Canonical simulations of heavy-dense QCD without a sign problem

Urs Wenger
Albert Einstein Center for Fundamental Physics University of Bern

$$
\boldsymbol{u}^{b}
$$

```
UNIVERSITA゙T
```

BERN

26 Juni 2017, XQCD 2017, Pisa, Italy

Motivation for canonical formulation of QCD

- Consider the grand-canonical partition function of QCD:

$$
Z_{\mathrm{GC}}^{\mathrm{QCD}}(\mu)=\operatorname{Tr}\left[e^{-\mathcal{H}(\mu) / T}\right]=\operatorname{Tr} \prod_{t} \mathcal{T}_{t}(\mu)
$$

- The sign problem of QCD is a manifestation of huge cancellations between different states:
- all states are present for any μ and T
- some states need to cancel out at different μ and T
- In the canonical formulation:

$$
Z_{\mathrm{C}}^{\mathrm{QCD}}\left(N_{Q}\right)=\operatorname{Tr} N_{Q}\left[e^{-\mathcal{H}(\mu) / T}\right]=\operatorname{Tr} \prod_{t} \mathcal{T}_{t}^{\left(N_{Q}\right)}
$$

- dimension of Fock space tremendously reduced
- less cancellations necessary
- e.g. $Z_{C}^{Q C D}\left(N_{Q}\right)=0$ for $N_{Q} \neq 0 \bmod N_{c}$

Motivation for canonical formulation of QCD

Canonical transfer matrices can be obtained explicitly!

- based on the dimensional reduction of the QCD fermion determinant [Alexandru, Wenger '10; Nagata, Nakamura '10]
- identification of transfer matrices [Steinhauer, Wenger '14]

Motivation for canonical formulation of QCD

Canonical transfer matrices can be obtained explicitly!

- based on the dimensional reduction of the QCD fermion determinant [Alexandru, Wenger '10; Nagata, Nakamura '10]
- identification of transfer matrices [Steinhauer, Wenger '14]

Outline:

- Definition of the transfer matrices for canonical QCD
- Explicit calculation in the heavy-dense limit
- Solution of the sign problem in the strong coupling limit
- Solution for the Potts model away from strong coupling

Dimensional reduction of QCD

- Consider the Wilson fermion matrix for a single quark with chemical potential μ :

$$
M_{ \pm}(\mu)=\left(\begin{array}{ccccc}
B_{0} & P_{+} A_{0}^{+} & & & \pm P_{-} A_{L_{t}-1}^{-} \\
P_{-} A_{0}^{-} & B_{1} & P_{+} A_{1}^{+} & & \\
& P_{-} A_{1}^{-} & B_{2} & \ddots & \\
& & \ddots & \ddots & \\
& & & & P_{+} A_{L_{t}-2}^{+} \\
\pm P_{+} A_{L_{t}-1}^{+} & & & P_{-} & B_{L_{t}-1}
\end{array}\right)
$$

- B_{t} are (spatial) Wilson Dirac operators on time-slice t,
- Dirac projectors $P_{ \pm}=\frac{1}{2}\left(\mathbb{I} \mp \Gamma_{4}\right)$,
- temporal hoppings are

$$
A_{t}^{+}=e^{+\mu} \cdot \mathbb{I}_{4 \times 4} \otimes \mathcal{U}_{t}=\left(A_{t}^{-}\right)^{-1}
$$

- all blocks are $\left(4 \cdot N_{c} \cdot L_{s}^{3} \times 4 \cdot N_{c} \cdot L_{s}^{3}\right)$-matrices

Dimensional reduction of QCD

- Reduced Wilson fermion determinant is given by

$$
\operatorname{det} M_{p, a}(\mu)=\prod_{t} \operatorname{det} Q_{t}^{+} \cdot \operatorname{det}[\mathbb{I} \pm \mathcal{T}]
$$

where \mathcal{T} is a product of transfer matrices given by

$$
\mathcal{T}=e^{+\mu L_{t}} \prod_{t} \mathcal{U}_{t-1}^{+} \cdot\left(Q_{t}^{-}\right)^{-1} \cdot Q_{t}^{+} \cdot \mathcal{U}_{t}^{-}
$$

with

$$
Q_{t}^{ \pm}=B_{t} P_{ \pm}+P_{\mp}, \quad \mathcal{U}_{t}^{ \pm}=\mathcal{U}_{t} P_{ \pm}+P_{\mp}
$$

- Fugacity expansion yields with $N_{Q}^{\max }=2 \cdot N_{c} \cdot L_{s}^{3}$

$$
\operatorname{det} M_{a}(\mu)=\sum_{N_{Q}=-N_{Q}^{\max }}^{N_{Q}^{\max }} e^{\mu N_{Q} / T} \cdot \operatorname{det} M_{N_{Q}}
$$

Canonical formulation of QCD

Canonical transfer matrices of QCD

$$
\operatorname{det} M_{N_{Q}}=\prod_{t} \operatorname{det} Q_{t}^{+} \cdot \sum_{A} \operatorname{det} \mathcal{T}^{\not A A}=\operatorname{Tr} \prod_{t} \mathcal{T}_{t}^{\left(N_{Q}\right)}
$$

- sum is over all index sets $A \in\left\{1,2, \ldots, 2 N_{Q}^{\max }\right\}$ of size N_{Q},
- i.e. the trace over the minor matrix of rank N_{Q} of \mathcal{T}
- Provides a complete temporal factorization of the fermion determinant.

Relation between quark and baryon number

- Consider $\mathbb{Z}\left(N_{c}\right)$-transformation by $z_{k}=e^{2 \pi i \cdot k / N_{c}} \in \mathbb{Z}\left(N_{c}\right)$:

$$
U_{4}(x) \rightarrow U_{4}(x)^{\prime}=\left(1+\delta_{x_{4}, t} \cdot\left(z_{k}-1\right)\right) \cdot U_{4}(x)
$$

- Hence, $\mathcal{U}_{x_{4}}$ transforms as $\mathcal{U}_{x_{4}} \rightarrow \mathcal{U}_{X_{4}}^{\prime}=z_{k} \cdot \mathcal{U}_{x_{4}}$, while for all others $\mathcal{U}_{t \neq x_{4}}^{\prime}=\mathcal{U}_{t \neq x_{4}}$.
- As a consequence we have

$$
\begin{aligned}
\operatorname{det} \mathcal{M}_{N_{Q}} \rightarrow \operatorname{det} \mathcal{M}_{N_{Q}}^{\prime} & =\prod_{t} \operatorname{det} Q_{t}^{+} \cdot \sum_{A} \operatorname{det}\left(z_{k} \cdot \mathcal{T}\right)^{A \mathcal{A}} \\
& =z_{k}^{-N_{Q}} \cdot \operatorname{det} \mathcal{M}_{N_{Q}}
\end{aligned}
$$

and summing over z_{k} therefore yields

$$
\operatorname{det} \mathcal{M}_{N_{Q}}=0 \quad \text { for } N_{Q} \neq 0 \bmod N_{c}
$$

