The Emergence of String Theory from the Dual Resonance Model

Peter Goddard

Institute for Advanced Study, Princeton

50 years of the Veneziano Model

Galileo Galilei Institute, Florence,
11 May 2018

General Overview

- The factorization of the N-point Veneziano amplitude defined the spectrum of excited states of the corresponding DRM.
- These states could be described within the space of states of a quantized vibrating material string.
- This suggested that the DRM should be pictured as describing rubber bands, threads or strings.
- This material string description was a metaphor rather than a detailed analogy, because the energy (rest mass) of the excited states of such a material string are equally spaced, while the squared masses of the states in the DRM have equal spacing.

General Overview

- As a result, the string interpretation of the DRM initially had little impact on the development of the theory.
- Once the subtleties of the states of the DRM had been understood, the geometric action principle of Nambu and Goto, was shown to lead to a quantum theory that describes precisely the DRM's physical states and dynamics, including interactions.
- Then the conceptualization of the DRM as string theory gained acceptance.

A Quite Simple Expression

Veneziano

$$
\begin{gathered}
A(s, t)=\frac{\Gamma(-\alpha(s)) \Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))}=\int_{0}^{1} x^{-\alpha(s)-1}(1-x)^{-\alpha(t)-1} d x \\
\alpha(s)=\alpha_{0}+\alpha^{\prime} s, \quad s=-\left(p_{1}+p_{2}\right)^{2}, \quad t=-\left(p_{2}+p_{3}\right)^{2}
\end{gathered}
$$

Koba-Nielsen

$$
x \cdot y \equiv x^{\mu} \eta_{\mu \nu} y^{\nu}=-x^{0} y^{0}+x^{j} y^{j}
$$

$$
\begin{gathered}
A_{N}=\int \prod_{1 \leq i<j \leq N}\left(z_{i}-z_{j}\right)^{p_{i} \cdot p_{j}} \prod_{i=1}^{N}\left(z_{i}-z_{i+1}\right)^{\alpha_{0}-1} d z_{i} / d \omega \\
d \omega=\frac{d z_{a} d z_{b} d z_{c}}{\left(z_{a}-z_{b}\right)\left(z_{a}-z_{c}\right)\left(z_{b}-z_{c}\right)}, \quad z_{i} \mapsto \frac{a z_{i}+b}{c z_{i}+d}
\end{gathered}
$$

Factorization

$$
A_{N}=\int \prod_{1 \leq i<j \leq N}\left(z_{i}-z_{j}\right)^{p_{i} \cdot p_{j}} \prod_{i=1}^{N}\left(z_{i}-z_{i+1}\right)^{\alpha_{0}-1} d z_{i} / d \omega
$$

$$
\left[a_{m}^{\mu}, a_{n}^{\nu}\right]=m \eta^{\mu \nu} \delta_{m,-n} ; \quad a_{n}^{\mu \dagger}=a_{-n}^{\mu} ; \quad a_{n}^{\mu}|0\rangle=0, \quad \text { for } n>0
$$

$$
Q^{\mu}(z)=q^{\mu}-i p^{\mu} \log z+i \sum_{n \neq 0} \frac{1}{n} a_{n}^{\mu} z^{-n}
$$

$$
V(k, z)=: \exp \{i k \cdot Q(z)\}:
$$

$$
=e^{i k \cdot q} \exp \left\{-k \cdot \sum_{n<0} \frac{1}{n} a_{n}^{\mu} z^{-n}\right\} \exp \left\{-k \cdot \sum_{n>0} \frac{1}{n} a_{n}^{\mu} z^{-n}\right\} z^{k \cdot p} .
$$

$$
\langle 0| V\left(k_{1}, z_{1}\right) V\left(k_{2}, z_{2}\right) \ldots V\left(k_{N}, z_{N}\right)|0\rangle=\prod_{1 \leq i<j \leq N}\left(z_{i}-z_{j}\right)^{k_{i} \cdot k_{j}}
$$

$$
\left[a_{m}^{\mu}, a_{n}^{\nu}\right]=m \eta^{\mu \nu} \delta_{m,-n} ; \quad a_{n}^{\mu \dagger}=a_{-n}^{\mu} ; \quad a_{n}^{\mu}|0\rangle=0, \quad \text { for } n>0,
$$

$$
R|\psi\rangle=l|\psi\rangle, \quad \text { where } \quad R=\sum_{n>0} a_{-n} \cdot a_{n}
$$

$$
\frac{1}{2} p^{2}+R=\alpha_{0}, \quad M_{l}^{2}=-p^{2}
$$

$$
M_{l}=\sqrt{2\left(l-\alpha_{0}\right)}
$$

A_{N} has poles evenly spaced in s i.e. $M_{l}^{2}=2\left(l-\alpha_{0}\right)$ rest energy levels spaced like $\sqrt{l-\alpha_{0}}$.
Simple Harmonic Oscillator energy levels evenly spaced in l.

