New Frontiers in Theoretical Physics XXXV Convegno Nazionale di Fisica Teorica 19.05.16, Galileo Galilei Institute, Firenze

# The Critical Line of the QCD phase diagram from Lattice QCD

C. Bonati<sup>1</sup>, M. D'Elia<sup>1</sup>, M. Mariti<sup>1</sup>, M. Mesiti<sup>1</sup>, F. Negro<sup>1</sup> and F. Sanfilippo<sup>2</sup> (PRD90 114025, PRD92 054503)

Dipartimento di Fisica dell'Università di Pisa and INFN, Sezione di Pisa, Pisa, Italy
 School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom

## Outline

#### Introduction

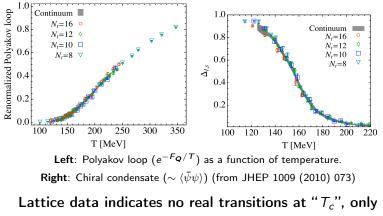
- The phase diagram for strongly interacting matter Theory: the chiral/deconfinement crossovers, Experiments: chemical freeze-out point
- Theory from first principles: Lattice QCD Basics,  $T \neq 0, \mu_{B} \neq 0 \rightarrow \dots$
- The sign problem and proposed solutions Taylor expansion, Reweighting, Analytic continuation (...)

Setup

- The critical line of QCD and Analytic continuation Basics,  $T \neq 0, \mu_B \neq 0 \rightarrow$  the sign problem!
- Renormalized observables and the definitions of  $T_c(\mu)$ Chiral condensate, renormalization (I) and (II), Chiral susceptibility
- Numerical setup Discretization used, Parameters, Statistics
- Numerical results
  - Results extrapolated to the continuum
  - Effects of  $\mu_{s} \neq 0$
- Conclusions

#### Strongly interacting matter at nonzero T...

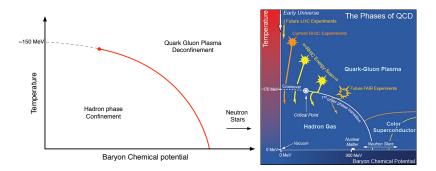
- Low temperature: Confinement, (spontaneous) chiral symmetry breaking
- High temperature: Deconfinement, chiral symmetry restoration



Crossovers (for physical values of the quark masses)

2/14

#### Conjectured Phase diagrams for QCD at finite density



Goal: Study  $T_c(\mu_B)$ , in physically relevant conditions (strangeness neutrality and Z/A = 0.4).

A Wick rotation + temporal periodic <sup>1</sup> boundary conditions allow us to study QCD at finite temperature:

$$t = -i\tau \Rightarrow \operatorname{Tr} e^{-iHt} = \operatorname{Tr} e^{-H\tau} = \operatorname{Tr} e^{-H/T} [\tau = 1/T]$$

Lattice discretization  $\Rightarrow$  Finite number of degrees of freedom  $\Rightarrow$  The functional integral become a *finite dimensional integral*, evaluable with Montecarlo and Importance Sampling methods if  $S_G[U]$  and det M are real:

$$Z = \int DU e^{-S_{\boldsymbol{c}}[U]} \prod_{f} \det M_{f}[\mu_{f}, U]$$

Various possible choices for the discretized action, for both  $S_{G}$  and  $M_{f}$ 

Unfortunately, in the presence of a *real* nonzero chemical potential, det  $M_f$  is complex.  $\Rightarrow$  Importance sampling methods don't work in this situation

<sup>&</sup>lt;sup>1</sup>Antiperiodic for Fermion fields

Applied to the theory at the physical point:

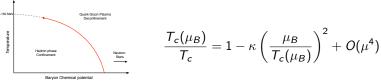
- Analytic Continuation from imaginary  $\mu$  [Our Choice]
- Taylor expansion from  $\mu = 0$  [precision issues with higher order derivatives on the lattice, due to lack of self-averaging]

Other methods:

- Reweighting from the  $\mu = 0$  ensemble [scales badly with volume]
- Canonical method [the sign problem is back in a different form]
- Strong coupling methods + Reweighting
- Complex Langevin
- Lefschetz Thimbles
- Density of States methods
- Dual formulations

## The pseudocritical line and analytic continuation

At lowest order in  $\mu$ , the pseudocritical line can be parametrized as:



(odd order terms are forbidden by charge conjugation symmetry of QCD)

#### The sign problem and analytic continuation

For purely imaginary  $\mu$ , the fermion determinant is real positive, and the sign problem is non existent.

