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§  Challenges in the simulation of beam-related 
backgrounds in dark-matter searches at accelerators	



§  The brute force approach: GEANT4 simulation of a 
beam dump experiment	



§  Extrapolations to full luminosity	



§  Alternative approaches: MCNP simulations	



§  Summary and conclusions	



11/11/14	

 BDX: simulations of beam-related backgrounds	

2	





Challenges and Issues	



§  Goal: estimate backgrounds created by beam interaction with the 
dump via MC simulations 	



§  BDX run conditions:	


–  Electron energy in the GeV range	



–  1022 electrons on target (EOT)	



–  100 uA electron beam on dump for 6 months running	



§  Challenges and Issues:	


–  Computing limitations:	



•  Combination of very large number of incoming particles and very massive 
absorbers makes full-luminosity simulations prohibitive	



•  Extrapolation over several order of magnitudes needed	



–  Physics issues:	


•  Accurate modeling of physics interaction from GeV to eV, including low energy 

nuclear reactions and neutron transport	
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GEANT4 Simulations	


§  A brute force approach:	



–  Model beam dump geometry and materials	


–  Use Geant4 to simulate the interaction of the electrons in the dump	


–  Determine fluxes of particles exiting from the dump and reaching the 

detector locations	



§  GEANT4 setup:	


–  Simulation based on GEMC (GEant4 Monte Carlo):	



•  simulates passage of particles through matter based on Geant4 
libraries 	



•  simulation parameters (geometry, materials fields, etc.) defined in 
databases (MYSQL, TXT, GDML, C++ plugins)	



•  same gemc executable can be used for different detectors and 
experiments	



•  can simulate beam structure (beam bunches, repetition rate, …)	


•  more info at gemc.jlab.org	



–  Use high precision physics lists (QGSP_BERT_HP + EM_HP) 	
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GEMC 



BeamDump Geometry	
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electron beam	



Aluminum and copper 
electron dump 	


(max. power ~ 1 MW)	

Iron absorber 

(length: 4.6 m) 	



Concrete enclosure: 
(80-cm wall thickness)	



Concrete-Iron 
external shield	


(length: 8 m)	



Detector	





Computing resource usage	



§  10000 EOT  (12 GeV) ⬄ 16 ps of beam on target at 100 uA	


§  ~3000 s computing time on a Intel Xeon (E5530) 2.4 GHz 	


§  1 month of simulations on a 200 cores farm (~3600 HepSpec2006) 

equivalent to 2x109 EOT (3.2 us of beam on target at 100 uA)	


§  Results would need to be extrapolated by more then 12-13 orders of 

magnitude to reach the desired experiment luminosity	
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First results	
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§  Particle fluxes estimated at the 
detector location:	


-  Only particles observed are neutrinos and 

very low energy gammas (E<eV)	



-  Neutrinos originates from pion decay at rest 
within the main iron absorber   	


-  Energies: 0-60 MeV	



-  Flux scales with primary beam energy and 
square of dump-detector distance	



-  Neutrino flux on a 40x40 cm2 surface,15 m 
from the dump: 2.2 x107 Hz/uA	



-  Neutrino background rate: 6x10-8 Hz/uA   
(100 events @ 1022EOT)	


-  1 m3 detector, ~1 m length	



-  Cross section of ~ 10-40 cm2 (CC interaction)	



-  50% detection effiency for 1MeV threshold	
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Backgrounds at full luminosity	


§  Estimated neutrino rates can be extrapolated to full luminosity	



§  Zero rates observed for neutrons and gammas only allows setting 
an upper limit	



§  Increase of computing power or efficiency can gain few order of 
magnitudes but cannot reach 1022 EOT	



§  A different approach is needed:	


–  Rely on GEANT4 for treatment of high energy (GeV to MeV) 

interactions	



–  Sample particle fluxes at different depths within the dump absorbers 
to study the flux profile and find non-zero values	



–  Extrapolate non-zero fluxes to full luminosity based on flux profile	



–  Validate results for low energy neutrons/gamma with different 
simulation tools (MCNP) and using variance reduction techniques	
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Extrapolation to full luminosity	



§  Sampled particles crossing XY planes at different 
position along the beam direction with “flux” detectors	



