Radius-Energy correlations  →

ν
μ  

from K

ν
μ  

from π

● K+  → μ+ν
μ

 (63%)
● K+  → μ+ν

μ
π0 (3.2%)

● K+  → π+π0  (21%)
● K+  → π+π-π+ (6%) 
● K+  → π+π0π0 (2%)

E
ν

E
ν

r
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The e+ tagger challenges

π+ 
background

e+signal
● extended source of ~ 50 m
● grazing incidence 
● significant spread in the initial direction

The decay tunnel: a harsh environment
● particle rates: > 200 kHz/cm2

● backgrounds:  pions from K+ decays

Moreover: 

Max rate 
(kHz/cm2)

μ+ 190

γ 190

π+ 100

e+ 20

all 500

Injecting 1010 + in a 2 ms spill  →

, , , e+)
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Hadron beam-line: scenario A 
● Magnetic horns : t

impulse
 < 10 ms (Joule heating, I ~ O(100) kA)

● tagger rate limit with 1010 π+ in 2 ms 
● horn collection efficiency  → 0.3-2.5 × 1012 PoT/spill depending on E

p 
● i.e. (many) spills with relatively “few” protons are needed

● Requiring 104 ν
e

CC in a 500 t ν-detector at 100 m implies: 

● 0.5-5 × 1020  PoT  well within present performances! A few years of run.→
● ~ 2 × 108 spills. More challenging/unconventional. A possible scheme is

● multi-Hz slow resonant extraction + multi-Hz horn pulsing 
● R&D and machine studies at SPS are planned

A possible structure at the SPS: 

 …  20 ...

2 s flat top

10 ms 90 ms

1.2  p

“WANF like”

~ 50% SPS emptying
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SHiP: arXiv:1504.04956

Hadron beam-line: scenario B 
● Static focusing: large aperture radiation-hard quadrupoles
● Advantage: tagger is now far from maximal tolerable rates
● Disadvantage: loss of acceptance w.r.t. horn-based

● PoT to get 104 ν
e

CC: 0.5-7 × 1021

● X10 more. Still feasible if compensated by (run time × detector mass)
● R&D on static focusing beam-line:

 →maximize collection efficiency (~ “useful” hadrons/PoT) 
● Single resonant slow extraction over O(s)  synergies with ← SHiP

NA62
beamline

This option ofers another intriguing opportunity  → 
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Going beyond: ''time-tagged'' beams

Accidental tag probability using 1010  hadrons/burst: A ~ 2×107 δ/T
extr

 

T
extr

= 1s (~ 1 observed e+ / 30 ns) + δ = 1 ns  → A = 2 %  OK !

Time-tagging not possible using magnetic horns, (scenario A):
T

extr
 = 2 ms (1 e+ / 70 ps) even δ = 50 ps gives A = 50%

Δ

e+ ν
e

CC

Time coincidence of 
ν

e

CC and e+       |δt - Δ/c| < δ

δ = combined t-resolution (e+ tagger and n detector) 

● Event time dilution  → time-tagging
● Associating a single ν interaction to a tagged e+ with a 
small “accidental coincidence” probability through time coincidences
● E

ν
 and flavor of the neutrino know ''a priori'' event by event.

Superior purity. Combine E
ν
 from decay with the one deduced from the interaction. 
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ν-detector and ν
e

CC rates 

104 ν
e

CC

● At ~100 m from the hadron window
● a ~500 t mass
● With good e-tagging capabilities

● e.g. ICARUS@Fermilab  
● proto-DUNE SP/DP @CERN
● Water Cherenkov prototypes

<E> = 3 GeV, FWHM ~ 3.5 GeV

● 104 ν
e

CC could be collected in a few years 
● Interesting region of long baseline 

future projects is covered
● Extended optimization foreseen 

within ENUBET

DUNE

HK

Eur. Phys. J. C75 (2015) 155
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New opportunities

The ENUBET technology is well suited for short 
baseline experiment where the intensity 
requirement are less stringent. 