With the transformation  $\mu_B = i\mu_{B,l}$ , the pseudocritical line parametrization is modified as follows:

$$\frac{T_c(\mu_{B,I})}{T_c} = 1 + \kappa \left(\frac{\mu_{B,I}}{T_c(\mu_{B,I})}\right)^2 + O(\mu_{B,I}^4)$$

# Observables: chiral condensate and chiral susceptibility

Light chiral condensate - Definition:

$$\langle \bar{\psi}\psi\rangle_{ud} = \frac{T}{V}\frac{\partial \log Z}{\partial m_{ud}} = 2\frac{T}{V}\langle \mathrm{Tr}M_{I}^{-1}\rangle = \langle \bar{u}u\rangle + \langle \bar{d}d\rangle$$

Two possible renormalizations:

As in [Cheng et al., 08] :

$$\langle \bar{\psi}\psi \rangle_{(1)} \equiv \frac{\langle \bar{\psi}\psi \rangle_{ud}(T) - \frac{2m_{ud}}{m_s} \langle \bar{s}s \rangle(T)}{\langle \bar{\psi}\psi \rangle_{ud}(0) - \frac{2m_{ud}}{m_s} \langle \bar{s}s \rangle(0)}$$

$$\langle \bar{\psi}\psi \rangle_{(2)}^{r} \equiv (-)\frac{m_{ud}}{m_{\pi}^{4}} \left( \langle \bar{\psi}\psi \rangle_{ud} - \langle \bar{\psi}\psi \rangle_{ud} (T=0) \right)$$

[to make a more significant comparison]

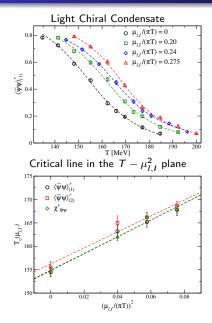
#### Light chiral susceptibility - Definition:

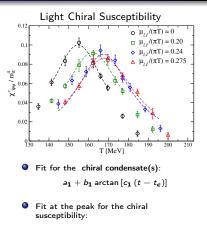
$$\chi_{\bar{\psi}\psi} \equiv \frac{\partial \langle \bar{\psi}\psi \rangle_{ud}}{\partial m_l}$$

We have chosen this renormalization [Y.Aoki et al., 06]:

$$\chi^{r}_{ar{\psi}\psi}(T)\equiv m^{2}_{ud}\left[\chi_{ar{\psi}\psi}(T)-\chi_{ar{\psi}\psi}(0)
ight]$$

#### Defining $T_c$ and $\kappa$ using computed observables - Our method





$$\chi^{r}_{\bar{\psi}\psi}(T)/m^{4}_{\pi} = \frac{A_{2}}{(T-T_{c})^{2}+B^{2}_{2}}$$

Fit for the critical line:

$$\frac{T_{c}(\mu_{B,I})}{T_{c}} = 1 + \kappa \left(\frac{\mu_{B,I}}{T_{c}(\mu_{B,I})}\right)^{2}$$

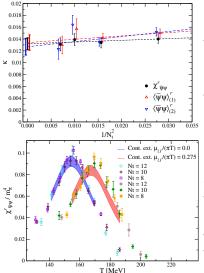
#### Numerical setup

- At the physical point (line of constant physics, parameters taken from [Aoki *et al.*, 09] )  $N_t = 6, 8, 10, 12$  lattices.
- Study of the  $\mu_s = \mu_I \neq 0$  (32<sup>3</sup>x8 only) and  $\mu_s = 0$  cases.
- Tree level Symanzik improved gauge action with  $N_f = 2 + 1$  flavours of twice-stouted staggered fermions.
- Used lattices with aspect ratio = 4
- Also performed simulations at zero temperature for subtractions (32<sup>4</sup>,48<sup>3</sup>×96).
- Observables evaluated with noisy estimators, with 8 random vectors per quark.

