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Inclusion of nucleons in manifestly Lorentz invariant chiral EFT
proved to be complicated due to the non-vanishing nucleon mass in
chiral limit:

J. Gasser, M. E. Sainio and A. Svarc, Nucl. Phys. B 307, 779 (1988).

Encountered problem of power counting (PC) has been resolved by
applying the heavy baryon approach

E. Jenkins and A. V. Manohar, Phys. Lett. B 255, 558 (1991); 259,
353 (1991).
V. Bernard, N. Kaiser, J. Kambor, and U.-G. Meißner, Nucl. Phys.
B388, 315 (1992).



Later it has been realised that PC can be respected within the
original manifestly Lorentz invariant formulation.

H. Tang, hep-ph/9607436.
P. J. Ellis and H. B. Tang, Phys. Rev. C 57, 3356 (1998).
T. Becher and H. Leutwyler, Eur. Phys. J. C 9, 643 (1999).
J. Gegelia and G. Japaridze, Phys. Rev. D 60, 114038 (1999).
T. Fuchs, J. Gegelia, G. Japaridze and S. Scherer, Phys. Rev. D 68,
056005 (2003).

PC violating parts of loop diagrams are analytic and can be
subtracted by renormalizing the parameters of the Lagrangian.



Here we present an extension of applicability of BChPT beyond the
low-energy region for small scattering angles.

This is achieved by:

I Re-arranging the chirally invariant terms of the standard
low-energy effective Lagrangian

I Introducing a generalization of the extended on-mass-shell
(EOMS) scheme.



In particular:

I Re-arranging terms in the standard effective Lagrangian we
obtain an EFT with well-defined PC for tree diagrams in the
vicinity of a new expansion point.

I PC violating pieces of loop diagrams are absorbed in the
redefinition of parameters of the re-arranged Lagrangian.

I As the subtractions are made above the threshold, the
renormalized parameters become complex:

I The applied renormalization scheme belongs to the class of
complex mass schemes (CMS) first considered in
R. G. Stuart, in Z0 Physics, ed. J. Tran Thanh Van (Editions
Frontieres, Gif-sur-Yvette, 1990), p.41.)
A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Nucl. Phys.
B560, 33 (1999).



Consider πa(q)N(p)→ πa′
(q′)N(p′) assuming exact

isospin-symmetry.

Standard parametrization of the pion-nucleon scattering amplitude:

Taa′ = δaa′T+ +
1
2

[τa, τa′ ] T−,

T± = ū(p′, σ′)
[
D±(t , ν)− 1

4mN
[q′/,q/ ]B±(t , ν)

]
u(p, σ).



It is convenient to present D and B as functions of t and ν = s−u
4mN

.

X ∈ {D+, D−/ν, B+/ν, B−} are even functions of ν.

The difference between the full amplitude and the pseudovector
Born term can be expanded around ν = t = 0

X (ν, t) = Xpv (ν, t) + x00 + x10ν
2 + x01t + x20ν

4 + x11ν
2t + x02t2 + · · · ,

where Xpv (ν, t) are the pseudovector Born terms.

Spontaneously broken chiral symmetry predicts that d+
00 = 0 and

d−00 = 1/(2F 2) in chiral limit.

G. Höhler, in: H. Schopper (Ed.), Landolt-Börnstein, Vol. 9b2,
Springer, Berlin, 1983.
T. Becher and H. Leutwyler, JHEP 0106, 017 (2001).



Non-Born tree order contributions of the effective Lagrangian can be
parameterized as

D+ = d+
0 (t ,M) + d+

2 (t ,M)ν2 + d+
4 (t ,M)ν4 + · · · ,

D− = d−1 (t ,M)ν + d−3 (t ,M)ν3 + · · · ,
B+ = b+

1 (t ,M)ν + b+
3 (t ,M)ν3 + · · · ,

B− = b−0 (t ,M) + b−2 (t ,M)ν2 + · · · ,
(1)

where d±j (t ,M) and b±j (t ,M) are Taylor series of t and M.
Coefficients of these series also contain ln M.

In threshold region amplitudes are organized according to a PC
assigning various orders of q to contributions of various diagrams.



To consider the tree-order amplitudes beyond the threshold region
we expand the amplitudes at ν2 = µ2

0 ∼ q0 as follows

D+ = d̃+
0 (t ,M) + ν2

[
d̃+

2 (t ,M) + d̃+
4 (t ,M)(ν2 − µ2

0) + · · ·
]
,

D− = d−1 (t ,M)ν + ν3
[
d̃−3 (t ,M) + d̃−5 (t ,M)(ν2 − µ2

0) + · · ·
]
,

B+ = ν
[
b̃+

1 (t ,M) + b+
3 (t ,M)(ν2 − µ2

0) + · · ·
]
,

B− = b̃−0 (t ,M) + b̃−2 (t ,M)(ν2 − µ2
0) + · · · .

