Canonical simulations of heavy-dense QCD without a sign problem

Urs Wenger

Albert Einstein Center for Fundamental Physics University of Bern

D UNIVERSITÄT BERN

26 Juni 2017, XQCD 2017, Pisa, Italy

Motivation for canonical formulation of QCD

Consider the grand-canonical partition function of QCD:

$$Z_{\rm GC}^{\rm QCD}(\mu) = {\rm Tr}\left[e^{-\mathcal{H}(\mu)/T}\right] = {\rm Tr}\prod_t \mathcal{T}_t(\mu)$$

- The sign problem of QCD is a manifestation of huge cancellations between different states:
 - all states are present for any μ and ${\it T}$
 - some states need to cancel out at different μ and ${\it T}$
- In the canonical formulation:

$$Z_{\rm C}^{\rm QCD}(N_Q) = {\rm Tr}_{N_Q} \left[e^{-\mathcal{H}(\mu)/T} \right] = {\rm Tr} \prod_t \mathcal{T}_t^{(N_Q)}$$

- dimension of Fock space tremendously reduced
- less cancellations necessary
- e.g. $Z_{C}^{QCD}(N_Q) = 0$ for $N_Q \neq 0 \mod N_c$

Motivation for canonical formulation of QCD

Canonical transfer matrices can be obtained explicitly!

- based on the dimensional reduction of the QCD fermion determinant [Alexandru, Wenger '10; Nagata, Nakamura '10]
- identification of transfer matrices [Steinhauer, Wenger '14]

Motivation for canonical formulation of QCD

Canonical transfer matrices can be obtained explicitly!

- based on the dimensional reduction of the QCD fermion determinant [Alexandru, Wenger '10; Nagata, Nakamura '10]
- identification of transfer matrices [Steinhauer, Wenger '14]

Outline:

- Definition of the transfer matrices for canonical QCD
- Explicit calculation in the heavy-dense limit
- Solution of the sign problem in the strong coupling limit
- Solution for the Potts model away from strong coupling

Dimensional reduction of QCD

 Consider the Wilson fermion matrix for a single quark with chemical potential µ:

- B_t are (spatial) Wilson Dirac operators on time-slice t,
- Dirac projectors $P_{\pm} = \frac{1}{2}(\mathbb{I} \mp \Gamma_4)$,
- temporal hoppings are

$$A_t^+ = e^{+\mu} \cdot \mathbb{I}_{4 \times 4} \otimes \mathcal{U}_t = (A_t^-)^{-1}$$

• all blocks are $(4 \cdot N_c \cdot L_s^3 \times 4 \cdot N_c \cdot L_s^3)$ -matrices

Dimensional reduction of QCD

Reduced Wilson fermion determinant is given by

$$\det M_{\rho,a}(\mu) = \prod_t \det Q_t^+ \cdot \det \left[\mathbb{I} \pm \mathcal{T} \right]$$

where ${\mathcal{T}}$ is a product of transfer matrices given by

$$\mathcal{T} = \mathbf{e}^{+\mu L_t} \prod_t \mathcal{U}_{t-1}^+ \cdot (Q_t^-)^{-1} \cdot Q_t^+ \cdot \mathcal{U}_t^-$$

with

$$Q_t^{\pm} = B_t P_{\pm} + P_{\mp}, \qquad \mathcal{U}_t^{\pm} = \mathcal{U}_t P_{\pm} + P_{\mp}$$

• Fugacity expansion yields with $N_Q^{\text{max}} = 2 \cdot N_c \cdot L_s^3$

$$\det M_a(\mu) = \sum_{N_Q = -N_Q^{\max}}^{N_Q^{\max}} e^{\mu N_Q/T} \cdot \det M_{N_Q}$$

Canonical transfer matrices of QCD

$$\det M_{N_Q} = \prod_t \det Q_t^+ \cdot \sum_A \det \mathcal{T}^{\lambda_t \lambda_t} = \operatorname{Tr} \prod_t \mathcal{T}_t^{(N_Q)}$$

- sum is over all index sets $A \in \{1, 2, \dots, 2N_Q^{\max}\}$ of size N_Q ,
- + i.e. the trace over the minor matrix of rank N_Q of \mathcal{T}

Provides a complete temporal factorization of the fermion determinant.

Relation between quark and baryon number

• Consider $\mathbb{Z}(N_c)$ -transformation by $z_k = e^{2\pi i \cdot k/N_c} \in \mathbb{Z}(N_c)$:

$$U_4(x) \to U_4(x)' = (1 + \delta_{x_4,t} \cdot (z_k - 1)) \cdot U_4(x)$$

- Hence, \mathcal{U}_{x_4} transforms as $\mathcal{U}_{x_4} \to \mathcal{U}'_{x_4} = z_k \cdot \mathcal{U}_{x_4}$, while for all others $\mathcal{U}'_{t\neq x_4} = \mathcal{U}_{t\neq x_4}$.
- As a consequence we have

$$\det \mathcal{M}_{N_Q} \to \det \mathcal{M}'_{N_Q} = \prod_t \det Q_t^+ \cdot \sum_A \det(z_k \cdot \mathcal{T})^{\lambda_{\lambda_Q}}$$
$$= z_k^{-N_Q} \cdot \det \mathcal{M}_{N_Q}$$

and summing over z_k therefore yields

 $\det \mathcal{M}_{N_Q} = 0 \qquad \text{for } N_Q \neq 0 \mod N_c$

reduces cancellations by factor of N_c

Heavy-dense limit of grand-canonical QCD

- The heavy-dense approximation in general consists of taking the limit $\kappa \equiv (2m+8)^{-1} \rightarrow 0$, $\mu \rightarrow \infty$ while keeping $\kappa e^{+\mu}$ fixed.
- Better: just drop the spatial hopping terms, but keep forward and backward hopping in time:
 - system of static quarks and antiquarks
- Multiplying fermion matrix by 2κ we have

$$B_t \to \mathbb{I}, \qquad A_t^{\pm} \to 2\kappa \cdot A_t^{\pm} = 2\kappa e^{\pm\mu} \cdot \mathbb{I}_{4\times 4} \otimes \mathcal{U}_t^{\prime/\dagger}$$

and the reduced Wilson fermion matrix in the HD limit

$$\det M_{p,a}^{HD} = \prod_{\bar{x}} \det \left[\mathbb{I} \pm (2\kappa e^{+\mu})^{L_t} P_{\bar{x}} \right]^2 \det \left[\mathbb{I} \pm (2\kappa e^{-\mu})^{L_t} P_{\bar{x}}^{\dagger} \right]^2$$

Heavy-dense limit of canonical QCD

 The canonical determinants are given by the trace over the minor matrix *M*,

$$\det M_k^{HD} = (2\kappa)^{2N_c L_s^3 L_t} \cdot \operatorname{Tr} \mathcal{M}_k \left[\left((2\kappa)^{+L_t} \cdot P_+ \mathcal{P} + (2\kappa)^{-L_t} \cdot P_- \mathcal{P} \right) \right]$$

where \mathcal{P} denotes the Polyakov loops $\mathcal{P}_{\bar{x},\bar{y}} = \mathbb{I}_{4\times 4} \otimes \mathcal{P}_{\bar{x}} \cdot \delta_{\bar{x},\bar{y}}$.