Simulations run on IBM BG-Q at CINECA (Bologna, Italy) and on the Zefiro Cluster (INFN - Pisa).

| Lattice        | $16^3 	imes 6$       | 24 <sup>3</sup> × 6 | 32 <sup>3</sup> × 6 |
|----------------|----------------------|---------------------|---------------------|
| $i\mu/(\pi T)$ | 0.00 0.20 0.24 0.275 | 0.00 0.24 0.275     | 0.00 0.24 0.275     |
| Lattice        | 32 <sup>3</sup> × 8  | $40^3 	imes 10$     | $48^3 	imes 12$     |
| $i\mu/(\pi T)$ | 0.00 0.10 0.15       | 0.00 0.20           | 0.00 0.20           |
|                | 0.20 0.24 0.275 0.30 | 0.24 0.275          | 0.24 0.275          |

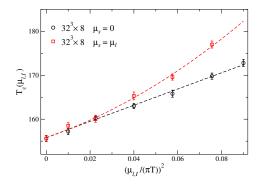
### Critical line and continuum Limit of $\kappa$



**First method:** We evaluated the curvature  $\kappa$  for each  $N_t$  (6,8,10,12) and then performed the continuum limit extrapolation on  $\kappa$  itself, assuming finite lattice spacing corrections are of the form  $const/N_t^2$ .

**Second method:** We extrapolated the values of the observables to the continuum limit (taking data from  $N_t = 8,10,12$ ), obtaining  $\lim_{a\to 0} T_c(\mu_B)$ . We then obtained  $\kappa$  by fitting  $T_c(\mu_B)$  data.

# Effects of a nonzero strange quark chemical potential $\mu_{\rm S}$ $_{\rm 32^3 \times 8 \ Lattice}$



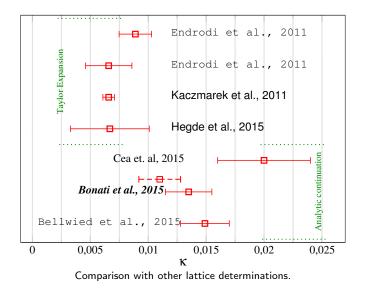
Critical line in the Temperature/Imaginary Baryon chemical potential plane, from the renormalized chiral susceptibility [Bonati *et al.*, 15] In Heavy Ion Collisions: Z/A = 0.4, S = 0.

This entails  $\mu_u \simeq \mu_d = \mu_l$ , and (due to interactions)  $\mu_s \simeq$  $0.25\mu_l$  (for  $T = T_c$ ). [Bazavov et al., 14] [Borsanyi et al.,13] [Bellwied et al.,15]

We **mainly** studied  $\mu_s = 0$ , and checked the setup  $\mu_s = \mu_I$ 

**Result**:  $\kappa$  estimated in the two setups are compatible, IF a quartic term is included (or if the fit range is reduced)

### Comparison with other determinations



- We located the critical line *T<sub>c</sub>*(μ<sub>1,B</sub>) with a fitting procedure using chiral observables, and obtained an estimate for its curvature at μ<sub>B</sub> = 0
- We performed an extensive check to compare our determinations with the ones of other groups.
- We investigated the effects of including a nonzero strange quark potential ( $\mu_s = \mu_I = \mu$ ). We have confirmed the presence of a quartic contribution. Considering such contribution, the curvature of the critical line for  $\mu_s = \mu_I$  or  $\mu_s = 0$  is compatible within errors.
- We performed a continuum scaling analysis in two ways, directly on  $\kappa$  and on the observables. The resulting estimates of  $\kappa$  are in agreement. Our estimate is  $\kappa = 0.0135(20)$ .