These power series are generated by an effective Lagrangian with
the same structures as in the standard effective Lagrangian,
however the terms re-arranged according to new PC rules.



New PC (Q as a small parameter):

t counts as of order Q2,
M and ν2 − µ2

0 count as of order Q1.

Terms of the effective Lagrangian, which generate contributions of
order QN at tree level count as of order QN .

The Lagrangian contains a finite number of chirally invariant
structures at any finite order.

Resonances have to be included explicitly.



Tree-order O(q4) amplitudes generated by OPI diagrams:

D+
tree =

16 c2 m2
N ν

2

8F 2m2 − 4 c1M2

F 2 +
c3(2M2

π − t)
F 2 +

16 e16 ν
4

F 2

+
8e15(2M2

π − t)ν2

F 2 +
16m2

N M2ν2(e20 + e35)

F 2m2 − c2 t2

8F 2m2

+
8M4

F 2 (e22 − 4e38) +
4M2ex (2M2

π − t)
F 2 +

4e14(2M2
π − t)2

F 2 ,

D−tree =
ν

2F 2 +
4d3ν

3

F 2 +
2ν
[
2M2

π(2d5 + d1 + d2)− (d1 + d2)t
]

F 2 ,

B+
tree =

4 (d14 − d15) mN ν

F 2 ,

B−tree =
1

2F 2 +
2c4mN

F 2 +
16 mN e18ν

2

F 2 − 8 mN e17 t
F 2

+
8 mN [M2(2e21 − e37) + 2M2

πe17]

F 2 .

ex = 2e19 − e22 − e36 and ci , di and ei are LECs.



Re-arranged tree-order amplitudes:

D+
tree =

16 c̃2 ν
2

8F 2 +
16 ẽ16 ν

2(ν2 − µ2
0)

8F 2 +
8ẽ15(2M2 − t)(ν2 − µ2

0)

F 2 + · · · ,

D−tree =
ν

2F 2 +
4d̃3ν

3

F 2 +
2ν
[
2M2(2d̃5 + d̃1 + d̃2)− (d̃1 + d̃2)t

]
F 2 + · · · ,

B+
tree =

4
(

d̃14 − d̃15

)
m ν

F 2 + · · · ,

B−tree =
1

2F 2 +
2c̃4mN

F 2 +
16 mN ẽ18(ν2 − µ2

0)

F 2 + · · · . (2)



New constants c̃i , d̃i and ẽi depend on µ0 and they are related to the
original low-energy constants:

c2 −∆c2 = c̃2 + ẽ16µ
2
0 + · · · ,

c3 −∆c3 = c̃3 + 8 ẽ15µ
2
0 + · · · ,

c4 −∆c4 = c̃4 + 8 ẽ18µ
2
0 + · · · ,

· · · ,

where ∆ci are the contributions of resonances which need to be
included dynamically in extended effective theory and the dots stand
for terms with increasing powers of µ0.



LO re-arranged effective Lagrangian:

L̃(0)πN = Ψ̄ (iγµDµ −m) Ψ− c̃2

4m2 〈uµuν〉 Ψ̄ (DµDν + h.c.) Ψ

+
d̃3

12m3 Ψ̄
{

[uµ, [Dν ,uλ]]
(

DµDνDλ + sym.
)

+ h.c.
}

Ψ,

where Ψ denotes the nucleon field, m0 stands for the bare mass of
the nucleon, DµΨ = (∂µ + Γµ)Ψ is the covariant derivative and

u2 = U, uµ = iu†∂µUu†, Γµ =
1
2

[u†, ∂µu],

where U is a (2× 2) matrix of the Goldstone boson fields.



One of the NLO terms of the re-arranged effective Lagrangian

L̃(1)πN =
ẽ16

48m4

{
ψ̄
[
〈hλµhνρ〉Dλµνρ + h.c.

]
ψ

+ 12 m2µ2
0〈uµuν〉ψ̄ (DµDν + h.c.)ψ

}
.



For loop diagrams we use the EOMS scheme with sliding scale.

PC is also applicable to renormalised loop diagrams.

It is convenient to consider rest frame of the initial nucleon.

In this frame the three-momenta of external nucleons are small;

The four-momenta of external pions are large;

The four-momentum of the loop-integration is considered small so
that a loop integration in n dimensions counts as of order Qn.

Pion and fermion propagators and vertices count variously
depending on the momenta flowing through them.



Let us demonstrate on a simple loop integral:

B0(p2,M2,m2) =
(2π)4−n

i π2

∫
dnk[

k2 −M2 + iδ
] [

(p + k)2 −m2 + iδ
] ,

We assign order O(Q2) to B0(p2,M2,m2) for p2 −m2 � M2.

By direct expansion we obtain the following subtraction terms:

BST
0 = −32π2λ̄− 2 ln

m
µd

+ 1 +

(
m2 − µ2) [ln( µ2

m2 − 1
)
− iπ

]
µ2

+

(
µ2 − p2) [m2 ln

(
µ2

m2 − 1
)
− iπm2 + µ2

]
µ4 .