- reduces cancellations by factor of N_{c}

Heavy-dense limit of grand-canonical QCD

- The heavy-dense approximation in general consists of taking the limit $\kappa \equiv(2 m+8)^{-1} \rightarrow 0, \mu \rightarrow \infty$ while keeping $\kappa e^{+\mu}$ fixed.
- Better: just drop the spatial hopping terms, but keep forward and backward hopping in time:
- system of static quarks and antiquarks
- Multiplying fermion matrix by 2κ we have

$$
B_{t} \rightarrow \mathbb{I}, \quad A_{t}^{ \pm} \rightarrow 2 \kappa \cdot A_{t}^{ \pm}=2 \kappa e^{ \pm \mu} \cdot \mathbb{I}_{4 \times 4} \otimes \mathcal{U}_{t}^{\cdot / \dagger}
$$

and the reduced Wilson fermion matrix in the HD limit
$\operatorname{det} M_{p, a}^{H D}=\prod_{\bar{x}} \operatorname{det}\left[\mathbb{I}_{ \pm}\left(2 \kappa e^{+\mu}\right)^{L_{t}} P_{\bar{x}}\right]^{2} \operatorname{det}\left[\mathbb{I}_{ \pm}\left(2 \kappa e^{-\mu}\right)^{L_{t}} P_{\bar{x}}^{\dagger}\right]^{2}$

Heavy-dense limit of canonical QCD

- The canonical determinants are given by the trace over the minor matrix \mathcal{M},

$$
\operatorname{det} M_{k}^{H D}=(2 \kappa)^{2 N_{c} L_{s}^{3} L_{t}} \cdot \operatorname{Tr} \mathcal{M}_{k}\left[\left((2 \kappa)^{+L_{t}} \cdot P_{+} \mathcal{P}+(2 \kappa)^{-L_{t}} \cdot P_{-} \mathcal{P}\right)\right]
$$

where \mathcal{P} denotes the Polyakov loops $\mathcal{P}_{\bar{x}, \bar{y}}=\mathbb{I}_{4 \times 4} \otimes P_{\bar{x}} \cdot \delta_{\bar{x}, \bar{y}}$.

- For $\operatorname{SU}(3)$, the expressions of traces of minor matrices \mathcal{M} are

$$
\begin{aligned}
& \operatorname{Tr} \mathcal{M}_{k=0}\left(P_{\bar{x}}\right)=\operatorname{det} P_{\bar{x}}=1, \\
& \operatorname{Tr} \mathcal{M}_{k=1}\left(P_{\bar{x}}\right)=\sum_{i=1}^{3} \mathcal{M}\left(P_{\bar{x}}\right)_{1 i}=\operatorname{Tr} P_{\bar{x}}^{\dagger}, \\
& \operatorname{Tr} \mathcal{M}_{k=2}\left(P_{\bar{x}}\right)=\sum_{i=1}^{3} \mathcal{M}\left(P_{\bar{x}}\right)_{i i}=\operatorname{Tr} P_{\bar{x}}, \\
& \operatorname{Tr} \mathcal{M}_{k=3}\left(P_{\bar{x}}\right)=1 .
\end{aligned}
$$

Heavy-dense limit of canonical QCD

- Canonical determinant describing no quarks w.r.t. $N_{Q}^{\max }$:

$$
\operatorname{det} M_{N_{Q}^{\max }}^{H D}=1 \quad \Leftrightarrow \quad \text { quenched case }
$$

- Canonical determinant describing a single quark, i.e. $N_{Q}=1$:

$$
\operatorname{det} M_{N_{Q}^{\max -1}}^{H D}=\left((2 \kappa)^{L_{t}}+(2 \kappa)^{-L_{t}}\right) \cdot \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}}
$$

- For $N_{Q}=2$ quarks:

$$
\begin{aligned}
\operatorname{det} M_{N_{Q}^{\max -2}}^{H} / \Omega & \propto 2 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}} \\
& +\left(4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}}-3 \sum_{\bar{x}}\left(\operatorname{Tr} P_{\bar{x}}\right)^{2}+2 \operatorname{Tr} P_{\bar{x}}^{\dagger}\right)
\end{aligned}
$$

- Both determinants vanish under global $\mathbb{Z}(3)$-transformations.

Heavy-dense limit of canonical QCD

- Canonical determinant $N_{Q}=3$ quarks:

$$
\begin{aligned}
\operatorname{det} M_{N_{Q}^{\max }}^{H} / \Omega=h_{3} \cdot\left(4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \sum_{\bar{y}}\right. & \left.\operatorname{Tr} P_{\bar{y}}-3 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}+2 L_{s}^{3}\right) \\
+h_{1}\left(4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}}+\right. & 2 \sum_{\bar{x}}\left(\operatorname{Tr} P_{\bar{x}}\right)^{2} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}} \\
& \left.+4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \sum_{\bar{y} \neq \bar{x}} \operatorname{Tr} P_{\bar{y}} \sum_{\overline{\bar{z}}} \operatorname{Tr} P_{\bar{z}}\right)
\end{aligned}
$$

- describes the propagation of mesons and baryons
- Invariant under global $\mathbb{Z}(3)$-transformations
- Suffers from a severe sign problem, unless
- all $P_{\bar{x}}$ align \Longleftrightarrow deconfined phase
- global $\mathbb{Z}(3)$ is promoted to a local one \Longleftrightarrow strong coupling

Canonical single site determinants in the heavy-dense limit

- For numerical simulations we need the canonical determinants on single sites for arbitrary $k=N_{Q}$.
- From the reduced determinant we obtain

$$
\operatorname{det} M_{k}^{H D S S}=(2 \kappa)^{2 N_{c} L_{t}} \cdot \operatorname{Tr} \mathcal{M}_{k}\left[\left((2 \kappa)^{+L_{t}} \cdot P_{+} \mathcal{P}+(2 \kappa)^{-L_{t}} \cdot P_{-} \mathcal{P}\right)\right]
$$