## Chemical potential and sign problem

In the **continuum theory**, a chemical potential coupled with quark number can be introduced:

$$\mu_f N_f = \mu_f \int d^3 x \; \bar{\psi}_f \gamma_0 \psi_f$$

**On the lattice**, the quark chemical potential associated to the flavour f is introduced by multiplying the gauge links in the fermion matrix  $M_f[U]$  in the temporal direction by  $e^{-a\mu_f}$ .

Unfortunately, this causes the so called sign problem. When  $\mu_f = 0$ ,

$$\left( {\not\!\!D} + m 
ight)^\dagger = \gamma_5 \left( {\not\!\!D} + m 
ight) \gamma_5 \ 
ightarrow {
m det} \left( {\not\!\!D} + m 
ight) \in \mathbb{R}$$

When  $\mu_f \neq 0$  this is not true any more:

$$\gamma_{5}\left(\not D+m-\gamma_{0}\mu\right)\gamma_{5}=\left(-\not D+m+\gamma_{0}\mu\right)=\left(\not D+m+\gamma_{0}\mu^{*}\right)^{\dagger}$$

#### $\Rightarrow$ The fermion determinant is complex!<sup>2</sup>

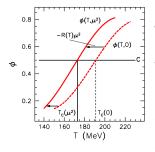
<sup>2</sup>Notice that this is not the case if  $\Re \mu = 0$ 

Path Integral formulation:  $Z = \int DAD\bar{\psi}D\psi e^{-i\int d^{4}\times \mathcal{L}[A,\bar{\psi},\psi]}$   $D_{\mu} = \partial_{\mu} - ig\hat{A}_{\mu}, \ (\hat{F}_{\mu\nu} = [D_{\mu}, D_{\nu}])$  $\mathcal{L} = -\frac{1}{2g^{2}} \operatorname{Tr}\left\{\hat{F}_{\mu\nu}\hat{F}^{\mu\nu}\right\} + \sum_{f} \bar{\psi}_{f} \left(i\gamma^{\mu}D_{\mu} - m_{f}\right)\psi_{f}$ 

**Chiral Symmetry:** In the vanishing mass limit the Lagrangian is invariant under the transformations

$$\psi_L' = U\psi_L, \ \psi_R' = U^{\dagger}\psi_R$$

Where  $\psi_L$  and  $\psi_R$  represent the left- and right-handed parts of all the spinors, and U is a  $SU(N_f)$  matrix which mix different flavours. The light quark condensate  $\langle \bar{u}u + \bar{d}d \rangle$  is an order parameter for chiral symmetry breaking.



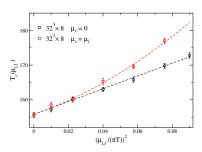
In order to better compare our results with those of [Endrodi *et al.*, 11] (same lattice action, but using the Taylor expansion method), we have located  $T_c(\mu_B)$  using the chiral condensate (II), using the following equation

$$\langle \bar{\psi}\psi\rangle_{(2)}^{r}(T_{c}(\mu_{B}),\mu_{B}) = \langle \bar{\psi}\psi\rangle_{(2)}^{r}(T_{c}(0),0)$$

Our result for the curvature using this method is  $\kappa=0.0110(18),$  to be compared with  $\kappa=0.0066(20)$  .

Figure from [Endrodi *et al.*, 11 ] Taylor expansion:

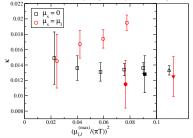
$$\frac{\partial T_{\boldsymbol{c}}}{\partial \mu^2} = - \left. \frac{\partial^2 \langle \bar{\psi}\psi \rangle_{(2)}^{\boldsymbol{c}}}{\partial \mu^2} \right|_{\boldsymbol{T}=T_{\boldsymbol{c}},\mu=0} \left( \frac{\partial \langle \bar{\psi}\psi \rangle_{(2)}^{\boldsymbol{c}}}{\partial \boldsymbol{T}} \right)^{-1} \right|_{\boldsymbol{T}=T_{\boldsymbol{c}},\mu=0} \tag{1}$$