 \blacktriangleright For SU(3), the expressions of traces of minor matrices ${\cal M}$ are

$$\operatorname{Tr} \mathcal{M}_{k=0}(P_{\bar{x}}) = \det P_{\bar{x}} = 1,$$

$$\operatorname{Tr} \mathcal{M}_{k=1}(P_{\bar{x}}) = \sum_{i=1}^{3} \mathcal{M}(P_{\bar{x}})_{ii} = \operatorname{Tr} P_{\bar{x}}^{\dagger},$$

$$\operatorname{Tr} \mathcal{M}_{k=2}(P_{\bar{x}}) = \sum_{i=1}^{3} \mathcal{M}(P_{\bar{x}})_{ii} = \operatorname{Tr} P_{\bar{x}},$$

$$\operatorname{Tr} \mathcal{M}_{k=3}(P_{\bar{x}}) = 1.$$

Heavy-dense limit of canonical QCD

Canonical determinant describing no quarks w.r.t. N_Q^{max}:

$$\det M_{N_Q^{\text{max}}}^{HD} = 1 \qquad \Leftrightarrow \quad \text{quenched case}$$

• Canonical determinant describing a single quark, i.e. $N_Q = 1$:

$$\det M^{HD}_{N^{\max}_Q - 1} = \left((2\kappa)^{L_t} + (2\kappa)^{-L_t} \right) \cdot \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}}$$

• For $N_Q = 2$ quarks:

$$\det M_{N_{Q}^{\text{max}}-2}^{HD} / \Omega \propto 2 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}} + \left(4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}} - 3 \sum_{\bar{x}} \left(\operatorname{Tr} P_{\bar{x}} \right)^2 + 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} \right)$$

• Both determinants vanish under global $\mathbb{Z}(3)$ -transformations.

Heavy-dense limit of canonical QCD

• Canonical determinant $N_Q = 3$ quarks:

$$\det M_{N_Q^{\text{max}3}}^{HD} / \Omega = h_3 \cdot \left(4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}} - 3 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} + 2L_s^3 \right) + h_1 \left(4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}} + 2 \sum_{\bar{x}} (\operatorname{Tr} P_{\bar{x}})^2 \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}} + 4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \sum_{\bar{y} \neq \bar{x}} \operatorname{Tr} P_{\bar{y}} \sum_{\bar{z}} \operatorname{Tr} P_{\bar{z}} \right)$$

١

- describes the propagation of mesons and baryons
- Invariant under global $\mathbb{Z}(3)$ -transformations
- Suffers from a severe sign problem, unless
 - all $P_{\bar{x}}$ align \iff deconfined phase
 - global $\mathbb{Z}(3)$ is promoted to a local one \iff strong coupling

- For numerical simulations we need the canonical determinants on single sites for arbitrary $k = N_Q$.
- From the reduced determinant we obtain

$$\det M_k^{HDSS} = (2\kappa)^{2N_cL_t} \cdot \operatorname{Tr} \mathcal{M}_k \left[\left((2\kappa)^{+L_t} \cdot P_+ \mathcal{P} + (2\kappa)^{-L_t} \cdot P_- \mathcal{P} \right) \right]$$

- \mathcal{P} is just a $4N_c \times 4N_c$ blockmatrix containing 4 copies of $P_{\bar{x}}$ along the diagonal
- quark number index now runs over $k = 0, \ldots, 12$
- In the following, suppress $\Omega^{SS} = (2\kappa)^{2N_cL_t}$ and define

$$\det M_k^{HDSS} = \Omega^{SS} z_k$$

• Canonical determinants on single site (with $z_k^{HDSS} = (z_{12-k}^{HDSS})^*$):

 $z_{k=0}^{HDSS} = 1$

• Canonical determinants on single site (with $z_k^{HDSS} = (z_{12-k}^{HDSS})^*$): $z_{k=1}^{HDSS} = h_1 \cdot 2 \operatorname{Tr} P_{\overline{x}}^{\dagger}$

• Canonical determinants on single site (with $z_k^{HDSS} = (z_{12-k}^{HDSS})^*$): $z_{k=1}^{HDSS} = h_1 \cdot 2 \operatorname{Tr} P_{\overline{x}}^{\dagger}$

$$z_{k=2}^{HDSS} = h_2 \cdot \left\{ 2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right\} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2$$

• Canonical determinants on single site (with $z_k^{HDSS} = (z_{12-k}^{HDSS})^*$): $z_{k=1}^{HDSS} = h_1 \cdot 2 \operatorname{Tr} P_{\bar{x}}^{\dagger}$ $z_{k=2}^{HDSS} = h_2 \cdot \left\{ 2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right\} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2$ $z_{k=3}^{HDSS} = h_3 \cdot 2 \left\{ 1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \right\} + h_1 \left\{ 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} \left(2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right) \right\}$

► Canonical determinants on single site (with $z_k^{HDSS} = (z_{12-k}^{HDSS})^*$): $z_{k=1}^{HDSS} = h_1 \cdot 2 \operatorname{Tr} P_{\bar{x}}^{\dagger}$ $z_{k=2}^{HDSS} = h_2 \cdot \left\{ 2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right\} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2$ $z_{k=3}^{HDSS} = h_3 \cdot 2 \left\{ 1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \right\} + h_1 \left\{ 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} \left(2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right) \right\}$ $z_{k=4}^{HDSS} = h_4 \left\{ 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} + \left(\operatorname{Tr} P_{\bar{x}} \right)^2 \right\} + h_2 \cdot 4 \left\{ \operatorname{Tr} P_{\bar{x}}^{\dagger} \left(1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \right) \right\}$ $+ \left(2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right)^2$