Metaphors and Analogies

Nambu, Wayne Univ. Conf., 18-20 June 1969

ing amplitude seems to be free of ghosts. ${ }^{8}$ But the general answer to this question is not known yet.
The appearance of harmonic oscillators in our problem is intriguing since the simple bound-state picture of quarks with a harmonic oscillator potential would naturally give rise to linear trajectories and the $U(3,1)$ level scheme. We can bring out this analogy more clearly in the following way. Let us introduce a Bose field $\phi_{a}(\xi)$ and its canonical conjugate $\pi_{\alpha}(\xi)$, which are even and periodic with periodicity 2π in ξ. In analogy to the ordinary field theory, we decompose it into plane waves:

$$
\begin{align*}
& \phi_{\mathrm{a}}(\xi)=\sum_{r=1}^{\infty} \frac{1}{\sqrt{2 r}}\left(a_{\alpha}^{(r)}+a_{\alpha}^{+(r)}\right) \cos r \xi \\
& \pi_{\mathrm{a}}(\xi)=\sum_{r=1}^{\infty} i \sqrt{\frac{r}{2}}\left(a_{\alpha}^{(r)}-a_{\alpha}^{+(r)}\right) \cos r \xi \tag{16}
\end{align*}
$$

where we have excluded the constant mode $r=0$. The a 's and a^{+}'s are the operators we have defined above. In view of Eq. (13), the quantum number N which determines the resonance energy can be written

$$
\begin{align*}
N & =-\sum_{r} r a^{+(r)} \cdot a^{(r)} \\
& =\frac{-1}{\pi} \int_{0}^{2 \pi}:\left(\partial_{\xi} \phi(\xi) \cdot \partial_{\xi} \phi(\xi)+\pi(\xi) \cdot \pi(\xi)\right): d \xi . \tag{17}
\end{align*}
$$

Metaphors and Analogies

Nambu, Wayne Univ. Conf., 18-20 June 1969

$$
\begin{gathered}
\phi^{\mu}(\sigma, \tau)=\frac{1}{2} Q^{\mu}\left(e^{i \tau+i \sigma}\right)+\frac{1}{2} Q^{\mu}\left(e^{i \tau-i \sigma}\right) \\
=q^{\mu}+p^{\mu} \tau+i \sum_{n \neq 0} \frac{a_{n}^{\mu}}{n} e^{-i n \tau} \cos n \sigma \\
\frac{\partial^{2} \phi^{\mu}}{\partial \sigma^{2}}=\frac{\partial^{2} \phi^{\mu}}{\partial \tau^{2}}, \quad \mathcal{L}_{O}=\frac{1}{2}\left(\frac{\partial \phi}{\partial \sigma}\right)^{2}-\frac{1}{2}\left(\frac{\partial \phi}{\partial \tau}\right)^{2} . \\
\frac{1}{2 \pi} \int_{0}^{\pi}\left(\frac{\partial \phi^{\mu}}{\partial \tau} \frac{\partial \phi_{\mu}}{\partial \tau}+\frac{\partial \phi^{\mu}}{\partial \sigma} \frac{\partial \phi_{\mu}}{\partial \sigma}\right) d \sigma=\frac{1}{2} p^{2}+\sum_{n>0} a_{-n} \cdot a_{n}
\end{gathered}
$$

$$
\frac{1}{2 \pi} \int_{0}^{\pi}\left(\frac{\partial \phi^{\mu}}{\partial \tau} \frac{\partial \phi_{\mu}}{\partial \tau}+\frac{\partial \phi^{\mu}}{\partial \sigma} \frac{\partial \phi_{\mu}}{\partial \sigma}\right) d \sigma=\frac{1}{2} p^{2}+\sum_{n>0} a_{-n} \cdot a_{n}
$$