- \mathcal{P} is just a $4 N_{c} \times 4 N_{c}$ blockmatrix containing 4 copies of $P_{\bar{x}}$ along the diagonal
- quark number index now runs over $k=0, \ldots, 12$
- In the following, suppress $\Omega^{S S}=(2 \kappa)^{2 N_{c} L_{t}}$ and define

$$
\operatorname{det} M_{k}^{H D S S}=\Omega^{S S} z_{k}
$$

Canonical single site determinants in the heavy-dense limit

- Canonical determinants on single site (with $\left.z_{k}^{\text {HDSS }}=\left(z_{12-k}^{H D S S}\right)^{*}\right)$:

$$
z_{k=0}^{H D S S}=1
$$

Canonical single site determinants in the heavy-dense limit

- Canonical determinants on single site (with $\left.z_{k}^{\text {HDSS }}=\left(z_{12-k}^{H D S S}\right)^{*}\right)$:

$$
z_{k=1}^{\text {HDSS }}=h_{1} \cdot 2 \operatorname{Tr} P_{\bar{x}}^{\dagger}
$$

Canonical single site determinants in the heavy-dense limit

- Canonical determinants on single site (with $\left.z_{k}^{H D S S}=\left(z_{12-k}^{H D S S}\right)^{*}\right)$:

$$
\begin{aligned}
& z_{k=1}^{\text {HDSS }}=h_{1} \cdot 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} \\
& z_{k=2}^{\text {HDSS }}=h_{2} \cdot\left\{2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right\}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Canonical determinants on single site (with $\left.z_{k}^{\text {HDSS }}=\left(z_{12-k}^{H D S S}\right)^{*}\right)$:

$$
\begin{aligned}
& z_{k=1}^{H D S S}=h_{1} \cdot 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} \\
& z_{k=2}^{H D S S}=h_{2} \cdot\left\{2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right\}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2} \\
& z_{k=3}^{H D S S}=h_{3} \cdot 2\left\{1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right\}+h_{1}\left\{2 \operatorname{Tr} P_{\bar{x}}^{\dagger}\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\}
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Canonical determinants on single site (with $\left.z_{k}^{\text {HDSS }}=\left(z_{12-k}^{H D S S}\right)^{*}\right)$:

$$
\begin{aligned}
& z_{k=1}^{H D S S}=h_{1} \cdot 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} \\
& z_{k=2}^{H D S S}= h_{2} \cdot\left\{2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right\}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2} \\
& z_{k=3}^{H D S S}= h_{3} \cdot 2\left\{1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right\}+h_{1}\left\{2 \operatorname{Tr} P_{\bar{x}}^{\dagger}\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\} \\
& z_{k=4}^{H D S S}= h_{4}\left\{2 \operatorname{Tr} P_{\bar{x}}^{\dagger}+\left(\operatorname{Tr} P_{\bar{x}}\right)^{2}\right\}+h_{2} \cdot 4\left\{\operatorname{Tr} P_{\bar{x}}^{\dagger}\left(1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right)\right\} \\
&+\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)^{2}
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Canonical determinants on single site (with $\left.z_{k}^{\text {HDSS }}=\left(z_{12-k}^{H D S S}\right)^{*}\right)$:

$$
\begin{aligned}
& z_{k=1}^{H D S S}=h_{1} \cdot 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} \\
& z_{k=2}^{\text {HDSS }}=h_{2} \cdot\left\{2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right\}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2} \\
& z_{k=3}^{\text {HDSS }}=h_{3} \cdot 2\left\{1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right\}+h_{1}\left\{2 \operatorname{Tr} P_{\bar{x}}^{\dagger}\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\} \\
& z_{k=4}^{\text {HDSS }}=h_{4}\left\{2 \operatorname{Tr} P_{\bar{x}}^{\dagger}+\left(\operatorname{Tr} P_{\bar{x}}\right)^{2}\right\}+h_{2} \cdot 4\left\{\operatorname{Tr} P_{\bar{x}}^{\dagger}\left(1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right)\right\} \\
& +\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)^{2} \\
& z_{k=5}^{H D S S}=h_{5} \cdot 2 \operatorname{Tr} P_{\bar{x}}+h_{3}\left\{\left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger}+\left(\operatorname{Tr} P_{\bar{x}}\right)^{2}\right) 2 \operatorname{Tr} P_{\bar{x}}^{\dagger}\right\} \\
& +h_{1} \cdot 2\left\{\left(1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right)\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\}
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Canonical determinants on single site (with $\left.z_{k}^{\text {HDSS }}=\left(z_{12-k}^{H D S S}\right)^{*}\right)$:

$$
\begin{aligned}
z_{k=1}^{H D S S}= & h_{1} \cdot 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} \\
z_{k=2}^{H D S S}= & h_{2} \cdot\left\{2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right\}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2} \\
z_{k=3}^{H D S S}= & h_{3} \cdot 2\left\{1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right\}+h_{1}\left\{2 \operatorname{Tr} P_{\bar{x}}^{\dagger}\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\} \\
z_{k=4}^{H D S S}= & h_{4}\left\{2 \operatorname{Tr} P_{\bar{x}}^{\dagger}+\left(\operatorname{Tr} P_{\bar{x}}^{2}\right)^{2}\right\}+h_{2} \cdot 4\left\{\operatorname{Tr} P_{\bar{x}}^{\dagger}\left(1+\operatorname{Tr}_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right)\right\} \\
& +\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)^{2}
\end{aligned} \begin{aligned}
& z_{k=5}^{H D S S S}=h_{5} \cdot 2 \operatorname{Tr} P_{\bar{x}}+ h_{3}\left\{\left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger}+\left(\operatorname{Tr} P_{\bar{x}}\right)^{2}\right) 2 \operatorname{Tr} P_{\bar{x}}^{\dagger}\right\} \\
&+h_{1} \cdot 2\left\{\left(1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right)\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\} \\
& z_{k=6}^{H D S S}=h_{6}+h_{4} \cdot 4 \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}+h_{2}\left\{\left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger}+\left(\operatorname{Tr} P_{\bar{x}}^{2}\right)^{2}\right)\right. \\
&\left.\times\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\}+4\left(1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Relation $z_{k}^{\text {HDSS }}=\left(z_{12-k}^{H D S S}\right)^{*}$ implies $z_{k=6}^{\text {HDSS }} \in \mathbb{R}$, but in fact

$$
\begin{aligned}
& z_{k=6}^{\text {HDSS }}=h_{6}+h_{4} \cdot 4 \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}+h_{2}\left\{\left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger}+\left(\operatorname{Tr} P_{\bar{x}}\right)^{2}\right)\right. \\
& \left.\times\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\}+4\left(1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Relation $z_{k}^{\text {HDSS }}=\left(z_{12-k}^{H D S S}\right)^{*}$ implies $z_{k=6}^{\text {HDSS }} \in \mathbb{R}$, but in fact