• Canonical determinants on single site (with $z_k^{HDSS} = (z_{12-k}^{HDSS})^*$): $z_{k=1}^{HDSS} = h_1 \cdot 2 \operatorname{Tr} P_{\overline{z}}^{\dagger}$ $z_{k=2}^{HDSS} = h_2 \cdot \left\{ 2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right\} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2$ $z_{k=3}^{HDSS} = h_3 \cdot 2\left\{1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right\} + h_1\left\{2\operatorname{Tr} P_{\bar{x}}^{\dagger}\left(2\operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^2\right)\right\}$ $z_{k=4}^{HDSS} = h_4 \left\{ 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} + \left(\operatorname{Tr} P_{\bar{x}} \right)^2 \right\} + h_2 \cdot 4 \left\{ \operatorname{Tr} P_{\bar{x}}^{\dagger} \left(1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \right) \right\}$ $+\left(2\operatorname{Tr}P_{\bar{x}}+\left(\operatorname{Tr}P_{\bar{x}}^{\dagger}\right)^{2}\right)^{2}$ $z_{k=5}^{HDSS} = h_5 \cdot 2 \operatorname{Tr} P_{\bar{x}} + h_3 \left\{ \left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger} + \left(\operatorname{Tr} P_{\bar{x}} \right)^2 \right) 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} \right\}$ $+h_1 \cdot 2\left\{ \left(1 + \operatorname{Tr} P_{\overline{X}} \operatorname{Tr} P_{\overline{X}}^{\dagger}\right) \left(2 \operatorname{Tr} P_{\overline{X}} + \left(\operatorname{Tr} P_{\overline{X}}^{\dagger}\right)^2\right)\right\}$

• Canonical determinants on single site (with $z_k^{HDSS} = (z_{12-k}^{HDSS})^*$): $z_{k=1}^{HDSS} = h_1 \cdot 2 \operatorname{Tr} P_{\overline{z}}^{\dagger}$ $z_{k=2}^{HDSS} = h_2 \cdot \left\{ 2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right\} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2$ $z_{k=3}^{HDSS} = h_3 \cdot 2\left\{1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right\} + h_1\left\{2\operatorname{Tr} P_{\bar{x}}^{\dagger}\left(2\operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^2\right)\right\}$ $z_{k=4}^{HDSS} = h_4 \left\{ 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} + \left(\operatorname{Tr} P_{\bar{x}} \right)^2 \right\} + h_2 \cdot 4 \left\{ \operatorname{Tr} P_{\bar{x}}^{\dagger} \left(1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \right) \right\}$ $+\left(2\operatorname{Tr}P_{\bar{x}}+\left(\operatorname{Tr}P_{\bar{x}}^{\dagger}\right)^{2}\right)^{2}$ $z_{k=5}^{HDSS} = h_5 \cdot 2 \operatorname{Tr} P_{\bar{x}} + h_3 \left\{ \left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger} + \left(\operatorname{Tr} P_{\bar{x}} \right)^2 \right) 2 \operatorname{Tr} P_{\bar{x}}^{\dagger} \right\}$ $+h_1 \cdot 2\left\{ \left(1 + \operatorname{Tr} P_{\overline{X}} \operatorname{Tr} P_{\overline{X}}^{\dagger}\right) \left(2 \operatorname{Tr} P_{\overline{X}} + \left(\operatorname{Tr} P_{\overline{X}}^{\dagger}\right)^2\right)\right\}$ $z_{k=6}^{HDSS} = h_6 + h_4 \cdot 4 \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} + h_2 \left\{ \left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger} + \left(\operatorname{Tr} P_{\bar{x}} \right)^2 \right) \right\}$ $\times \left(2 \operatorname{Tr} P_{\overline{x}} + \left(\operatorname{Tr} P_{\overline{x}}^{\dagger} \right)^2 \right) \right\} + 4 \left(1 + \operatorname{Tr} P_{\overline{x}} \operatorname{Tr} P_{\overline{x}}^{\dagger} \right)^2$

$$z_{k=6}^{HDSS} = h_6 + h_4 \cdot 4 \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} + h_2 \left\{ \left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger} + (\operatorname{Tr} P_{\bar{x}})^2 \right) \times \left(2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right) \right\} + 4 \left(1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2$$

$$z_{k=6}^{HDSS} = h_6 + h_4 \cdot 4 \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} + h_2 \left\{ \left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger} + (\operatorname{Tr} P_{\bar{x}})^2 \right) \times \left(2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right) \right\} + 4 \left(1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2$$

$$z_{k=6}^{HDSS} = h_6 + h_4 \cdot 4 \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} + h_2 \left\{ \left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger} + (\operatorname{Tr} P_{\bar{x}})^2 \right) \times \left(2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right) \right\} + 4 \left(1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2$$

$$z_{k=6}^{HDSS} = h_6 + h_4 \cdot 4 \operatorname{Tr} P_{\overline{x}} \operatorname{Tr} P_{\overline{x}}^{\dagger} + h_2 \left\{ \left(2 \operatorname{Tr} P_{\overline{x}}^{\dagger} + (\operatorname{Tr} P_{\overline{x}})^2 \right) \right. \\ \left. \times \left(2 \operatorname{Tr} P_{\overline{x}} + \left(\operatorname{Tr} P_{\overline{x}}^{\dagger} \right)^2 \right) \right\} + 4 \left(1 + \operatorname{Tr} P_{\overline{x}} \operatorname{Tr} P_{\overline{x}}^{\dagger} \right)^2 \\ \ge h_6 + 4 > 0$$

▶ Relation $z_k^{HDSS} = (z_{12-k}^{HDSS})^*$ implies $z_{k=6}^{HDSS} \in \mathbb{R}$, but in fact

$$z_{k=6}^{HDSS} = h_6 + h_4 \cdot 4 \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} + h_2 \left\{ \left(2 \operatorname{Tr} P_{\bar{x}}^{\dagger} + (\operatorname{Tr} P_{\bar{x}})^2 \right) \times \left(2 \operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \right) \right\} + 4 \left(1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \right)^2 \\ \ge h_6 + 4 > 0$$

• Almost true for $z_{k=3}^{HDSS}$: only is non-positive

$$z_{k=3}^{HDSS} = h_3 \cdot 2\left\{1 + \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger}\right\} + h_1\left\{2\operatorname{Tr} P_{\bar{x}}^{\dagger}\left(2\operatorname{Tr} P_{\bar{x}} + \left(\operatorname{Tr} P_{\bar{x}}^{\dagger}\right)^2\right)\right\}$$

- only $\left(\operatorname{Tr} P_{\overline{x}}^{\dagger}\right)^3$ can become complex
- suppressed by a factor $h_1/h_3 \sim (2\kappa)^{\pm 2L_t}$

• On a single site, $\mathbb{Z}(N_c)$ -transformations projects onto

$$z_k^{HDSS} = 0$$
 for $k \neq 0 \mod N_c$.