Nambu: this "suggests that the internal energy of a meson is analogous to that of a quantized string of finite length (or a cavity resonator for that matter) whose displacements are described by the field $\phi^{\mu} "$ ",
... but the energy of a DRM meson $\sim \sqrt{l-\alpha_{0}}$.
\mathcal{L}_{O} describes the transverse vibrations of a material string,

- moving in a non-physical space, $\mathbb{R}^{1,1} \times \mathbb{R}^{1, D-1}$,
- coordinates σ, τ, and ϕ^{μ}
- stretched between $\sigma=0$ and $\sigma=\pi$ on the σ-axis,
- with τ (rather than ϕ^{0}) being the time variable.
- energy of material string l not analogous to energy in DRM
L. Susskind: Dual symmetric theory of hadrons I [1970]
"a meson is described by the degrees of freedom of a four-dimensional rubber band with a quark pair [at the ends]"
"the level spacing separating rotational excitations of hadrons is very nearly a universal quantity of order $1(\mathrm{GeV})^{2}$. The only systems which are known from quantum mechanics to possess this property are harmonic systems such as a harmonic oscillator."
- but hadron level spacing is in energy squared whereas harmonic oscillator spacing is in energy
L. Susskind: Dual symmetric theory of hadrons I [1970]
"a meson is composed of a quark-antiquark pair at the ends of an elastic string" which generates a twodimensional strip or "world sheet" as it moves through space-time.

Interactions are pictured as a single "elastic string" interacting with quanta through the quarks at its ends. The various ways of singling out the "string" are equal as a result of "dual symmetry".

Nambu: "a quantized string of finite length"
Susskind: "the degrees of freedom of the internal state of a hadron are equivalent to those of a violin string or an organ pipe"

- states of DRM constructed within space of states of material string
- quotient space of subspace
- potentially there are ghost states
- string is in an unphysical space: $\mathbb{R}^{1,1} \times \mathbb{R}^{1, D-1}$ with two time variables τ, ϕ^{0}
- energies of DRM and string do not agree

An almost physical interpretation of the integrand of the n-point Veneziano Model H. B. Nielsen

An almost physical interpretation of the integrand of the n-point Veneziano Model H. B. Nielsen

- Fairlie-Nielsen analogue model: Koba-Nielsen DRM integrand = heat generated by steady current flow in a disc
- can be used by analogy to calculate M loop integrands, agreeing with operator formalism
- DRM is approximation to contribution of very complicated fishnet Feynman diagrams - argued to be two-dimensional
- gives intuitive picture of DRM interactions as "threads" joining and splitting

- DRM is approximation to contribution of very complicated fishnet Feynman diagrams - argued to be two-dimensional

An almost physical interpretation of the integrand of the n-point Veneziano Model H. B. Nielsen

- Fairlie-Nielsen analogue model: Koba-Nielsen DRM integrand = heat generated by steady current flow in a disc
- can be used by analogy to calculate M loop integrands, agreeing with operator formalism
- DRM is approximation to contribution of very complicated fishnet Feynman diagrams - argued to be two-dimensional
- gives intuitive picture of DRM interactions as "threads" joining and splitting

```
Scetion T+
```

"it is possible to interpret the generalized Veneziano [amplitude as] a model in which the mesons are thread like structures ... Hadronic interactions are conceived of then as processes in which threads [join] at the end points into ... longer threads which are then split up into ... shorter threads."

"it is possible to interpret the generalized Veneziano [amplitude as] a model in which the mesons are thread like structures ... Hadronic interactions are conceived of then as processes in which threads [join] at the end points into ... longer threads which are then split up into ... shorter threads."

Nambu	18 Jun 69	quantized string of finite length; cavity
Susskind	23 Jun 69	spring; continuum limit of chain of springs.
Susskind	11 Jul 69	violin string; organ pipe;
		continuum limit of chain of springs.
Nielsen	69-70	one-dimensional structure;
		infinitely complicated Feynman diagrams;
		infinitely-long chain of molecules;
		thread-like structure; thread or stick.
Susskind	Jul/Aug	
Susskind	3 Jan 70	rubber band; violin string; elastic string;
Nambu	Aug 70	elastic string of finite intrinsic length;
		elastic string; rubber string; rubber band.