Major applications include:

● A new generation of cross section 
experiments operating with a ν source 
controlled at the < 1% level. A unique tool 
for precision oscillation physics and a new 
opportunity for the cross-section community

● A phase II sterile neutrino search, especially 
in case of positive signal from the Fermilab SBL 
program/reactor experiments

● The first step towards a time-tagged ν-beam

NB. σ(ν
e
) is a “green field”

 ENUBET 

σ(ν
e
)

1% sys. + 1% overall stat. errors 
(10.000 ν

e
CC) Eur. Phys. J. C75 (2015) 155
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ENUBET: the roadmap

1) Construction, tests of a tagger demonstrator 
(three m of the instrumented decay tunnel)
2) Systematics with full simulation supported by test 
beam campaigns at CERN-PS and INFN-LNF/LNL
3) Design of the hadronic beam-line
4) Test new proton extraction schemes at CERN-SPS

Demonstrate the technique, prepare a “full-scale” experiment

● Calorimetry: compact, modular, low-cost detectors (UCM)
● Accelerator physics: Multi-Hz slow resonant extraction

1)

2)

2)

3)
4)

By-products: 
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    Tagger technology
1) Calorimeter (“shashlik”) 

● Ultra-Compact Module (UCM)
● Integrated light readout

2) Integrated γ-veto 
● plastic scintillators or 
● large-area fast APDs ?
● Cherenkov radiator + LAPPD ?

K+ e+

 → π0 rejection 

2) integrated γ-veto

1) compact calorimeter with
longitudinal segmentation

UCM ν
e

   → π± rejection

π0

e+ (signal) topology
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The Ultra Compact Module  (UCM)

spring 2016 
prototypes

Concept validated by SCENTT R&D within
INFN Gruppo 5 (2016-17)

● 1 SiPM  1 WLS fiber↔
● 9 SiPM signals are added (reduce R/O costs)
● Add SiPM signals in place of light → no 

WLS bundling = optimal homogenity in 
longitudinal sampling (UCM) 

NIM A824 (2016) 693
NIM A830 (2016) 34

4.3 X
0
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Full simulation: e/π separation
GEANT4 simulation. TMVA multivariate 
analysis: rejects simultaneously π+ and π0.

ε
geom

ε
sel

e+ 90.7 % 49.0 %

π+ 85.7 % 2.9 %

π0 95.1 % 1.2 %

Former estimates from parametrizations confirmed 
with a realistic and cost-efective setup.

photon veto 
doublets

 inner e.m. layer

Current eforts (ENUBET-WP5): understand the 
maximum rate at which the separation of e and π+ 
and π0 topologies works before being spoiled by 
pile-up. Event-building algorithm using full 
information from digitized UCMs (clustering based 
on cell position and timing)

e+ in 2 ns at 
nominal rates

e+
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First test beam validation of UCM 
CERN-PS T9 test beam (July 2016). Beam: π, e, μ from 1-5 GeV. 
12 ENUBET UCM modules (~13 X

0
). 1 mm2 HD Si-PM with 20 m cell size (FBK). 

No dead zones, 
uniform long. sampling

A. Berra et al., IEEE Trans. Nucl. Sci., in press.

3 GeV beam
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Results from UCM prototypes

Requirements for ENUBET:

● m.i.p. sensitivity w/o saturation for e.m. showers 
up to 4 GeV DONE

● E resolution < 25% / E½ DONE
● No role for “nuclear counter” efects (direct 

ionization of SiPM in the e.m. shower) DONE

Data / Monte Carlo
19% stochastic term

Cheap, fast (<10 ns), 
Rad-hard technological solution

Geant4

A. Berra et al., IEEE Trans. Nucl. Sci., in press.
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Second test beam at 
CERN-PS T9 Nov. 2016
● 56 (e.m.) + 18 (had.) UCM modules, 666 SiPM
● ~ 30 X