- this is what happens in the strong coupling limit $\beta \rightarrow 0$
- Nontrivial determinants integrated over all values of $P_{\overline{x}}$:

$$\int dP_{\bar{x}} \det M_k^{HDSS} = \Omega^{SS} \begin{cases} 1, & k = 0, 12 \\ 4h_3 + 6h_1, & k = 3, 9 \\ h_6 + 4h_4 + 10h_2 + 20, & k = 6 \end{cases}$$

- Provides benchmark for numerical simulations:
 - no sign problem in the canonical formulation

- More interesting are $N_f = 2$ quark flavours:
 - canonical sectors have definite isospin or baryon charge (or both)
 - for simplicity assume degenerate masses $\kappa_u = \kappa_d = \kappa$
 - ▶ relabel $q \in \{-6, -5, \dots, +5, +6\} \leftarrow k \in \{0, 1, \dots, 12\}$
- · Generically, in the grand-canonical case one has

$$\det \mathcal{M}^{HDSS}(\mu_u) \cdot \det \mathcal{M}^{HDSS}(\mu_d)$$
$$= \sum_{q_u=-6}^{6} e^{\mu_u q_u L_t} \det M_{q_u}^{HDSS} \cdot \sum_{q_d=-6}^{6} e^{\mu_d q_d L_t} \det M_{q_d}^{HDSS}$$

while for fixed isospin charge only $n_l = q_u - q_d$ contribute

$$\det \mathcal{M}_{n_l}^{HDSS} = \sum_{\substack{q_u, q_d = -6\\n_l = q_u - q_d}}^{6} \det \mathcal{M}_{q_u}^{HDSS} \cdot \det \mathcal{M}_{q_d}^{HDSS}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

 $z_{n_l=-12} = z_{-6} \cdot z_{+6} = 1 \qquad \qquad n_q = 0$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$z_{n_{l}=-12} = z_{-6} \cdot z_{+6} = 1 \qquad n_{q} = 0$$
$$z_{n_{l}=-11} = 0$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$z_{n_{l}=-12} = z_{-6} \cdot z_{+6} = 1 \qquad n_{q} = 0$$

$$z_{n_{l}=-11} = 0 \qquad z_{n_{l}=-10} = z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} \qquad n_{q} = 0$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\bar{x}}$ we find

$$\begin{aligned} z_{n_{l}=-12} &= z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} &= 0 & z_{n_{l}=-10} = z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} &= z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \end{aligned}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\bar{x}}$ we find

$$\begin{aligned} z_{n_{l}=-12} &= z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} &= 0 & \\ z_{n_{l}=-10} &= z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} &= z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ &= 4h_{3} \left\{ 1 + |L|^{2} \right\} + 4h_{1} \left\{ 2|L|^{2} + \operatorname{Re} \left[L^{3} \right] \right\} \end{aligned}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\bar{x}}$ we find