It can be easily seen by expanding in M and p2 − µ2 that the
subtracted integral BR

0 is indeed of order O(Q2).



Pion-nucleon scattering at leading one-loop order

Consider one-loop diagrams contributing to pion-nucleon scattering
in a simplified model of EFT by taking gA = 0.

Diagrams contributing to πN scattering at O(Q2). The crossed
diagram is not shown.

a) b) c)

d) e) f)



Subtraction terms of loop diagrams are canceled by counter terms
generated by the re-arranged effective Lagrangian.

A bare coupling expressed in terms of renormalized ones:

c̃4 = c̃R
4

+
1

64π2F 2
(
m3 − 4mµ2

){mµ2
[

(m + 2µ)B0

(
m(m − 2µ),0,m2

)
+ (m − 2µ)B0

(
m(m + 2µ),0,m2

)]
+
(

2µ2 −m2
)

A0

(
m2
)}

.

Note that B0(x2,0,m2) has an imaginary part for x2 > m2 and
therefore the renormalized couplings are complex.



Summary

I We generalized BChPT to energies beyond the low-energy
threshold region and small scattering angles.

I The new chirally invariant re-arranged effective Lagrangian
contains a finite number of terms at any finite order.

I Resonances need to be included explicitly.
I For loop diagrams we apply EOMS scheme with sliding scale.
I Within this scheme we shift the renormalization point in the

physical region beyond the threshold.
I Thus the renormalized coupling constants of the re-arranged

effective Lagrangian become complex.

I Pion photo and electro-production processes as well as the
Compton scattering can be treated analogously to πN → πN .



Backup slides



CMS and unitarity
Unitarity is guaranteed by the Hermitian bare Lagrangian and the
fact that the renormalization is an identical transformation.

Still, order-by-order unitarity within the CMS is a non-trivial issue. It
has been probed in
T. Bauer, J. Gegelia, G. Japaridze and S. Scherer, “CMS and
perturbative unitarity,” Int. J. Mod. Phys. A 27, 1250178 (2012)
and thoroughly investigated recently in
A. Denner and J. N. Lang, “The CMS and Unitarity in perturbative
Quantum Field Theory,” arXiv:1406.6280 [hep-ph].



An intuitive demonstrating argument:

Consider the scalar φ4 theory in 4 dimensions.
The Lagrangian depends on the bare mass m0 and the bare
coupling λ0.
Using dimensional regularization and the MS scheme we get rid off
divergences and express physical quantities in terms of parameters
of the MS scheme mMS and λMS as power series of the
renormalized coupling constant

Mi = Fi(mMS(µ), λMS(µ),p, µ),

where p stands for kinematical variables and µ is the
renormalization scale.
Physical amplitudes are unitary up to the given order of accuracy.



We can switching to another renormalization.
For example, we calculate the pole mass of the scalar particle and
the two-particle scattering amplitude M(s, t ,u) at symmetric
non-physical kinematical point

m = φ1(mMS(µ), λMS(µ),p, µ),

λ(ν) = M(−ν2/3,−ν2/3,−ν2/3) = φ2(mMS(µ), λMS(µ), ν, µ),

express mMS(µ) and λMS(µ) in terms of m and λ(ν) and substitute
in Mi . This way we obtain

Mi = F̃i(m, λ(ν),p, ν),

Where F̃i are some functions (different from Fi ).
By doing this identical transformation one does not violate the
unitarity.



Although convenient, it is not necessary to choose the new
renormalized coupling at non-physical kinematical point.
Taking e.g.

m = φ1(mMS(µ), λMS(µ),p, µ),

λC(ν) = M(2m2 + ν2,0,2m2 − ν2) = φ3(mMS(µ), λMS(µ), ν, µ),

expressing mMS(µ) and λMS(µ) in terms of m and λC(ν) and
substituting in Mi we obtain

Mi = F̄i(m, λC(ν),p, ν),

with F̄i some functions (different from F̃i and Fi ). Once more, by
doing this identical transformation one does not violate the unitarity.
However, as the unitarity condition is only satisfied up to higher
orders of perturbation theory, the relevant issue is of course the
convergence of the obtained perturbative series.



Expansion of BR
0 in M and p2 − µ2:

BR
0 =

(
p2 − µ2)2

2µ6
(
µ2 −m2

)[2iπm4 − 2i(π − i)m2µ2

− 2
(

m4 −m2µ2
)

ln
(
µ2

m2 − 1
)

+ µ4
]

−
M2
[(

m2 + µ2) ln
(

µ2

m2 − 1
)
− iπm2 − 2µ2 ln M

m − iπµ2 + µ2
]

µ2
(
m2 − µ2

)
+ O(Q3).



”... quantum field theory itself has no content beyond analyticity,
unitarity, cluster decomposition, and symmetry.”
S. Weinberg, Physica A 96, 327 (1979).
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