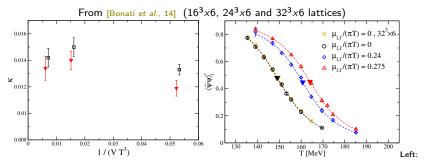
(Renormalized chiral susceptibility)

(From [Bonati et al., 15])

Results for  $\kappa$  varying the  $\mu$  fit range:



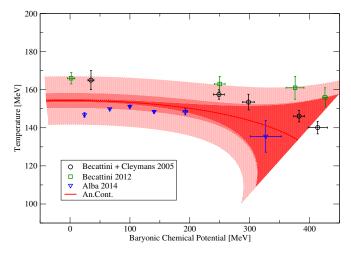
Empty Red:  $\kappa$ , linear fit ( $\mu_{s} = \mu_{I}$  data) Full Red:  $\kappa$ , lin+quad fit ( $\mu_{s} = \mu_{I}$ ) Empty Black:  $\kappa$ , linear fit ( $\mu_{s} = 0$ ) Empty Black:  $\kappa$ , lin+quad fit ( $\mu_{s} = 0$ ) Right:  $\kappa$  from combined (lin+quad) fit



Estimates of  $\kappa$ . Black : Renormalized Chiral Condensate (1), Red : Renormalized Chiral Susceptibility ; Right: The chiral condensate on the 24<sup>3</sup> × 6 lattice, with the data for  $\mu_I = 0$  on the 32<sup>3</sup> × 6 lattice

#### $\Rightarrow$ Aspect ratio 4 is enough.

#### Tentative extrapolation at real $\mu_b$



Tentative continuation to real chemical potential, and comparison to the experimental data from chemical freezeout. Note: some assumptions about the higher orders in  $\mu_B$  have been made.

For the renormalized chiral condensates, we used the formula

$$\langle \bar{\psi}\psi \rangle^{r}(T) = A_{1} + B_{1} \arctan \left[C_{1} \left(T - T_{c}\right)\right]$$

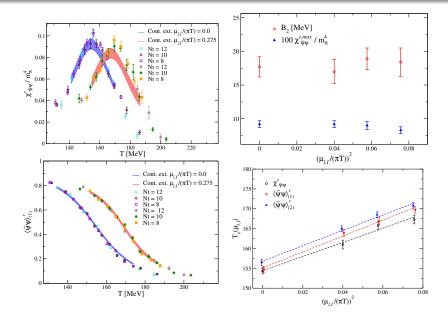
to fit the data from all values of  $N_t$  simultaneously. We added a  $N_t$  dependency to  $T_c$  ( $T_c(N_t) = T_c(N_t = \infty) + const./N_t^2$ ) and a similar one to  $C_1$ .

• For the renormalized chiral susceptibility, we used the formula

$$\chi^{r}_{\bar{\psi}\psi}(T) = rac{A_2}{(T-T_c)^2 + B_2^2}$$

where we added a dependency on  $N_t$  similar to  $T_c(N_t) = T_c(N_t = \infty) + const./N_t^2$  for all parameters.

### Continuum limit of Observables



1st method (continuum limit of<br/> $\kappa$ ):2nd method (continuum limit of<br/>observables):

| $\kappa_{ar{\psi}\psi,1}$ | = | 0.0134(13) | $\kappa_{ar{\psi}\psi,1}$ | = | 0.0145(11) |
|---------------------------|---|------------|---------------------------|---|------------|
| $\kappa_{ar{\psi}\psi,2}$ | = | 0.0127(14) | $\kappa_{ar{\psi}\psi,2}$ | = | 0.0138(10) |
| $\kappa_{\chi}$           | = | 0.0132(10) | $\kappa_{\chi}$           | = | 0.0131(12) |

Values of  $T_c$  obtained with the continuum limit of the observables, fit with the form  $T_c(\mu_{B,I})/T_c = 1 + \kappa [\mu_{B,I}/\pi T_c(\mu_{B,I})]^2$ .