$$\begin{aligned} z_{n_{l}=-12} &= z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} &= 0 & \\ z_{n_{l}=-10} &= z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} &= z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\text{Re} \, z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} &= \frac{z_{-4} \cdot z_{+4}}{4} = |z_{+4}|^{2} & n_{q} = 0 \\ &= 4h_{2}^{2}|L|^{2} + 4h_{2}(h_{2} + 1)\text{Re} \left[L^{3}\right] + (h_{2} + 1)^{2}|L|^{4} \end{aligned}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{aligned} z_{n_{l}=-12} &= z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} &= 0 & & \\ z_{n_{l}=-0} &= z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} &= z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2 \operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} &= z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} &= 0 & & \\ \end{aligned}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{aligned} z_{n_{l}=-12} &= z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} &= 0 & & \\ z_{n_{l}=-10} &= z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} &= z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} &= z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} &= 0 & & \\ z_{n_{l}=-6} &= z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \end{aligned}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{aligned} z_{n_{l}=-12} &= z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} &= 0 & & \\ z_{n_{l}=-10} &= z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} &= z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} &= z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} &= 0 & & \\ z_{n_{l}=-6} &= z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \end{aligned}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{aligned} z_{n_{l}=-12} &= z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} &= 0 & & \\ z_{n_{l}=-10} &= z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} &= z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} &= z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} &= 0 & & \\ z_{n_{l}=-6} &= z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \end{aligned}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{array}{ll} z_{n_{l}=-12} = z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} = 0 & & & \\ z_{n_{l}=-10} = z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} = z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} = z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} = 0 & & \\ z_{n_{l}=-6} = z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-5} = z_{-4} \cdot z_{+1} + z_{-1} \cdot z_{+4} = 2\operatorname{Re} [z_{-1} \cdot z_{+4}] & n_{q} = -3, +3 \end{array}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{array}{ll} z_{n_{l}=-12} = z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} = 0 & & & \\ z_{n_{l}=-10} = z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} = z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} = z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} = 0 & & \\ z_{n_{l}=-6} = z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-5} = z_{-4} \cdot z_{+1} + z_{-1} \cdot z_{+4} = 2\operatorname{Re} [z_{-1} \cdot z_{+4}] & n_{q} = -3, +3 \end{array}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{array}{ll} z_{n_{l}=-12} = z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} = 0 & & n_{q} = 0 \\ z_{n_{l}=-10} = z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} = z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = 0 \\ z_{n_{l}=-8} = z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} = 0 & & & \\ z_{n_{l}=-6} = z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-5} = z_{-4} \cdot z_{+1} + z_{-1} \cdot z_{+4} = 2\operatorname{Re} [z_{-1} \cdot z_{+4}] & n_{q} = -3, +3 \\ z_{n_{l}=-4} = z_{-5} \cdot z_{-1} + z_{-2} \cdot z_{+2} + z_{+1} \cdot z_{+5} & n_{q} = -6, 0, +6 \end{array}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{array}{ll} z_{n_{l}=-12} = z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} = 0 & & n_{q} = 0 \\ z_{n_{l}=-10} = z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} = z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = 0 \\ z_{n_{l}=-8} = z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} = 0 & & & \\ z_{n_{l}=-6} = z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-5} = z_{-4} \cdot z_{+1} + z_{-1} \cdot z_{+4} = 2\operatorname{Re} [z_{-1} \cdot z_{+4}] & n_{q} = -3, +3 \\ z_{n_{l}=-4} = z_{-5} \cdot z_{-1} + z_{-2} \cdot z_{+2} + z_{+1} \cdot z_{+5} & n_{q} = -6, 0, +6 \end{array}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{array}{ll} z_{n_{l}=-12} = z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} = 0 & & n_{q} = 0 \\ z_{n_{l}=-10} = z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} = z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} = z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} = 0 & & & \\ z_{n_{l}=-6} = z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-5} = z_{-4} \cdot z_{+1} + z_{-1} \cdot z_{+4} = 2\operatorname{Re} [z_{-1} \cdot z_{+4}] & n_{q} = -3, +3 \\ z_{n_{l}=-4} = z_{-5} \cdot z_{-1} + z_{-2} \cdot z_{+2} + z_{+1} \cdot z_{+5} & n_{q} = -6, 0, +6 \end{array}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{array}{ll} z_{n_{l}=-12} = z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} = 0 & & n_{q} = 0 \\ z_{n_{l}=-10} = z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} = z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} = z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} = 0 & & & \\ z_{n_{l}=-6} = z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-5} = z_{-4} \cdot z_{+1} + z_{-1} \cdot z_{+4} = 2\operatorname{Re} [z_{-1} \cdot z_{+4}] & n_{q} = -3, +3 \\ z_{n_{l}=-4} = z_{-5} \cdot z_{-1} + z_{-2} \cdot z_{+2} + z_{+1} \cdot z_{+5} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-3} = z_{-6} \cdot z_{-3} + z_{-3} \cdot z_{0} + z_{0} \cdot z_{+3} + z_{+3} \cdot z_{+6} & n_{q} = -9, -3, +3, +9 \end{array}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{array}{ll} z_{n_{l}=-12} = z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} = 0 & & n_{q} = 0 \\ z_{n_{l}=-10} = z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} = z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} = z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} = 0 & & & \\ z_{n_{l}=-6} = z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-5} = z_{-4} \cdot z_{+1} + z_{-1} \cdot z_{+4} = 2\operatorname{Re} [z_{-1} \cdot z_{+4}] & n_{q} = -3, +3 \\ z_{n_{l}=-4} = z_{-5} \cdot z_{-1} + z_{-2} \cdot z_{+2} + z_{+1} \cdot z_{+5} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-3} = z_{-6} \cdot z_{-3} + z_{-3} \cdot z_{0} + z_{0} \cdot z_{+3} + z_{+3} \cdot z_{+6} & n_{q} = -9, -3, +3, +9 \end{array}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{array}{ll} z_{n_{l}=-12} = z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} = 0 & & n_{q} = 0 \\ z_{n_{l}=-10} = z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} = z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} = z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} = 0 & & & \\ z_{n_{l}=-6} = z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-5} = z_{-4} \cdot z_{+1} + z_{-1} \cdot z_{+4} = 2\operatorname{Re} [z_{-1} \cdot z_{+4}] & n_{q} = -3, +3 \\ z_{n_{l}=-4} = z_{-5} \cdot z_{-1} + z_{-2} \cdot z_{+2} + z_{+1} \cdot z_{+5} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-3} = z_{-6} \cdot z_{-3} + z_{-3} \cdot z_{0} + z_{0} \cdot z_{+3} + z_{+3} \cdot z_{+6} & n_{q} = -9, -3, +3, +9 \end{array}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{array}{ll} z_{n_{l}=-12} = z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} = 0 & & n_{q} = 0 \\ z_{n_{l}=-10} = z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} = z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\operatorname{Re} z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} = z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} = 0 & & & \\ z_{n_{l}=-6} = z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\operatorname{Re} z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-5} = z_{-4} \cdot z_{+1} + z_{-1} \cdot z_{+4} = 2\operatorname{Re} [z_{-1} \cdot z_{+4}] & n_{q} = -3, +3 \\ z_{n_{l}=-4} = z_{-5} \cdot z_{-1} + z_{-2} \cdot z_{+2} + z_{+1} \cdot z_{+5} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-3} = z_{-6} \cdot z_{-3} + z_{-3} \cdot z_{0} + z_{0} \cdot z_{+3} + z_{+3} \cdot z_{+6} & n_{q} = -9, -3, +3, +9 \end{array}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{aligned} z_{n_{l}=-12} &= z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} &= 0 & & & \\ z_{n_{l}=-10} &= z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} &= z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\text{Re} \, z_{-3} & & & n_{q} = -3, +3 \\ z_{n_{l}=-8} &= z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} &= 0 & & & \\ z_{n_{l}=-6} &= z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\text{Re} \, z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-5} &= z_{-4} \cdot z_{+1} + z_{-1} \cdot z_{+4} = 2\text{Re} \left[z_{-1} \cdot z_{+4}\right] & n_{q} = -3, +3 \\ z_{n_{l}=-4} &= z_{-5} \cdot z_{-1} + z_{-2} \cdot z_{+2} + z_{+1} \cdot z_{+5} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-3} &= z_{-6} \cdot z_{-3} + z_{-3} \cdot z_{0} + z_{0} \cdot z_{+3} + z_{+3} \cdot z_{+6} & n_{q} = -9, -3, +3, +9 \\ z_{n_{l}=-2} &= z_{-4} \cdot z_{-2} + z_{-1} \cdot z_{+1} + z_{+2} \cdot z_{+4} & n_{q} = -6, 0, 6 \\ z_{n_{l}=-1} &= z_{-5} \cdot z_{-4} + z_{-2} \cdot z_{-1} + z_{+1} \cdot z_{+2} + z_{+4} \cdot z_{+5} & n_{q} = -9, -3, +3, +9 \\ z_{n_{l}=0} &= z_{-6} \cdot z_{-6} + z_{-3} \cdot z_{-3} + z_{0} \cdot z_{0} + z_{+3} \cdot z_{+3} + z_{+6} \cdot z_{+6} \\ n_{q} = -12, -6, 0, +6, +12 \end{aligned}$$