$$
\begin{aligned}
z_{k=6}^{H D S S}=h_{6}+h_{4} \cdot 4 & \operatorname{Tr} P_{\bar{x}}
\end{aligned} \begin{aligned}
& \operatorname{Tr} P_{\bar{x}}^{\dagger}+h_{2}\left\{\left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger}+\left(\operatorname{Tr} P_{\bar{x}}\right)^{2}\right)\right. \\
&\left.\times\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\}+4\left(1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Relation $z_{k}^{\text {HDSS }}=\left(z_{12-k}^{H D S S}\right)^{*}$ implies $z_{k=6}^{\text {HDSS }} \in \mathbb{R}$, but in fact

$$
\begin{aligned}
& z_{k=6}^{H D S S}=h_{6}+h_{4} \cdot 4 \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}+h_{2}\left\{\left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger}+\left(\operatorname{Tr} P_{\bar{x}}\right)^{2}\right)\right. \\
& \left.\times\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{\chi}}^{\dagger}\right)^{2}\right)\right\}+4\left(1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{\chi}}^{\dagger}\right)^{2}
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Relation $z_{k}^{\text {HDSS }}=\left(z_{12-k}^{H D S S}\right)^{*}$ implies $z_{k=6}^{\text {HDSS }} \in \mathbb{R}$, but in fact

$$
\begin{aligned}
& z_{k=6}^{H D S S}= h_{6}+h_{4} \cdot 4 \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}+h_{2}\left\{\left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger}+\left(\operatorname{Tr} P_{\bar{x}}\right)^{2}\right)\right. \\
&\left.\times\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\}+4\left(1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2} \\
& \geq h_{6}+4>0 \quad
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Relation $z_{k}^{\text {HDSS }}=\left(z_{12-k}^{H D S S}\right)^{*}$ implies $z_{k=6}^{\text {HDSS }} \in \mathbb{R}$, but in fact

$$
\begin{aligned}
& z_{k=6}^{H D S S}= h_{6}+h_{4} \cdot 4 \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}+h_{2}\left\{\left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger}+\left(\operatorname{Tr} P_{\bar{x}}\right)^{2}\right)\right. \\
&\left.\times\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\}+4\left(1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\overline{\bar{x}}}^{\dagger}\right)^{2} \\
& \geq h_{6}+4>0 \quad
\end{aligned}
$$

- Almost true for $z_{k=3}^{H D S S}$: only is non-positive

$$
z_{k=3}^{H D S S}=h_{3} \cdot 2\left\{1+\operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right\}+h_{1}\left\{2 \operatorname{Tr} P_{\bar{x}}^{\dagger}\left(2 \operatorname{Tr} P_{\bar{x}}+\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2}\right)\right\}
$$

- only $\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{3}$ can become complex
- suppressed by a factor $h_{1} / h_{3} \sim(2 \kappa)^{ \pm 2 L_{t}}$

Canonical single site determinants in the heavy-dense limit

- On a single site, $\mathbb{Z}\left(N_{c}\right)$-transformations projects onto

$$
z_{k}^{H D S S}=0 \quad \text { for } \quad k \neq 0 \bmod N_{c} .
$$

- this is what happens in the strong coupling limit $\beta \rightarrow 0$
- Nontrivial determinants integrated over all values of $P_{\bar{x}}$:

$$
\int d P_{\bar{x}} \operatorname{det} M_{k}^{H D S S}=\Omega^{S S} \begin{cases}1, & k=0,12 \\ 4 h_{3}+6 h_{1}, & k=3,9 \\ h_{6}+4 h_{4}+10 h_{2}+20, & k=6\end{cases}
$$

- Provides benchmark for numerical simulations:
- no sign problem in the canonical formulation

Canonical single site determinants in the heavy-dense limit

- More interesting are $N_{f}=2$ quark flavours:
- canonical sectors have definite isospin or baryon charge (or both)
- for simplicity assume degenerate masses $\kappa_{u}=\kappa_{d}=\kappa_{i}$
- relabel $q \in\{-6,-5, \ldots,+5,+6\} \leftarrow k \in\{0,1, \ldots, 12\}$
- Generically, in the grand-canonical case one has

$$
\begin{aligned}
\operatorname{det} \mathcal{M}^{H D S S}\left(\mu_{u}\right) & \cdot \operatorname{det} \mathcal{M}^{H D S S}\left(\mu_{d}\right) \\
& =\sum_{q_{u}=-6}^{6} e^{\mu_{u} q_{u} L_{t}} \operatorname{det} M_{q_{u}}^{H D S S} \cdot \sum_{q_{d}=-6}^{6} e^{\mu_{d} q_{d} L_{t}} \operatorname{det} M_{q_{d}}^{H D S S}
\end{aligned}
$$

while for fixed isospin charge only $n_{l}=q_{u}-q_{d}$ contribute

$$
\operatorname{det} \mathcal{M}_{n_{l}}^{H D S S}=\sum_{\substack{q_{u}, q_{d}=-6 \\ n_{l}=q_{u} q_{d}}}^{6} \operatorname{det} M_{q_{u}}^{H \text { HDS }} \cdot \operatorname{det} M_{q_{d}}^{\text {HDSS }}
$$

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{\chi}}$ we find

$$
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 \quad n_{q}=0
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{\chi}}$ we find

$$
\begin{aligned}
& z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 \\
& z_{n_{l}=-11}=0
\end{aligned}
$$

$$
n_{q}=0
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{\chi}}$ we find

$$
\begin{array}{ll}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{1}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} &
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using det $\mathcal{M}_{n_{l}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{\chi}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} &
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using det $\mathcal{M}_{n_{l}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{\chi}}$ we find

$$
\begin{array}{rr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9} & =z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} \\
& =4 h_{3}\left\{1+|L|^{2}\right\}+4 h_{1}\left\{2|L|^{2}+\operatorname{Re}\left[L^{3}\right]\right\}
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{rr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}= & z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} \\
& =4 h_{2}^{2}|L|^{2}+4 h_{2}\left(h_{2}+1\right) \operatorname{Re}\left[L^{3}\right]+\left(h_{2}+1\right)^{2}|L|^{4} \\
&
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{\text {HDSS }} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{aligned}
& z_{n_{l}-12}=z_{-6} \cdot z_{+6}=1 \\
& z_{n_{I}=-11}=0 \\
& z_{n_{I}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} \\
& z_{n_{I}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} \\
& z_{n_{I}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} \\
& z_{n_{I}=-7}=0
\end{aligned}
$$