0
   test e/→ π separation

● Orientable cradle  study  → grazing 
incidence at various angles  

“hadronic”

“electromagnetic”

beam
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Test beam at CERN-PS T9: work in progress
e/π separation with tilted 
incidence 

Cut-based analysis

Electrons tagged by 
Cherenkov counters

In progress: 
● multivariate analysis  
● stringent comparison 

with GEANT4 simulation

5 GeV real data
100 mrad tilt

Particles hit map

Preliminary
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More ongoing R&D activities
CERN-PS:  4 weeks this year (July and Oct.). Will test:

● rad-hard components: SiPM (HD, 15 μm cells) 
➢ neutron irradition at INFN-LNL CN in spring 2016

● scalable/reproducible technological solutions
● recovery times ~10 ns (sufficient to cope with pile-up)
● custom digitizers electronics
● photon veto prototypes with plastic scintillators 
● polysiloxane-based scintillators (avoid drilling/molding!)

In parallel a full characterization of UCM with cosmics and 
radioactive sources ongoing at several INFN labs

● tests of WLS (Y11, BCF92) and scintillators (EJ200,204)
● light collection efficiency maps (data vs MC)
● guide the choice of optical parameters 

➢ tyvek, reflective mylar, TiO painting, n. of fibers, Ø

Polysiloxane shashlik UCM
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● GeV neutrino physics requires a better control of its artificial sources
● The initial flux is the dominant contribution to cross section uncertainties
● Such a limit can be reduced by one order of magnitude exploiting K+  → 0 e + 

e
● In the next 5 years ENUBET will investigate this approach and its application to a new 

generation of cross section, sterile and time-tagged neutrino experiments

Conclusions

The final goal of ENUBET is to demonstrate that:
● a “positron monitored” 

e
 source based on K

e3
 can be built using existing beam 

technologies at CERN, Fermilab or J-PARC
● giving a measurement of σ(

e
) at 1% with a detector of moderate mass (500 t)

The results obtained up to now are very promising:
● Full simulation of the decay tunnel 

● efectiveness of the calorimetric approach for large-angle lepton identification
● Prototypes of ultra compact shashlik calorimeters with longitudinal segmentation 

● used without compromising E resolution (19% at 1 GeV) with requested performance
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Thank you!

● A. Longhin, L. Ludovici, F. Terranova, 
Eur. Phys. J. C75 (2015) 155

● A. Berra et al., NIM A824 (2016) 693
● A. Berra et al., NIM A830 (2016) 345
● CERN-SPSC-2016-036 ; SPSC-EOI-014
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All particles will intercept at least one doublet
A positron on average will cross 5 doublets

    = 7 cm

The photon-veto baseline option

Exploit 1 mip – 2 mip separation 

● Possible alternative/attractive solutions under scrutiny allowing a reduced material 
budget and superior timing.

● Test beams at Frascati: electronics response at high rates and low-E  e+,1 mip/2 mip

 Background from γ conversions from π0 emitted mainly in K
e2 

decays (K+  → π+ π0)
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The final prototype

Outer 
modules

Inner 
modules

SiPM + PCB

● Dimensions: 3 m  
● # SiPM: 34000
● Channels: 3800
● Weight: ~ 5 t
● WLS fiber length: ~10000 m
● Readout: custom waveform digitizers, 

2 ns granularity over ~10 ms

1 super-module

● 5 super-modules
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Tagger detector R&D: SCENTT
Shashlik Calorimeters for Electron Neutrino Tagging and Tracing

● INFN (CSN5) activity on shashlik calorimetry for neutrino applications started 
last year (MiB-Insubria, TS, BO, LNF. R.N. F. Terranova)

● First tests at CERN PS-T9 (Aug. 2015) of a shashlik calorimeter with WLS fibers 
coupled directly to individual SiPMs