- $\mathbb{Z}(N_c)$ -symmetry implies the constraint $n_q \equiv q_u + q_d = 0 \mod N_c$.
- Using det $\mathcal{M}_{n_l}^{HDSS} \cdot (\Omega^{SS})^2 \cdot z_{n_l}$ and $L = \operatorname{Tr} P_{\overline{x}}$ we find

$$\begin{aligned} z_{n_{l}=-12} &= z_{-6} \cdot z_{+6} = 1 & n_{q} = 0 \\ z_{n_{l}=-11} &= 0 & n_{q} = 0 \\ z_{n_{l}=-10} &= z_{-5} \cdot z_{+5} = 4h_{1}^{2}|L|^{2} & n_{q} = 0 \\ z_{n_{l}=-9} &= z_{-6} \cdot z_{+3} + z_{-3} \cdot z_{+6} = 2\text{Re} \, z_{-3} & n_{q} = -3, +3 \\ z_{n_{l}=-8} &= z_{-4} \cdot z_{+4} = |z_{+4}|^{2} & n_{q} = 0 \\ z_{n_{l}=-7} &= 0 & & & \\ z_{n_{l}=-6} &= z_{-6} \cdot z_{0} + z_{-3} \cdot z_{+3} + z_{0} \cdot z_{+6} = 2\text{Re} \, z_{0} + |z_{3}|^{2} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-5} &= z_{-4} \cdot z_{+1} + z_{-1} \cdot z_{+4} = 2\text{Re} \left[z_{-1} \cdot z_{+4}\right] & n_{q} = -3, +3 \\ z_{n_{l}=-4} &= z_{-5} \cdot z_{-1} + z_{-2} \cdot z_{+2} + z_{+1} \cdot z_{+5} & n_{q} = -6, 0, +6 \\ z_{n_{l}=-3} &= z_{-6} \cdot z_{-3} + z_{-3} \cdot z_{0} + z_{0} \cdot z_{+3} + z_{+3} \cdot z_{+6} & n_{q} = -9, -3, +3, +9 \\ z_{n_{l}=-2} &= z_{-4} \cdot z_{-2} + z_{-1} \cdot z_{+1} + z_{+2} \cdot z_{+4} & n_{q} = -6, 0, 6 \\ z_{n_{l}=-1} &= z_{-5} \cdot z_{-4} + z_{-2} \cdot z_{-1} + z_{+1} \cdot z_{+2} + z_{+4} \cdot z_{+5} & n_{q} = -9, -3, +3, +9 \\ z_{n_{l}=0} &= z_{-6} \cdot z_{-6} + z_{-3} \cdot z_{-3} + z_{0} \cdot z_{0} + z_{+3} \cdot z_{+3} + z_{+6} \cdot z_{+6} \\ n_{q} = -12, -6, 0, +6, +12 \end{aligned}$$

• Fixing in addition $n_q = 0$ yields $z_{n_l} \ge 0$ positive, else almost.

• Similarly for fixed baryon number:

 $z_{n_B=-12}=\underline{z_{-6}}\cdot\underline{z_{-6}}$

Similarly for fixed baryon number:

 $Z_{n_B=-12} = Z_{-6} \cdot Z_{-6}$ $Z_{n_B=-11} = 0$ $Z_{n_B=-10} = 0$

$$\begin{aligned} z_{n_B-12} &= z_{-6} \cdot z_{-6} \\ z_{n_B-11} &= 0 \\ z_{n_B-10} &= 0 \\ z_{n_B-9} &= z_{-6} \cdot z_{-3} + z_{-5} \cdot z_{-4} + z_{-4} \cdot z_{-5} + z_{-3} \cdot z_{-6} \end{aligned} = \sum_{k=-6}^{-3} z_k \cdot z_{-9-k} \end{aligned}$$

$$z_{n_B=-12} = z_{-6} \cdot z_{-6}$$

$$z_{n_B=-11} = 0$$

$$z_{n_B=-10} = 0$$

$$z_{n_B=-9} = z_{-6} \cdot z_{-3} + z_{-5} \cdot z_{-4} + z_{-4} \cdot z_{-5} + z_{-3} \cdot z_{-6}$$

$$z_{n_B=-8} = 0$$

$$z_{n_B=-7} = 0$$

$$z_{n_B=-12} = \underline{z_{-6} \cdot z_{-6}}$$

$$z_{n_B=-11} = 0$$

$$z_{n_B=-10} = 0$$

$$z_{n_B=-9} = \underline{z_{-6} \cdot z_{-3}} + \underline{z_{-5} \cdot z_{-4}} + \underline{z_{-4} \cdot z_{-5}} + \underline{z_{-3} \cdot z_{-6}} = \sum_{k=-6}^{-3} \underline{z_k \cdot z_{-9-k}}$$

$$z_{n_B=-8} = 0$$

$$z_{n_B=-7} = 0$$

$$z_{n_B=-6} = \underline{z_{-6} \cdot z_{0}} + \underline{z_{-5} \cdot z_{-1}} + \underline{z_{-4} \cdot z_{-2}} + \underline{z_{-3} \cdot z_{-3}} + \underline{z_{-2} \cdot z_{-4}} + \underline{z_{-1} \cdot z_{-5}} + \underline{z_{0} \cdot z_{-6}}$$

$$= \sum_{k=-6}^{0} \underline{z_k \cdot z_{-6-k}}$$

$$\begin{aligned} z_{n_B--12} &= z_{-6} \cdot z_{-6} \\ z_{n_B--11} &= 0 \\ z_{n_B--10} &= 0 \\ z_{n_B--9} &= z_{-6} \cdot z_{-3} + z_{-5} \cdot z_{-4} + z_{-4} \cdot z_{-5} + z_{-3} \cdot z_{-6} \\ z_{n_B--8} &= 0 \\ z_{n_B--7} &= 0 \\ z_{n_B--6} &= z_{-6} \cdot z_{0} + z_{-5} \cdot z_{-1} + z_{-4} \cdot z_{-2} + z_{-3} \cdot z_{-3} + z_{-2} \cdot z_{-4} + z_{-1} \cdot z_{-5} + z_{0} \cdot z_{-6} \\ &= \sum_{k=-6}^{0} z_{k} \cdot z_{-6-k} \\ z_{n_B--5} &= 0 \\ z_{n_B--4} &= 0 \end{aligned}$$

$$\begin{aligned} z_{n_B--12} &= z_{-6} \cdot z_{-6} \\ z_{n_B--11} &= 0 \\ z_{n_B--10} &= 0 \\ z_{n_B--9} &= z_{-6} \cdot z_{-3} + z_{-5} \cdot z_{-4} + z_{-4} \cdot z_{-5} + z_{-3} \cdot z_{-6} \\ z_{n_B--8} &= 0 \\ z_{n_B--7} &= 0 \\ z_{n_B--6} &= z_{-6} \cdot z_{0} + z_{-5} \cdot z_{-1} + z_{-4} \cdot z_{-2} + z_{-3} \cdot z_{-3} + z_{-2} \cdot z_{-4} + z_{-1} \cdot z_{-5} + z_{0} \cdot z_{-6} \\ &= \sum_{k=-6}^{0} z_{k} \cdot z_{-6-k} \\ z_{n_B--5} &= 0 \\ z_{n_B--4} &= 0 \end{aligned}$$