Terms used to interpret the Veneziano model in 1969-70

Ghosts

Physical States

$$
\begin{gathered}
L_{0}|\psi\rangle=|\psi\rangle ; \quad L_{n}|\psi\rangle=0, \quad n>0 \\
L_{n}=\frac{1}{2} \sum_{m}: a_{m} \cdot a_{n-m}: \\
{\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{D}{12} m\left(m^{2}-1\right) \delta_{m,-n},}
\end{gathered}
$$

Null Physical States

$$
\begin{gathered}
L_{-1}\left|\phi_{0}\right\rangle ; \quad \text { if } D=26,\left(L_{-2}+\frac{3}{2} L_{-1}^{2}\right)\left|\phi_{-1}\right\rangle \\
L_{0}\left|\phi_{l}\right\rangle=l\left|\phi_{l}\right\rangle ; \quad L_{n}\left|\phi_{l}\right\rangle=0, \quad n>0
\end{gathered}
$$

$$
Q^{\mu}(z)=q^{\mu}-i p^{\mu} \log z+i \sum_{n \neq 0} \frac{1}{n} a_{n}^{\mu} z^{-n},
$$

$$
\left[L_{n}, Q^{\mu}(z)\right]=z^{n+1} \frac{d Q^{\mu}(z)}{d z}
$$

$$
\begin{aligned}
V(k, z) & =: \exp \{i k \cdot Q(z)\}: \\
& =e^{i k \cdot q} \exp \left\{-k \cdot \sum_{n<0} \frac{1}{n} a_{n}^{\mu} z^{-n}\right\} \exp \left\{-k \cdot \sum_{n>0} \frac{1}{n} a_{n}^{\mu} z^{-n}\right\} z^{k \cdot p} . \\
& {\left[L_{n}, V(k, z)\right]=z^{n+1} \frac{d V(k, z)}{d z}+\frac{n}{2} z^{n} k^{2} V(k, z), }
\end{aligned}
$$

DDF states

$$
\begin{gathered}
P^{\mu}(z)=i \frac{d Q Q^{\mu}(z)}{d z}, \\
k^{2}=0, \quad \epsilon^{i} \cdot \epsilon^{j}=\delta^{i j}, \quad k \cdot \epsilon^{i}=0, \quad 1 \leq i, j \leq D-2, \\
A_{n}^{i}=\epsilon_{\mu}^{i} A_{n}^{\mu}, \quad A_{n}^{\mu}=\frac{1}{2 \pi i} \oint P^{\mu}(z) V(n k, z) d z \\
{\left[L_{m}, A_{n}^{i}\right]=0 .} \\
{\left[A_{m}^{i}, A_{n}^{j}\right]=m \delta^{i j} \delta_{m,-n}, \quad 1 \leq i, j \leq D-2 .}
\end{gathered}
$$

The A_{n}^{i} generate the space of DDF states, manifestly positive definite.
When $D=26$ these are essentially all the physical states, the rest are null.

Characterization of DDF states $|f\rangle$:

$$
L_{n}|f\rangle=K_{n}|f\rangle=0, \quad n>0, \quad L_{0}|f\rangle=K_{0}|f\rangle=|\psi\rangle
$$

Use algebra :

$$
\begin{gathered}
{\left[L_{m}, K_{n}\right]=-n K_{m+n}, \quad\left[K_{m}, K_{n}\right]=0 .} \\
{\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{D}{12} m\left(m^{2}-1\right) \delta_{m,-n},}
\end{gathered}
$$

No Ghost Theorem
If $|\psi\rangle$ is a physical state and $D=26$, then

$$
|\psi\rangle=|f\rangle+|n\rangle,
$$

where $|f\rangle$ is a DDF state and $|n\rangle$ is a null physical state.

Lovelace [1971]:

nonplanar loop needs $D=26$

and for 2 dimensions of oscillators to be effectively removed to avoid a unitarity violating cut
achieved by null states
corresponding to one dimension of oscillators at D $=26$
at $D=26$ cut becomes a pole corresponding to closed string states