A. Berra et al., NIM A824 (2016) 693
A. Berra et al., NIM A830 (2016) 345

http://dx.doi.org/10.1016/j.nima.2016.05.123  arXiv:1605:09630

● Working well!
● Energy resolution and e/ separation in line with 

simulations
● achieved both with custom QDC electronics or 

sampling waveforms with commercial digitizers 

http://dx.doi.org/10.1016/j.nima.2016.05.123
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Pion decays induced backgrounds
● p+  m→ ± n

m 
creates the bulk of n

m  
(~ 95% p @ 400 GeV)

● n detector must have good n
e
 PID: reject NC p0 in the n

e
CC sample

● 2-body decay, m
m

 ~ m
p 
: m+ ~ 4 mrad  few in the tagger, easy to reject→

● m D.I.F : suppressed L
m

 >> L(decay tunnel)
● 3-body but m

m
 ~ 0.2 m

K
 → e+

DIF
 ~ 28 mrad (e+

Ke3 
~ 88 mrad)

● n
e, 

CC,DIF ~ 3.3%  → ~ all n
e
 are from K

e3

D
U
M
P

+

+




tagger

D
U
M
P

+

+

tagger

e+


e
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Inferring σ(ν
e
) from σ(ν

μ
) ?

0) σ(ν
μ
) is also poorly known due to flux systematics

1) Lepton universality in weak interactions is not the full story:
✔ Uncertainties from the interplay of 

● radiative corrections
● nucleon form factors 

● F
P
, F

V
1,2, F

A
, second class currents

● alteration of kinematics due to mass

Day, McFarland, Phys. Rev. 
D86 (2012) 052003

→ Diferences between σ(ν
μ
) and σ(ν

e
) (Δ)

● can be significant (10-20%) espec. at low-E
● with diferent energy trends for ν and ν
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Choosing the K±/π± momentum and tunnel length

K+ decays
μ+ decays in flight

High momentum

Benefits:  
● small loss in the transport line 
● improved e/π separation

Costs: 
● E(ν

e
) above the R.O.I.

● longer decay region

L = 100 mL = 50 m

1) keeping the tunnel ''short''
2) increasing the K±/π± energy  

increases ν
e
 from K

e3
 with few ν

e
 from μ D.I.F.

Current scenario p = 8.5 GeV/c ± 20%
L = 50 m

 e 
/



Momentum of parent mesons (K, ) (GeV/c)

A trade-of: further 
optimization in ENUBET
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Hadronic modules
Electro-magnetic modules

π0 (background) topology

π+ (background) topology

e+ tagger: background rejection

e+ (signal) topology

Hit modules
Key point: 
● longitudinal sampling
● perfect homogeneity  integrated light-readout→
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Towards the first tagged ν
e
 beam

e+ taggerHadron beam-line Neutrino detector

K/ 

protons
K+ decay

e+ 
e

A schematic setup to implement this idea: 

● Hadron beam-line: collects, focuses, transports K+ to the e+ tagger
● e+ tagger: real-time, ''inclusive'' monitoring of produced e+

Hadron collimation: allows 
having only decay products in 
the tagger. 

  → tolerable rates
 →  good S/N

proton dump

Positron tagging:  uncertainties from K hadro-production, PoT, hadron beam-line 
efficiency become irrelevant for the 

e
 flux prediction

p = 8.5 GeV ± 20%
< 3 mrad
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Demonstrate experimentally that a new-
concept n

e 
source, with  x 10 better 

precision is feasible 

 → s(n
e 

) 1% sys. + 1% overall stat. errors 

(10.000 events) in realistic terms

The ENUBET goals and program

What's peculiar with ENUBET: 
● a compelling, new physics case: a beam 

design optimized for s(n
e
)

● taking advantage of the progress in fast, 
cheap, radiation-hard detectors

NB. s(n
e
) is to date a “green field”