$$\begin{aligned} z_{n_B--12} &= z_{-6} \cdot z_{-6} \\ z_{n_B--11} &= 0 \\ z_{n_B--10} &= 0 \\ z_{n_B--9} &= z_{-6} \cdot z_{-3} + z_{-5} \cdot z_{-4} + z_{-4} \cdot z_{-5} + z_{-3} \cdot z_{-6} \\ z_{n_B--8} &= 0 \\ z_{n_B--7} &= 0 \\ z_{n_B--7} &= 0 \\ z_{n_B--6} &= z_{-6} \cdot z_{0} + z_{-5} \cdot z_{-1} + z_{-4} \cdot z_{-2} + z_{-3} \cdot z_{-3} + z_{-2} \cdot z_{-4} + z_{-1} \cdot z_{-5} + z_{0} \cdot z_{-6} \\ &= \sum_{k=-6}^{0} z_{k} \cdot z_{-6-k} \\ z_{n_B--5} &= 0 \\ z_{n_B--3} &= z_{-6} \cdot z_{+3} + z_{-5} \cdot z_{+2} + z_{-4} \cdot z_{+1} + z_{-3} \cdot z_{0} + z_{-2} \cdot z_{-1} + z_{-1} \cdot z_{-2} \\ &+ z_{0} \cdot z_{-3} + z_{+1} \cdot z_{-4} + z_{+2} \cdot z_{-5} + z_{+3} \cdot z_{-6} \\ &= \sum_{k=-6}^{+3} z_{k} \cdot z_{-6-k} \\ z_{n_B--5} &= 0 \\ z_{n_B--3} &= z_{-6} \cdot z_{+3} + z_{-5} \cdot z_{+2} + z_{-4} \cdot z_{+1} + z_{-3} \cdot z_{0} + z_{-2} \cdot z_{-1} + z_{-1} \cdot z_{-2} \\ &+ z_{0} \cdot z_{-3} + z_{+1} \cdot z_{-4} + z_{+2} \cdot z_{-5} + z_{+3} \cdot z_{-6} \\ &= \sum_{k=-6}^{+3} z_{k} \cdot z_{-3-k} \end{aligned}$$

$$\begin{aligned} z_{n_B-12} &= z_{-6} \cdot z_{-6} \\ z_{n_B-11} &= 0 \\ z_{n_B-10} &= 0 \\ z_{n_B-9} &= z_{-6} \cdot z_{-3} + z_{-5} \cdot z_{-4} + z_{-4} \cdot z_{-5} + z_{-3} \cdot z_{-6} \\ z_{n_B-8} &= 0 \\ z_{n_B-7} &= 0 \\ z_{n_B-6} &= z_{-6} \cdot z_0 + z_{-5} \cdot z_{-1} + z_{-4} \cdot z_{-2} + z_{-3} \cdot z_{-3} + z_{-2} \cdot z_{-4} + z_{-1} \cdot z_{-5} + z_0 \cdot z_{-6} \\ &= \sum_{k=-6}^{0} z_k \cdot z_{-6-k} \\ z_{n_B-4} &= 0 \\ z_{n_B-3} &= z_{-6} \cdot z_{+3} + z_{-5} \cdot z_{+2} + z_{-4} \cdot z_{+1} + z_{-3} \cdot z_0 + z_{-2} \cdot z_{-1} + z_{-1} \cdot z_{-2} \\ &+ z_0 \cdot z_{-3} + z_{+1} \cdot z_{-4} + z_{+2} \cdot z_{-5} + z_{+3} \cdot z_{-6} \\ &= \sum_{k=-6}^{+3} z_k \cdot z_{-3-k} \\ z_{n_B-2} &= 0 \\ z_{n_B-1} &= 0 \end{aligned}$$

$$\begin{aligned} z_{n_B-12} &= z_{-6} \cdot z_{-6} \\ z_{n_B-11} &= 0 \\ z_{n_B-10} &= 0 \\ z_{n_B-9} &= z_{-6} \cdot z_{-3} + z_{-5} \cdot z_{-4} + z_{-4} \cdot z_{-5} + z_{-3} \cdot z_{-6} \\ z_{n_B-8} &= 0 \\ z_{n_B-7} &= 0 \\ z_{n_B-6} &= z_{-6} \cdot z_0 + z_{-5} \cdot z_{-1} + z_{-4} \cdot z_{-2} + z_{-3} \cdot z_{-3} + z_{-2} \cdot z_{-4} + z_{-1} \cdot z_{-5} + z_0 \cdot z_{-6} \\ &= \sum_{k=-6}^{0} z_k \cdot z_{-6-k} \\ z_{n_B-4} &= 0 \\ z_{n_B-3} &= z_{-6} \cdot z_{+3} + z_{-5} \cdot z_{+2} + z_{-4} \cdot z_{+1} + z_{-3} \cdot z_0 + z_{-2} \cdot z_{-1} + z_{-1} \cdot z_{-2} \\ &+ z_0 \cdot z_{-3} + z_{+1} \cdot z_{-4} + z_{+2} \cdot z_{-5} + z_{+3} \cdot z_{-6} \\ &= \sum_{k=-6}^{+3} z_k \cdot z_{-3-k} \\ z_{n_B-1} &= 0 \\ z_{n_B-1} &= 0 \\ z_{n_B-0} &= \\ \end{aligned}$$

The heavy-dense strong coupling limit $\beta \rightarrow 0$

- In the strong coupling limit the global $\mathbb{Z}(N_c)$ -transformations are promoted to local ones:
 - define triality by the net number of P_{x̄} and P[†]_{x̄}
 - only contributions with triality-0 survive:

 $\begin{array}{ccc} 1 & \text{empty site} \\ \operatorname{Tr} P_{\overline{x}} \cdot \operatorname{Tr} P_{\overline{x}}^{\dagger} & \text{single meson} \\ \left(\operatorname{Tr} P_{\overline{x}} \cdot \operatorname{Tr} P_{\overline{x}}^{\dagger}\right)^2 & \text{two mesons} \\ \left(\operatorname{Tr} P_{\overline{x}}\right)^3 & \text{baryon} \\ \left(\operatorname{Tr} P_{\overline{x}}^{\dagger}\right)^3 & \text{antibaryon} \end{array}$

 baryonic contributions complex, but very small compared to rest The heavy-dense strong coupling limit $\beta \rightarrow 0$

 Partition function becomes a summation over all baryon configurations n_B(x̄) with (essentially) positive contributions:

$$Z_{C}(N_{B}) = (2\kappa)^{2N_{c}L_{t}L_{s}^{3}} \cdot \sum_{\{n_{B}\}, |n_{B}|=N_{B}} \int \mathcal{D}U \prod_{\bar{x}} \det \mathcal{M}_{n_{B}(\bar{x})}^{HDSS}[\operatorname{Tr} P_{\bar{x}}]$$

- + $\mathcal{D}U$ can of course be integrated analytically,
- but also possible to simulate by Monte Carlo

Sign problem is solved in the strong coupling limit!