Nambu undelivered Copenhagen Talk Aug 1970

Nambu undelivered Copenhagen Talk Aug 1970

Nonetheless, Eq.(13) is not a purely geometrical quantity. For curiosity, then, let us try to construct a geometric action integral as one does in general relativity. Obviously a natural candidate for it is the surface area of the twodimensional world sheet; another would involve its Riemann curvature. The sheet is imbedded in the Minkowskian 4-space, so one can parametrize its points as $y^{\mu}\left(\xi^{0}, \xi^{1}\right),\left(\xi^{0} \sim \tau, \xi^{1} \sim \xi\right)$. The surface element is a σ-tensor

$$
\begin{align*}
& d \sigma^{\mu \nu}=G^{\mu \nu} d^{2} \xi \\
& G^{\mu \nu}=\partial\left(y^{\mu}, y^{\nu}\right) / \partial\left(\xi^{0}, \xi^{1}\right) \tag{22}
\end{align*}
$$

whereas its line element is

$$
\begin{align*}
& d s^{2}=g_{\alpha \beta} d \xi^{\alpha} d \xi^{\beta} \quad(\alpha, \beta=0,1) \\
& g_{\alpha \beta}=\left(\partial y_{\mu} / \partial \xi^{\alpha}\right)\left(\partial y^{\mu} / \partial \xi^{\beta}\right) \tag{23}
\end{align*}
$$

A possible action integral would be

$$
\begin{equation*}
I=\int\left|d \sigma_{\mu \nu} d \sigma^{\mu \nu}\right|^{1 / 2}=\iint|2 \operatorname{det} g|^{1 / 2} d^{2} \xi \tag{24}
\end{equation*}
$$

to be compared with the old one (13) which can be written $(y \rightarrow x)$

$$
I=-\frac{1}{4 \pi} \iint g_{\alpha \beta} \stackrel{\circ \alpha \beta}{g}^{2} d^{2} \xi, \quad \stackrel{\circ \alpha \beta}{g}=\left(\begin{array}{cc}
-1 & 0 \tag{25}\\
0 & 1
\end{array}\right)
$$

It is obvious that Eq.(24) leads to nonlinear equations. More complicated equations involving curvature would be not only nonlinear, but also have higher derivatives.

A possible action integral would be

$$
\begin{equation*}
I=\int\left|d \sigma_{\mu \nu} d \sigma^{\mu \nu}\right|^{1 / 2}=\iint|2 \operatorname{det} g|^{1 / 2} d^{2} \xi \tag{24}
\end{equation*}
$$

It is obvious that Eq.(24) leads to nonlinear equations. More complicated equations involving curvature would be not only nonlinear, but also have higher derivatives.

Nambu undelivered Copenhagen Talk Aug 1970

A possible action integral would be

$$
\begin{equation*}
I=\int\left|d \sigma_{\mu \nu} d \sigma^{\mu \nu}\right|^{1 / 2}=\iint|2 \operatorname{det} g|^{1 / 2} d^{2} \xi \tag{24}
\end{equation*}
$$

It is obvious that Eq.(24) leads to nonlinear equations. More complicated equations involving curvature would be not only nonlinear, but also have higher derivatives.

$$
\begin{gathered}
I=\int\left|d \sigma_{\mu \nu} d \sigma^{\mu \nu}\right|^{\frac{1}{2}}=\iint|2 \operatorname{det} g|^{\frac{1}{2}} d^{2} \sigma \\
d \sigma^{\mu \nu}=G^{\mu \nu} d^{2} \sigma, \quad G^{\mu \nu}=\frac{\partial\left(x^{\mu}, x^{\nu}\right)}{\partial\left(\sigma^{0}, \sigma^{1}\right)}
\end{gathered}
$$

Nambu undelivered Copenhagen Talk Aug 1970

A possible action integral would be

$$
\begin{equation*}
I=\int\left|d \sigma_{\mu \nu} d \sigma^{\mu \nu}\right|^{1 / 2}=\iint|2 \operatorname{det} g|^{1 / 2} d^{2} \xi \tag{24}
\end{equation*}
$$

It is obvious that Eq.(24) leads to nonlinear equations. More complicated equations involving curvature would be not only nonlinear, but also have higher derivatives.

$$
\mathcal{A}_{N G}=-\frac{T_{0}}{c} \int \sqrt{\left(\frac{\partial x}{\partial \sigma} \cdot \frac{\partial x}{\partial \tau}\right)^{2}-\left(\frac{\partial x}{\partial \sigma}\right)^{2}\left(\frac{\partial x}{\partial \tau}\right)^{2}} d \sigma d \tau
$$

Nambu undelivered Copenhagen Talk Aug 1970

A possible action integral would be

$$
\begin{equation*}
I=\int\left|d \sigma_{\mu \nu} d \sigma^{\mu \nu}\right|^{1 / 2}=\iint|2 \operatorname{det} g|^{1 / 2} d^{2} \xi \tag{24}
\end{equation*}
$$