$$
\begin{aligned}
& n_{q}=0 \\
& n_{q}=0 \\
& n_{q}=-3,+3 \\
& n_{q}=0
\end{aligned}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{\text {HDSS }} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{1}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-6,0,+6
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{\text {HDSS }} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{1}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & n_{q}=-6,0,+6 \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} &
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{\text {HDSS }} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{1}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-6,0,+6
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{\chi}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & n_{q}=-6,0,+6 \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-5}=z_{-4} \cdot z_{+1}+z_{-1} \cdot z_{+4}=2 \operatorname{Re}\left[z_{-1} \cdot z_{+4}\right] &
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{\chi}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & n_{q}=-6,0,+6 \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-5}=z_{-4} \cdot z_{+1}+z_{-1} \cdot z_{+4}=2 \operatorname{Re}\left[z_{-1} \cdot z_{+4}\right] &
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{I}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & n_{q}=-6,0,+6 \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-5}=z_{-4} \cdot z_{+1}+z_{-1} \cdot z_{+4}=2 \operatorname{Re}\left[z_{-1} \cdot z_{+4}\right] & n_{q}=-6,0,+6
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{I}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & n_{q}=-6,0,+6 \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-5}=z_{-4} \cdot z_{+1}+z_{-1} \cdot z_{+4}=2 \operatorname{Re}\left[z_{-1} \cdot z_{+4}\right] & n_{q}=-6,0,+6
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{I}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & n_{q}=-6,0,+6 \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-5}=z_{-4} \cdot z_{+1}+z_{-1} \cdot z_{+4}=2 \operatorname{Re}\left[z_{-1} \cdot z_{+4}\right] & n_{q}=-6,0,+6
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{\text {HDSS }} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & n_{q}=-6,0,+6 \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-5}=z_{-4} \cdot z_{+1}+z_{-1} \cdot z_{+4}=2 \operatorname{Re}\left[z_{-1} \cdot z_{+4}\right] & n_{q}=-6,0,+6 \\
z_{n_{l}=-4}=z_{-5} \cdot z_{-1}+z_{-2} \cdot z_{+2}+z_{+1} \cdot z_{+5} & n_{q}=-9,-3,+3,+9
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{\text {HDSS }} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & n_{q}=-6,0,+6 \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-5}=z_{-4} \cdot z_{+1}+z_{-1} \cdot z_{+4}=2 \operatorname{Re}\left[z_{-1} \cdot z_{+4}\right] & n_{q}=-6,0,+6 \\
z_{n_{l}=-4}=z_{-5} \cdot z_{-1}+z_{-2} \cdot z_{+2}+z_{+1} \cdot z_{+5} & n_{q}=-9,-3,+3,+9
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{\text {HDSS }} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & n_{q}=-6,0,+6 \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-5}=z_{-4} \cdot z_{+1}+z_{-1} \cdot z_{+4}=2 \operatorname{Re}\left[z_{-1} \cdot z_{+4}\right] & n_{q}=-6,0,+6 \\
z_{n_{l}=-4}=z_{-5} \cdot z_{-1}+z_{-2} \cdot z_{+2}+z_{+1} \cdot z_{+5} & n_{q}=-9,-3,+3,+9
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{\text {HDSS }} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & n_{q}=-6,0,+6 \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-5}=z_{-4} \cdot z_{+1}+z_{-1} \cdot z_{+4}=2 \operatorname{Re}\left[z_{-1} \cdot z_{+4}\right] & n_{q}=-6,0,+6 \\
z_{n_{l}=-4}=z_{-5} \cdot z_{-1}+z_{-2} \cdot z_{+2}+z_{+1} \cdot z_{+5} & n_{q}=-9,-3,+3,+9
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{I}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{I}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{array}{lr}
z_{n_{l}=-12}=z_{-6} \cdot z_{+6}=1 & n_{q}=0 \\
z_{n_{l}=-11}=0 & n_{q}=0 \\
z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} & n_{q}=-3,+3 \\
z_{n_{l}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} & n_{q}=0 \\
z_{n_{l}=-8}=z_{-4} \cdot z_{+4}=\left|z_{+4}\right|^{2} & \\
z_{n_{l}=-7}=0 & \\
z_{n_{l}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} & n_{q}=-6,0,+6 \\
z_{n_{l}=-5}=z_{-4} \cdot z_{+1}+z_{-1} \cdot z_{+4}=2 \operatorname{Re}\left[z_{-1} \cdot z_{+4}\right] & n_{q}=-3,+3 \\
z_{n_{l}=-4}=z_{-5} \cdot z_{-1}+z_{-2} \cdot z_{+2}+z_{+1} \cdot z_{+5} & n_{q}=-6,0,+6 \\
z_{n_{l}=-3}=z_{-6} \cdot z_{-3}+z_{-3} \cdot z_{0}+z_{0} \cdot z_{+3}+z_{+3} \cdot z_{+6} & n_{q}=-9,-3,+3,+9 \\
z_{n_{l}=-2}=z_{-4} \cdot z_{-2}+z_{-1} \cdot z_{+1}+z_{+2} \cdot z_{+4} & n_{q}=-6,0,6 \\
z_{n_{l}=-1}=z_{-5} \cdot z_{-4}+z_{-2} \cdot z_{-1}+z_{+1} \cdot z_{+2}+z_{+4} \cdot z_{+5} & n_{q}=-9,-3,+3,+9 \\
z_{n_{l}=0}=z_{-6} \cdot z_{-6}+z_{-3} \cdot z_{-3}+z_{0} \cdot z_{0}+z_{+3} \cdot z_{+3}+z_{+6} \cdot z_{+6} & n_{q}=-12,-6,0,+6,+12
\end{array}
$$

- Canonical determinants for fixed isospin number

Canonical single site determinants in the heavy-dense limit

- $\mathbb{Z}\left(N_{c}\right)$-symmetry implies the constraint $n_{q} \equiv q_{u}+q_{d}=0 \bmod N_{c}$.
- Using $\operatorname{det} \mathcal{M}_{n_{l}}^{H D S S} \cdot\left(\Omega^{S S}\right)^{2} \cdot z_{n_{l}}$ and $L=\operatorname{Tr} P_{\bar{x}}$ we find