The heavy-dense strong coupling limit $\beta \rightarrow 0$

• Baryon chemical potential as a function of baryon number:

The sign problem strikes back at $\beta > 0$

- Cf. e.g. canonical determinant for $n_f = 3$ quarks: $\det \mathcal{D}_{n_f=3}^{HD} / \Omega = h_3 \cdot \left(4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}} - 3 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} + 2L_s^3 \right)$ $+ h_1 \left(4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}}^{\dagger} \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}} + 2 \sum_{\bar{x}} (\operatorname{Tr} P_{\bar{x}})^2 \sum_{\bar{y}} \operatorname{Tr} P_{\bar{y}} + 4 \sum_{\bar{x}} \operatorname{Tr} P_{\bar{x}} \sum_{\bar{y} \neq \bar{x}} \operatorname{Tr} P_{\bar{y}} \sum_{\bar{z}} \operatorname{Tr} P_{\bar{z}} \right)$
 - describes the propagation of mesons and baryons
- Invariant under global $\mathbb{Z}(3)$ -transformations
- Suffers from a severe sign problem, unless
 - all $P_{\bar{x}}$ align \iff deconfined phase
 - global $\mathbb{Z}(3)$ is promoted to a local one \iff strong coupling

Possible solution for $\beta > 0$

- Use the 3-state Potts model in 3d as a proxy for the effective Polyakov loop action of heavy-dense QCD.
- Canonical partition function for N_Q quarks:

$$Z_{\mathsf{C}}(N_q) = \sum_{\{n\}, |n|=N_Q} \int \mathcal{D}z \, \exp(-S[z]) \cdot \prod_{x} f[z_x, n_x]$$

- Polyakov loops are represented by the Potts spins $z_x \in \mathbb{Z}(3)$
- standard nearest-neighbour interaction

$$S[z] = -\beta \sum_{\langle xy \rangle} \delta_{z_x, z_y}$$

- ▶ local quark occupation number $n_x \le n_x^{\text{max}}$ with $|n| = N_Q$
- use the simple local fermionic weights

$$f[z,n] = z^n$$

Canonical partition function

$$Z_{\mathsf{C}}(N_Q) = \sum_{\{n\}} \int \mathcal{D}z \exp(\beta \sum_{\langle xy \rangle} \delta_{z_x, z_y}) \prod_{x} z_x^{n_x}$$

- ► Action is manifestly complex ⇒ fermion sign problem!
- Global $\mathbb{Z}(3)$ symmetry ensures $Z_{\mathsf{C}}(N_Q \neq 0 \mod 3) = 0$:
 - projection onto integer baryon numbers
- In the limit $\beta \rightarrow 0$, the global $\mathbb{Z}(3)$ becomes a local one:
 - projection onto integer baryon numbers on single sites

$$n_x = 0 \mod 3 \pmod{\beta}$$

sign problem is absent

Canonical partition function

$$Z_{\mathsf{C}}(N_Q) = \sum_{\{n\}} \int \mathcal{D}z \exp(\beta \sum_{\langle xy \rangle} \delta_{z_x, z_y}) \prod_{x} z_x^{n_x}$$

- Action is manifestly complex ⇒ fermion sign problem!
- Global $\mathbb{Z}(3)$ symmetry ensures $Z_{\mathsf{C}}(N_Q \neq 0 \mod 3) = 0$:
 - projection onto integer baryon numbers
- At $\beta > 0$ sign problem can be solved using cluster algorithm:
 - only clusters with integer baryon number are nonzero
 ⇒ confinement
 - ▶ quarks can move freely within the cluster
 ⇒ deconfinement within cluster

Physics of the 3-state Potts model

• Phase diagram in the $(e^{\mu}, \gamma) \equiv (h, \kappa)$ -plane:

[Alford, Chandrasekharan, Cox and Wiese 2001]

• deconfinement phase transition at T = (0, 0.550565(10))

Physics of the 3-state Potts model

• Phase diagram in the $(e^{\mu}, \gamma) \equiv (h, \kappa)$ -plane:

[Alford, Chandrasekharan, Cox and Wiese 2001]

• line of first order phase transitions from T to E

Physics of the 3-state Potts model

• Phase diagram in the $(e^{\mu}, \gamma) \equiv (h, \kappa)$ -plane:

[Alford, Chandrasekharan, Cox and Wiese 2001]

ritical endpoint E = (0.000470(2), 0.549463(13))

• Canonical simulation results in the deconfined phase:

description in terms of a gas of (free) quarks

• Results from below the deconfinement transition:

transition from the confined into the deconfined phase

• Results from below the deconfinement transition:

typical signature of a 1st order phase transition

• Results from below the deconfinement transition:

• Maxwell construction yields critical μ_c

• Results from below the deconfinement transition:

• Maxwell construction yields critical μ_c

Results from below the critical endpoint:

crossover from the confined into the deconfined phase

• Results from below the critical endpoint:

crossover from the confined into the deconfined phase

(Anti)Quark-(anti)quark potentials at low temperature:

• confined phase: $\gamma = 0.3$ for $N_Q = 24$, $V = 16^3$, i.e. $\rho = 5.9 \cdot 10^{-3}$

(Anti)Quark-(anti)quark potentials at low temperature:

Summary and outlook

- Canonical QCD can be obtained from transfer matrices defined directly in the canonical sectors of QCD
- In the heavy-dense limit, the fermionic contributions to the canonical partition functions can be derived exactly
- The fermion sign problem is absent at $\beta \rightarrow 0$:
 - simulations in the heavy-dense limit are possible
- Sign problem solved by cluster algorithm for $\beta > 0$ in the Potts model:
 - quarks confined in clusters, but move freely within
 - at $\beta \rightarrow 0$ clusters are confined to single sites only
 - deconfinement ⇔ appearance of a percolating cluster

Summary and outlook

• The solution provides an appealing physical picture:

Good algorithms reflect true physics insight!

- quarks confined in clusters, but move freely within
- at $\gamma \rightarrow 0$ clusters are confined to single sites only
- deconfinement corresponds to appearance of a percolating cluster

- Extension to Polyakov loop models could be possible:
 - mechanism at work at $\beta = 0$
 - extend it to β > 0