It is obvious that Eq.(24) leads to nonlinear equations. More complicated equations involving curvature would be not only nonlinear, but also have higher derivatives.

$$
\mathcal{A}_{N G}=-\frac{T_{0}}{c} \int \sqrt{\left(\frac{\partial x}{\partial \sigma} \cdot \frac{\partial x}{\partial \tau}\right)^{2}-\left(\frac{\partial x}{\partial \sigma}\right)^{2}\left(\frac{\partial x}{\partial \tau}\right)^{2}} d \sigma d \tau
$$

Geometric
Reparametrization invariant
Nambu-Goto 'string'

$$
\begin{gathered}
\mathcal{A}_{N G}=-\frac{T_{0}}{c} \int \mathcal{L}_{N G} d \sigma d \tau, \quad \mathcal{L}_{N G}=\sqrt{\left(\frac{\partial x}{\partial \sigma} \cdot \frac{\partial x}{\partial \tau}\right)^{2}-\left(\frac{\partial x}{\partial \sigma}\right)^{2}\left(\frac{\partial x}{\partial \tau}\right)^{2}}, \\
\frac{\partial}{\partial \sigma}\left(\frac{\partial \mathcal{L}_{N G}}{\partial x_{\mu \sigma}}\right)+\frac{\partial}{\partial \tau}\left(\frac{\partial \mathcal{L}_{N G}}{\partial x_{\mu \tau}}\right)=\frac{\partial \Pi^{\sigma \mu}}{\partial \sigma}+\frac{\partial \Pi^{\tau \mu}}{\partial \tau}=0, \\
\Pi^{\sigma \mu}=\frac{x_{\tau}^{\mu}\left(x_{\sigma} \cdot x_{\tau}\right)-x_{\sigma}^{\mu} x_{\tau}^{2}}{\left[\left(x_{\sigma} \cdot x_{\tau}\right)^{2}-x_{\sigma}^{2} x_{\tau}^{2}\right]^{\frac{1}{2}}}, \quad \Pi^{\tau \mu}=\frac{x_{\sigma}^{\mu}\left(x_{\sigma} \cdot x_{\tau}\right)-x_{\tau}^{\mu} x_{\sigma}^{2}}{\left[\left(x_{\sigma} \cdot x_{\tau}\right)^{2}-x_{\sigma}^{2} x_{\tau}^{2}\right]^{\frac{1}{2}}} . \\
\left(\frac{\partial x}{\partial \sigma}\right)^{2}+\left(\frac{\partial x}{\partial \tau}\right)^{2}=0, \quad \frac{\partial x}{\partial \sigma} \cdot \frac{\partial x}{\partial \tau}=0,
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial}{\partial \sigma}\left(\frac{\partial \mathcal{L}_{N G}}{\partial x_{\mu \sigma}}\right)+\frac{\partial}{\partial \tau}\left(\frac{\partial \mathcal{L}_{N G}}{\partial x_{\mu \tau}}\right)=\frac{\partial \Pi^{\sigma \mu}}{\partial \sigma}+\frac{\partial \Pi^{\tau \mu}}{\partial \tau}=0 \\
\Pi^{\sigma \mu}=\frac{x_{\tau}^{\mu}\left(x_{\sigma} \cdot x_{\tau}\right)-x_{\sigma}^{\mu} x_{\tau}^{2}}{\left[\left(x_{\sigma} \cdot x_{\tau}\right)^{2}-x_{\sigma}^{2} x_{\tau}^{2}\right]^{\frac{1}{2}}}, \quad \Pi^{\tau \mu}=\frac{x_{\sigma}^{\mu}\left(x_{\sigma} \cdot x_{\tau}\right)-x_{\tau}^{\mu} x_{\sigma}^{2}}{\left[\left(x_{\sigma} \cdot x_{\tau}\right)^{2}-x_{\sigma}^{2} x_{\tau}^{2}\right]^{\frac{1}{2}}} \\
\left(\frac{\partial x}{\partial \sigma}\right)^{2}+\left(\frac{\partial x}{\partial \tau}\right)^{2}=0, \quad \frac{\partial x}{\partial \sigma} \cdot \frac{\partial x}{\partial \tau}=0 \\
\frac{\partial^{2} x^{\mu}}{\partial \sigma^{2}}=\frac{\partial^{2} x^{\mu}}{\partial \tau^{2}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial^{2} x^{\mu}}{\partial \sigma^{2}}=\frac{\partial^{2} x^{\mu}}{\partial \tau^{2}} \\
\frac{1}{\ell} x^{\mu}(\sigma, \tau)=q^{\mu}+p^{\mu} \tau+i \sum_{n \neq 0} \frac{a_{n}^{\mu}}{n} e^{-i n \tau} \cos n \sigma \\
\left(\frac{\partial x}{\partial \sigma}\right)^{2}+\left(\frac{\partial x}{\partial \tau}\right)^{2}=0, \quad \frac{\partial x}{\partial \sigma} \cdot \frac{\partial x}{\partial \tau}=0 \\
L_{n}=\frac{1}{2} \sum_{m}: a_{m} \cdot a_{n-m}:=\alpha_{0} \delta_{n, 0}
\end{gathered}
$$