$$
\begin{aligned}
& z_{n_{\mid}=-12}=z_{-6} \cdot z_{+6}=1 \quad n_{q}=0 \\
& z_{n_{l}=-11}=0 \\
& z_{n_{l}=-10}=z_{-5} \cdot z_{+5}=4 h_{1}^{2}|L|^{2} \\
& n_{q}=0 \\
& z_{n_{I}=-9}=z_{-6} \cdot z_{+3}+z_{-3} \cdot z_{+6}=2 \operatorname{Re} z_{-3} \\
& n_{q}=-3,+3 \\
& n_{q}=0 \\
& z_{n_{l}=-7}=0 \\
& z_{n_{I}=-6}=z_{-6} \cdot z_{0}+z_{-3} \cdot z_{+3}+z_{0} \cdot z_{+6}=2 \operatorname{Re} z_{0}+\left|z_{3}\right|^{2} \\
& n_{q}=-6,0,+6 \\
& z_{n_{l}=-5}=z_{-4} \cdot z_{+1}+z_{-1} \cdot z_{+4}=2 \operatorname{Re}\left[z_{-1} \cdot z_{+4}\right] \\
& n_{q}=-3,+3 \\
& z_{n_{l}=-4}=z_{-5} \cdot z_{-1}+z_{-2} \cdot z_{+2}+z_{+1} \cdot z_{+5} \\
& n_{q}=-6,0,+6 \\
& z_{n_{I}=-3}=z_{-6} \cdot z_{-3}+z_{-3} \cdot z_{0}+z_{0} \cdot z_{+3}+z_{+3} \cdot z_{+6} \\
& n_{q}=-9,-3,+3,+9 \\
& z_{n_{l}=-2}=z_{-4} \cdot z_{-2}+z_{-1} \cdot z_{+1}+z_{+2} \cdot z_{+4} \\
& n_{q}=-6,0,6 \\
& z_{n_{l}=-1}=z_{-5} \cdot z_{-4}+z_{-2} \cdot z_{-1}+z_{+1} \cdot z_{+2}+z_{+4} \cdot z_{+5} \\
& n_{q}=-9,-3,+3,+9 \\
& z_{n_{l}=0}=z_{-6} \cdot z_{-6}+z_{-3} \cdot z_{-3}+z_{0} \cdot z_{0}+z_{+3} \cdot z_{+3}+z_{+6} \cdot z_{+6} \\
& n_{q}=-12,-6,0,+6,+12
\end{aligned}
$$

- Fixing in addition $n_{q}=0$ yields $z_{n_{l}} \geq 0$ positive, else almost.

Canonical single site determinants in the heavy-dense limit

- Similarly for fixed baryon number:

$$
z_{n_{B}=-12}=z_{-6} \cdot z_{-6}
$$

Canonical single site determinants in the heavy-dense limit

- Similarly for fixed baryon number:

$$
\begin{aligned}
& z_{n_{B}=-12}=z_{-6} \cdot z_{-6} \\
& z_{n_{B}=-11}=0 \\
& z_{n_{B}=-10}=0
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Similarly for fixed baryon number:

$$
\begin{aligned}
& z_{n_{B}=-12}=z_{-6} \cdot z_{-6} \\
& z_{n_{B}=-11}=0 \\
& z_{n_{B}=-10}=0 \\
& z_{n_{B}=-9}=z_{-6} \cdot z_{-3}+z_{-5} \cdot z_{-4}+z_{-4} \cdot z_{-5}+z_{-3} \cdot z_{-6} \quad=\sum_{k=-6}^{-3} z_{k} \cdot z_{-9-k}
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Similarly for fixed baryon number:

$$
\begin{aligned}
& z_{n_{B}=-12}=z_{-6} \cdot z_{-6} \\
& z_{n_{B}=-11}=0 \\
& z_{n_{B}=-10}=0 \\
& z_{n_{B}=-9}=z_{-6} \cdot z_{-3}+z_{-5} \cdot z_{-4}+z_{-4} \cdot z_{-5}+z_{-3} \cdot z_{-6} \quad=\sum_{k=-6}^{-3} z_{k} \cdot z_{-9-k} \\
& z_{n_{B}=-8}=0 \\
& z_{n_{B}=-7}=0
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Similarly for fixed baryon number:

$$
\begin{aligned}
& z_{n_{B}=-12}=z_{-6} \cdot z_{-6} \\
& z_{n_{B}=-11}=0 \\
& z_{n_{B}=-10}=0 \\
& z_{n_{B}=-9}=z_{-6} \cdot z_{-3}+z_{-5} \cdot z_{-4}+z_{-4} \cdot z_{-5}+z_{-3} \cdot z_{-6} \quad=\sum_{k=-6}^{-3} z_{k} \cdot z_{-9-k} \\
& z_{n_{B}=-8}=0 \\
& z_{n_{B}=-7}=0 \\
& z_{n_{B}=-6}=z_{-6} \cdot z_{0}+z_{-5} \cdot z_{-1}+z_{-4} \cdot z_{-2}+z_{-3} \cdot z_{-3}+z_{-2} \cdot z_{-4}+z_{-1} \cdot z_{-5}+z_{0} \cdot z_{-6} \\
& \\
&
\end{aligned} \quad=\sum_{k=-6}^{0} z_{k} \cdot z_{-6-k} .
$$

Canonical single site determinants in the heavy-dense limit

- Similarly for fixed baryon number:

$$
\begin{aligned}
& z_{n_{B}=-12}=z_{-6} \cdot z_{-6} \\
& z_{n_{B}=-11}=0 \\
& z_{n_{B}=-10}=0 \\
& z_{n_{B}=-9}=z_{-6} \cdot z_{-3}+z_{-5} \cdot z_{-4}+z_{-4} \cdot z_{-5}+z_{-3} \cdot z_{-6} \quad=\sum_{k=-6}^{-3} z_{k} \cdot z_{-9-k} \\
& z_{n_{B}=-8}=0 \\
& z_{n_{B}=-7}=0 \\
& z_{n_{B}=-6}=z_{-6} \cdot z_{0}+z_{-5} \cdot z_{-1}+z_{-4} \cdot z_{-2}+z_{-3} \cdot z_{-3}+z_{-2} \cdot z_{-4}+z_{-1} \cdot z_{-5}+z_{0} \cdot z_{-6} \\
& \\
& z_{n_{B}=-5}=0 \\
& z_{n_{B}=-4}=0
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Similarly for fixed baryon number:

$$
\begin{aligned}
& z_{n_{B}=-12}=z_{-6} \cdot z_{-6} \\
& z_{n_{B}=-11}=0 \\
& z_{n_{B}=-10}=0 \\
& z_{n_{B}=-9}=z_{-6} \cdot z_{-3}+z_{-5} \cdot z_{-4}+z_{-4} \cdot z_{-5}+z_{-3} \cdot z_{-6} \quad=\sum_{k=-6}^{-3} z_{k} \cdot z_{-9-k} \\
& z_{n_{B}=-8}=0 \\
& z_{n_{B}=-7}=0 \\
& z_{n_{B}=-6}=z_{-6} \cdot z_{0}+z_{-5} \cdot z_{-1}+z_{-4} \cdot z_{-2}+z_{-3} \cdot z_{-3}+z_{-2} \cdot z_{-4}+z_{-1} \cdot z_{-5}+z_{0} \cdot z_{-6} \\
& \\
& z_{n_{B}=-5}=0 \\
& z_{n_{B}=-4}=0
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Similarly for fixed baryon number:

$$
\begin{aligned}
& z_{n_{B}=-12}=z_{-6} \cdot z_{-6} \\
& z_{n_{B}=-11}=0 \\
& z_{n_{B}=-10}=0 \\
& z_{n_{B}=-9}=z_{-6} \cdot z_{-3}+z_{-5} \cdot z_{-4}+z_{-4} \cdot z_{-5}+z_{-3} \cdot z_{-6} \\
& =\sum_{k=-6}^{-3} z_{k} \cdot z_{-9-k} \\
& z_{n_{B}=-8}=0 \\
& z_{n_{B}=-7}=0 \\
& z_{n_{B}=-6}=z_{-6} \cdot z_{0}+z_{-5} \cdot z_{-1}+z_{-4} \cdot z_{-2}+z_{-3} \cdot z_{-3}+z_{-2} \cdot z_{-4}+z_{-1} \cdot z_{-5}+z_{0} \cdot z_{-6} \\
& =\sum_{k=-6}^{0} z_{k} \cdot z_{-6-k} \\
& z_{n_{B}=-5}=0 \\
& z_{n_{B}=-4}=0 \\
& z_{n_{B}=-3}=z_{-6} \cdot z_{+3}+z_{-5} \cdot z_{+2}+z_{-4} \cdot z_{+1}+z_{-3} \cdot z_{0}+z_{-2} \cdot z_{-1}+z_{-1} \cdot z_{-2} \\
& +z_{0} \cdot z_{-3}+z_{+1} \cdot z_{-4}+z_{+2} \cdot z_{-5}+z_{+3} \cdot z_{-6}=\sum_{k=-6}^{+3} z_{k} \cdot z_{-3-k}
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Similarly for fixed baryon number:

$$
\begin{aligned}
& z_{n_{B}=-12}=z_{-6} \cdot z_{-6} \\
& z_{n_{B}=-11}=0 \\
& z_{n_{B}=-10}=0 \\
& z_{n_{B}=-9}=z_{-6} \cdot z_{-3}+z_{-5} \cdot z_{-4}+z_{-4} \cdot z_{-5}+z_{-3} \cdot z_{-6} \quad=\sum_{k=-6}^{-3} z_{k} \cdot z_{-9-k} \\
& z_{n_{B}=-8}=0 \\
& z_{n_{B}=-7}=0 \\
& z_{n_{B}=-6}=z_{-6} \cdot z_{0}+z_{-5} \cdot z_{-1}+z_{-4} \cdot z_{-2}+z_{-3} \cdot z_{-3}+z_{-2} \cdot z_{-4}+z_{-1} \cdot z_{-5}+z_{0} \cdot z_{-6} \\
& \\
& \\
& z_{n_{B}=-5}=0 \\
& z_{n_{B}=-4}=0 \\
& z_{n_{B}=-3}=z_{-6} \cdot z_{k=-6} z_{k} \cdot z_{-6-k} \\
& \\
& z_{n_{B}=-2}=0 \\
& z_{n_{B}=-1}=0
\end{aligned}
$$

Canonical single site determinants in the heavy-dense limit

- Similarly for fixed baryon number:

$$
\begin{array}{lll}
z_{n_{B}=-12}=z_{-6} \cdot z_{-6} & \\
z_{n_{B}=-11}=0 \\
z_{n_{B}=-10}=0 & & \\
z_{n_{B}=-9}=z_{-6} \cdot z_{-3}+z_{-5} \cdot z_{-4}+z_{-4} \cdot z_{-5}+z_{-3} \cdot z_{-6} & =\sum_{k=-6}^{-3} z_{k} \cdot z_{-9-k} \\
z_{n_{B}=-8}=0 & \\
z_{n_{B}=-7}=0 & & \\
z_{n_{B}=-6}=z_{-6} \cdot z_{0}+z_{-5} \cdot z_{-1}+z_{-4} \cdot z_{-2}+z_{-3} \cdot z_{-3}+z_{-2} \cdot z_{-4} & +z_{-1} \cdot z_{-5}+z_{0} \cdot z_{-6} \\
& =\sum_{k=-6}^{0} z_{k} \cdot z_{-6-k} \\
z_{n_{B}=-5}=0 & \\
z_{n_{B}=-4}=0 & & \\
z_{n_{B}=-3}=z_{-6} \cdot z_{+3}+z_{-5} \cdot z_{+2}+z_{-4} \cdot z_{+1}+z_{-3} \cdot z_{0}+z_{-2} \cdot z_{-1}+z_{-1} \cdot z_{-2} \\
& +z_{0} \cdot z_{-3}+z_{+1} \cdot z_{-4}+z_{+2} \cdot z_{-5}+z_{+3} \cdot z_{-6} & =\sum_{k=-6}^{+3} z_{k} \cdot z_{-3-k} \\
z_{n_{B}=-2}=0 & & =\sum_{k=-6}^{+6} z_{k} \cdot z_{-k} \\
z_{n_{B}=-1}=0 & & \geq 0
\end{array}
$$

The heavy-dense strong coupling limit $\beta \rightarrow 0$

- In the strong coupling limit the global $\mathbb{Z}\left(N_{c}\right)$-transformations are promoted to local ones:
- define triality by the net number of $P_{\bar{x}}$ and $P_{\bar{x}}^{\dagger}$
- only contributions with triality-0 survive:

$$
\begin{aligned}
1 & \text { empty site } \\
\operatorname{Tr} P_{\bar{x}} \cdot \operatorname{Tr} P_{\bar{x}}^{\dagger} & \text { single meson } \\
\left(\operatorname{Tr} P_{\bar{x}} \cdot \operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{2} & \text { two mesons } \\
\left(\operatorname{Tr} P_{\bar{x}}\right)^{3} & \text { baryon } \\
\left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^{3} & \text { antibaryon }
\end{aligned}
$$

- baryonic contributions complex, but very small compared to rest

The heavy-dense strong coupling limit $\beta \rightarrow 0$

- Partition function becomes a summation over all baryon configurations $n_{B}(\bar{x})$ with (essentially) positive contributions:

$$
Z_{C}\left(N_{B}\right)=(2 \kappa)^{2 N_{c} L_{t} L_{s}^{3}} . \sum_{\left\{n_{B}\right\},\left|n_{B}\right|=N_{B}} \int \mathcal{D} \cup \prod_{\bar{x}} \operatorname{det} \mathcal{M}_{n_{B}(\overline{\bar{x}})}^{H D S S}\left[\operatorname{Tr} P_{\bar{x}}\right]
$$

- DU can of course be integrated analytically,
- but also possible to simulate by Monte Carlo

Sign problem is solved in the strong coupling limit!