§  Checked particle types and energy spectra as a 
function of depth within the dump absorbers	
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Flux detectors	



iron	



concrete	



external shield	



detector	





§  Overall particle flux is dominated by gamma and 
neutrons for the first 2 m and by neutrinos at larger 
depths	



§  Gamma:	


–  Flux reduction of factor 3600 in 2.2 m of iron 	


–  Gamma detected after the iron absorber < keV energies 	


–  Further reduction using time correlation with beam bunches 	



§  Neutrons:	


–  Attenuation of factor ~1700 in 2.2 m iron	


–  Attenuation of factor ~4.3 in 10 cm of 

concrete	


–  <1 neutron @ 1022EOT after ~3.5 m of 

concrete	


–  Further reduction using time correlation 

with beam bunches 	


–  Attenuation depends on energy spectrum	


–  Residual flux dominated by thermal 

neutrons:  validation is needed	
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Results @ 2.5 x 108 EOT	
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all particles	


neutrinos	
  

neutrons	
  gamma	
  



Monte Carlo N-Particle (MCNP) 	


§  General Transport Code developed at Los Alamos	



§  specific areas of application include radiation protection and dosimetry, 
radiation shielding, fission and fusion reactor design, decontamination and 
decommissioning	



§  can be used for neutron, photon, electron transport	



§  relies on point-wise cross-section data 	



§  neutron interactions includes all reactions given in a particular cross-
section evaluation (such as ENDF/B-VI) 	



§  neutron transport is described both by both the free gas and S(alpha,beta) 
models	



§  provides variance reductions tools (non-analog Monte Carlo based on 
truncation, population control, modified sampling and partially 
deterministic methods)	



§  https://laws.lanl.gov/vhosts/mcnp.lanl.gov/index.shtml	
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MCNP results	
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Iron	



Concrete	



Neutron flux in iron or concrete absorbers	


§  Initial neutron spectrum from GEANT4 simulations	



§  Large attenuation of neutron flux in concrete is confirmed	



§  Actual value strongly depends on neutron energy	



§  Final flux reaching the detector                                                                                         
may be dominated by gaps in                                                                                               
the dump structure: realistic                                                                                       
geometry is needed	



Input neutron spectrum 
after 2 m of Iron	
  

2.5 x 108 EOT	
  



MCNP results	


First results for neutron 
rates with full dump 
geometry and variance 
reduction	


§  Initial neutron spectrum 

in iron absorber from 
GEANT4 simulations	



§  Only thermal neutrons 
exiting from the concrete 
enclosure	



§  Neutron flux attenuated 
by factor ~2.5 every 10 
cm	



§  <1 neutron @1022 EOT 
after 3 m of concrete	



11/11/14	

 BDX: simulations of beam-related backgrounds	

13	



2.5-44

.00007

1.8-34

1.3-24

9.6-15

-500 0 500

-
5
0
0

0
5
0
0

 11/07/14 19:15:25
c Beam Dump neutron attenuation

probid =  11/07/14 18:43:06
basis:   XZ
( 0.000000, 0.000000, 1.000000)
( 1.000000, 0.000000, 0.000000)
origin:
(     0.00,   320.00,   805.00)
extent = (   805.00,   805.00)

Mesh Tally      994
nps         459962
runtpe = out_def2.r
dump             1

.

Concrete enclosure	



Iron absorber	



External concrete absorber	





Summary and Perspectives	


§  Simulations of beam-related backgrounds in dump experiments present 

difficult challenges both for the choice of simulation tools and for the 
required computing power	



§  A brute force approach based on analog MC does not allow to reach the 
planned experiment luminosity	



§  Extrapolations based on flux profile studies and variance reduction 
techniques are necessary	



§  Background for a typical BD experiment was estimated based on a 
combined GEANT4-MCNP study:	


–  Dominant beam background is due to neutrinos produced from pion decay	



–  Neutron and gamma background may be significant depending on the 
experiment geometry, detector threshold and beam time structure	



–  Neutron and gamma fluxes can be attenuated down to natural bg levels within 
few meters of iron/concrete absorbers	



§  Final estimates can be done with the proposed approach for specific BD 
configurations	
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