$$
\kappa \cdot a_{n}=0, \quad n \neq 0
$$

Canonical Quantization

$$
\begin{gathered}
k^{2}=\tilde{k}^{2}=k \cdot \epsilon^{i}=\tilde{k} \cdot \epsilon^{i}=0, \quad \epsilon^{i} \cdot \epsilon^{j}=\delta^{i j}, \quad k \cdot \tilde{k}=-1 \\
\tau \propto k \cdot x, \quad k \cdot a_{n}=0, \quad n \neq 0 . \\
a_{n}^{i}=\epsilon^{i} \cdot a_{n}, \quad \tilde{k} \cdot a_{n}=\frac{1}{k \cdot p} L_{n}^{a}, \quad n \neq 0, \\
{\left[a_{m}^{i}, a_{n}^{j}\right]=m \delta^{i j} \delta_{m,-n}, \quad 1 \leq i, j \leq D-2 .} \\
M^{\mu \nu}=q^{\mu} p^{\nu}-q^{\nu} p^{\mu}-i \sum_{n=1}^{\infty} \frac{1}{n}\left(a_{-n}^{\mu} a_{n}^{\nu}-a_{-n}^{\nu} a_{n}^{\mu}\right)
\end{gathered}
$$

closure of Lorentz algebra requires $D=26, \quad \alpha_{0}=1$.

Covariant Quantization

$$
\begin{gathered}
{\left[a_{m}^{\mu}, a_{n}^{\nu}\right]=m \eta^{\mu \nu} \delta_{m,-n}, \quad 0 \leq \mu, \nu \leq D-1} \\
\langle\psi| L_{n}|\psi\rangle=\alpha_{0} \delta_{n, 0}
\end{gathered}
$$

impose physical state conditions

$$
L_{n}|\psi\rangle=0, \quad n>0 ; \quad L_{0}|\psi\rangle=\alpha_{0}|\psi\rangle .
$$

absence of ghosts requires

$$
D=26, \quad \alpha_{0}=1, \quad \text { or } \quad D<26, \quad \alpha_{0} \leq 1
$$

If $D<26$, anomalous longitudinal modes are present.

Summary

- The states of DRM constructed using harmonic oscillators.
- Suggests metaphor or analogy of a quantized material string.
- Problems: space-time unphysical; ghosts; energies different; space of states too big.
- Operator formalism, analogue model provide means of calculating.
- Virasoro constraints, algebra, when $\alpha_{0}=1$.
- Lovelace: $D=26, D-2$ dimensions of physical oscillators for consistency of loops
- Nambu-Goto geometric action: only transverse modes
- No Ghost Theorem: only transverse modes if $D=26, \alpha_{0}=1$.
- The states of DRM constructed using harmonic oscillators.
- Suggests metaphor or analogy of a quantized material string.
- Problems: space-time unphysical; ghosts; energies different; space of states too big.
- Operator formalism, analogue model provide means of calculating.
- Virasoro constraints, algebra, when $\alpha_{0}=1$.
- Lovelace: $D=26, D-2$ dimensions of physical oscillators for consistency of loops
- Nambu-Goto geometric action: only transverse modes
- No Ghost Theorem: only transverse modes if $D=26, \alpha_{0}=1$.
- Canonical quantization of Nambu-Goto string needs $D=26, \alpha_{0}=1$.
- String interactions by splitting, joining give DRM [Mandelstam]

Phys. Rev.
Nuovo Cim.
Nucl. Phys.

Phys. Rev.
Nuovo Cim.
Nucl. Phys.