The heavy-dense strong coupling limit $\beta \rightarrow 0$

- Baryon chemical potential as a function of baryon number:

The sign problem strikes back at $\beta>0$

- Cf. e.g. canonical determinant for $n_{f}=3$ quarks:

$$
\begin{aligned}
& \operatorname{det} \mathcal{D}_{n_{f}=3}^{H D} / \Omega=h_{3} \cdot\left(4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}}-3 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}+2 L_{s}^{3}\right) \\
&+h_{1}\left(4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}}\right.+2 \sum_{\bar{x}}\left(\operatorname{Tr} P_{\bar{x}}\right)^{2} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}} \\
&\left.+4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \sum_{\bar{y} \neq \bar{x}} \operatorname{Tr} P_{\bar{y}} \sum_{\overline{\bar{z}}} \operatorname{Tr} P_{\bar{z}}\right)
\end{aligned}
$$

- describes the propagation of mesons and baryons
- Invariant under global $\mathbb{Z}(3)$-transformations
- Suffers from a severe sign problem, unless
- all $P_{\bar{x}}$ align \Longleftrightarrow deconfined phase
- global $\mathbb{Z}(3)$ is promoted to a local one \Longleftrightarrow strong coupling

Possible solution for $\beta>0$

- Use the 3-state Potts model in $3 d$ as a proxy for the effective Polyakov loop action of heavy-dense QCD.
- Canonical partition function for N_{Q} quarks:

$$
Z_{\mathrm{C}}\left(N_{q}\right)=\sum_{\{n\},|n|=N_{Q}} \int \mathcal{D} z \exp (-S[z]) \cdot \prod_{x} f\left[z_{x}, n_{x}\right]
$$

- Polyakov loops are represented by the Potts spins $z_{x} \in \mathbb{Z}(3)$
- standard nearest-neighbour interaction

$$
S[z]=-\beta \sum_{\langle x y\rangle} \delta_{z_{x}, z_{y}}
$$

- local quark occupation number $n_{x} \leq n_{x}^{\max }$ with $|n|=N_{Q}$
- use the simple local fermionic weights

$$
f[z, n]=z^{n}
$$

The 3-state Potts model in $d=3$ dimensions

Canonical partition function

$$
Z_{\mathrm{C}}\left(N_{Q}\right)=\sum_{\{n\}} \int \mathcal{D} z \exp \left(\beta \sum_{\langle x y\rangle} \delta_{z_{x}, z_{y}}\right) \prod_{x} z_{x}^{n_{x}}
$$

- Action is manifestly complex \Rightarrow fermion sign problem!
- Global $\mathbb{Z}(3)$ symmetry ensures $Z_{C}\left(N_{Q} \neq 0 \bmod 3\right)=0$:
- projection onto integer baryon numbers
- In the limit $\beta \rightarrow 0$, the global $\mathbb{Z}(3)$ becomes a local one:
- projection onto integer baryon numbers on single sites

$$
n_{x}=0 \bmod 3 \quad(\text { limit } \beta \rightarrow 0)
$$

- sign problem is absent

The 3-state Potts model in $d=3$ dimensions

Canonical partition function

$$
Z_{\mathrm{C}}\left(N_{Q}\right)=\sum_{\{n\}} \int \mathcal{D} z \exp \left(\beta \sum_{\langle x y\rangle} \delta_{z_{x}, z_{y}}\right) \prod_{x} z_{x}^{n_{x}}
$$

- Action is manifestly complex \Rightarrow fermion sign problem!
- Global $\mathbb{Z}(3)$ symmetry ensures $Z_{C}\left(N_{Q} \neq 0 \bmod 3\right)=0$:
- projection onto integer baryon numbers
- At $\beta>0$ sign problem can be solved using cluster algorithm:
- only clusters with integer baryon number are nonzero \Rightarrow confinement
- quarks can move freely within the cluster

Physics of the 3 -state Potts model

- Phase diagram in the $\left(e^{\mu}, \gamma\right) \equiv(h, \kappa)$-plane:
[Alford, Chandrasekharan, Cox and Wiese 2001]

- deconfinement phase transition at $T=(0,0.550565(10))$

Physics of the 3 -state Potts model

- Phase diagram in the $\left(e^{\mu}, \gamma\right) \equiv(h, \kappa)$-plane:
[Alford, Chandrasekharan, Cox and Wiese 2001]

- line of first order phase transitions from T to E

Physics of the 3 -state Potts model

- Phase diagram in the $\left(e^{\mu}, \gamma\right) \equiv(h, \kappa)$-plane:
[Alford, Chandrasekharan, Cox and Wiese 2001]

- critical endpoint $E=(0.000470(2), 0.549463(13))$

Canonical formulation of the 3-state Potts model

- Canonical simulation results in the deconfined phase:

- description in terms of a gas of (free) quarks

Canonical formulation of the 3-state Potts model

- Results from below the deconfinement transition:

- transition from the confined into the deconfined phase

Canonical formulation of the 3 -state Potts model

- Results from below the deconfinement transition:

- typical signature of a $1^{\text {st }}$ order phase transition

Canonical formulation of the 3-state Potts model

-Results from below the deconfinement transition:

- Maxwell construction yields critical μ_{c}

Canonical formulation of the 3-state Potts model

- Results from below the deconfinement transition:

- Maxwell construction yields critical μ_{c}

Canonical formulation of the 3 -state Potts model

- Results from below the critical endpoint:

- crossover from the confined into the deconfined phase

Canonical formulation of the 3-state Potts model

- Results from below the critical endpoint:

- crossover from the confined into the deconfined phase

Canonical formulation of the 3-state Potts model

- (Anti)Quark-(anti)quark potentials at low temperature:

- confined phase: $\gamma=0.3$ for $N_{Q}=24, V=16^{3}$, i.e. $\rho=5.9 \cdot 10^{-3}$

Canonical formulation of the 3-state Potts model

- (Anti)Quark-(anti)quark potentials at low temperature:

- values at $r=0$ and $r \rightarrow \infty$ match $\langle z\rangle,\left\langle z^{*}\right\rangle,\left\langle z^{*}\right\rangle\left\langle z^{*}\right\rangle, \ldots$

Summary and outlook

- Canonical QCD can be obtained from transfer matrices defined directly in the canonical sectors of QCD
- In the heavy-dense limit, the fermionic contributions to the canonical partition functions can be derived exactly
- The fermion sign problem is absent at $\beta \rightarrow 0$:
- simulations in the heavy-dense limit are possible
- Sign problem solved by cluster algorithm for $\beta>0$ in the Potts model:
- quarks confined in clusters, but move freely within
- at $\beta \rightarrow 0$ clusters are confined to single sites only
- deconfinement \Leftrightarrow appearance of a percolating cluster

Summary and outlook

- The solution provides an appealing physical picture:

Good algorithms reflect true physics insight!

- quarks confined in clusters, but move freely within
- at $\gamma \rightarrow 0$ clusters are confined to single sites only
- deconfinement corresponds to appearance of a percolating cluster
- Extension to Polyakov loop models could be possible:
- mechanism at work at $\beta=0$
- extend it to $\beta>0$