ERC program: 2 pillars 
● e+ tagger prototype validated at test beams 
● a detailed design for the hadron beam-line

The complete picture to 
move to a full experiment

By-products 
● calorimetry  → new low-cost, ultra-compact detectors
● accelerator physics  → novel extraction schemes for fixed-target, beam-dump exp.
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D
U
M
P

The golden channel: K+  → π0 e+ ν
e

K+

e+


e

tagger

● Golden sample: good acceptance for 
e+ from K

e3
 thanks to the large 

emission angle (~ K mass)

● L
m

 >> L(decay tunnel) ν
e, 

CC,DIF ~ 3.3%
  → ~ all ν

e
 are from K

e3
 

Angular distribution of e+ from K
e3

0



88 mrad
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Hadron beamline with horn focusing

Simple 
conversion

Simple 
conversion

* J-PARC > 2 x 1021 PoT
    CNGS = 0.18 x 1021 PoT

           NuMI = 1.1 x 1021 PoT
1.94 × 1013 K+ / ν

e

CC 
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Tagged neutrino beams: the origins 
The ''holy grail'' of neutrino physicists: 

● L. Hand, 1969, V. Kaftanov, 1979 (p/K  n→
m

)
● G. Vestergombi, 1980, R. Bernstein, 1989 (K n→

e
)

● S. Denisov, 1981, R. Bernstein, 1989 (K
e3

)

 B. Pontecorvo, Lett. Nuovo Cimento, 25 (1979) 257

What's new with ENUBET: 
● a compelling and new physics case: a beam design optimized for σ(ν

e
)  

● taking advantage of the progress in fast, cheap, radiation-hard detectors
● using K+  e→ + π0 ν

e
 (K+

e3
 decays) 

Literature:

● L. Ludovici, P. Zucchelli, hep-ex/9701007 (K
e3

)
● L. Ludovici, F. Terranova, EPJC 69 (2010) 331 (K

e3
)
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Systematics on the ν
e
 flux

Sources Size

Statistical error < 1 %

K production yield Irrelevant (e+ tag)

Secondary transport efficiency Irrelevant (e+ tag) 

Integrated PoT Irrelevant (e+ tag)
Geometrical efficiency and fiducial mass < 0.5%. PRL 108 (2012) 171803 [Daya Bay]

3-body kinematics and mass < 0.1%. Chin. Phys. C38 (2014) 090001 [PDG]

Branching ratios < 0.1%. Irrelevant (e+ tag) except for bckg. estim.

e/π separation To be checked directly at test beam
Detector backg. From NC π0 events < 1%. EPJ C73 (2013) 2345 [ICARUS]

Detector efficiency < 1%. Irrelevant for CPV if the target is the same as for 
the long baseline experiment

The positron tagging eliminates the most important source of systematics but can 
we get to 1%? Very likely, to be demonstrated by ENUBET
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→  5% pile-up 
probability (= RSΔt

tag
)

Pile-up  

Not decayed π, K do not intercept the tagger “by 
construction”. Pile-up mostly from overlap between a  K

μ2
 

and a candidate e+

Recovery time, Δt
tag 

= 10 ns

Rate, R = 0.5 MHz/cm2

Tile surface, S ~ 10 cm2

Possible mitigation: veto (also offline) mip-like and punch-through particles using the longitudinal 
segmentation of the tagger + eventually a μ catcher

Radiation
Only contribution comes from K/π decay products. Thanks to bending of the 
secondaries, non-interacting protons or neutrons are not dumped in the tagger. 
   Livetime integrated dose O (1 kGy) (~100 kGy for CMS forward ECAL)

e+ tagger: pile-up and radiation 
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ν
e ν

μ 

● tagger geometrical acceptance: 
85% of ν

e
CC with a tagged e+ 

(15 % in the forward ''hole'')  
● 1.95 × 1013 K+/ν

e

CC

● Radial profiles at the ν-detector 

20 m
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