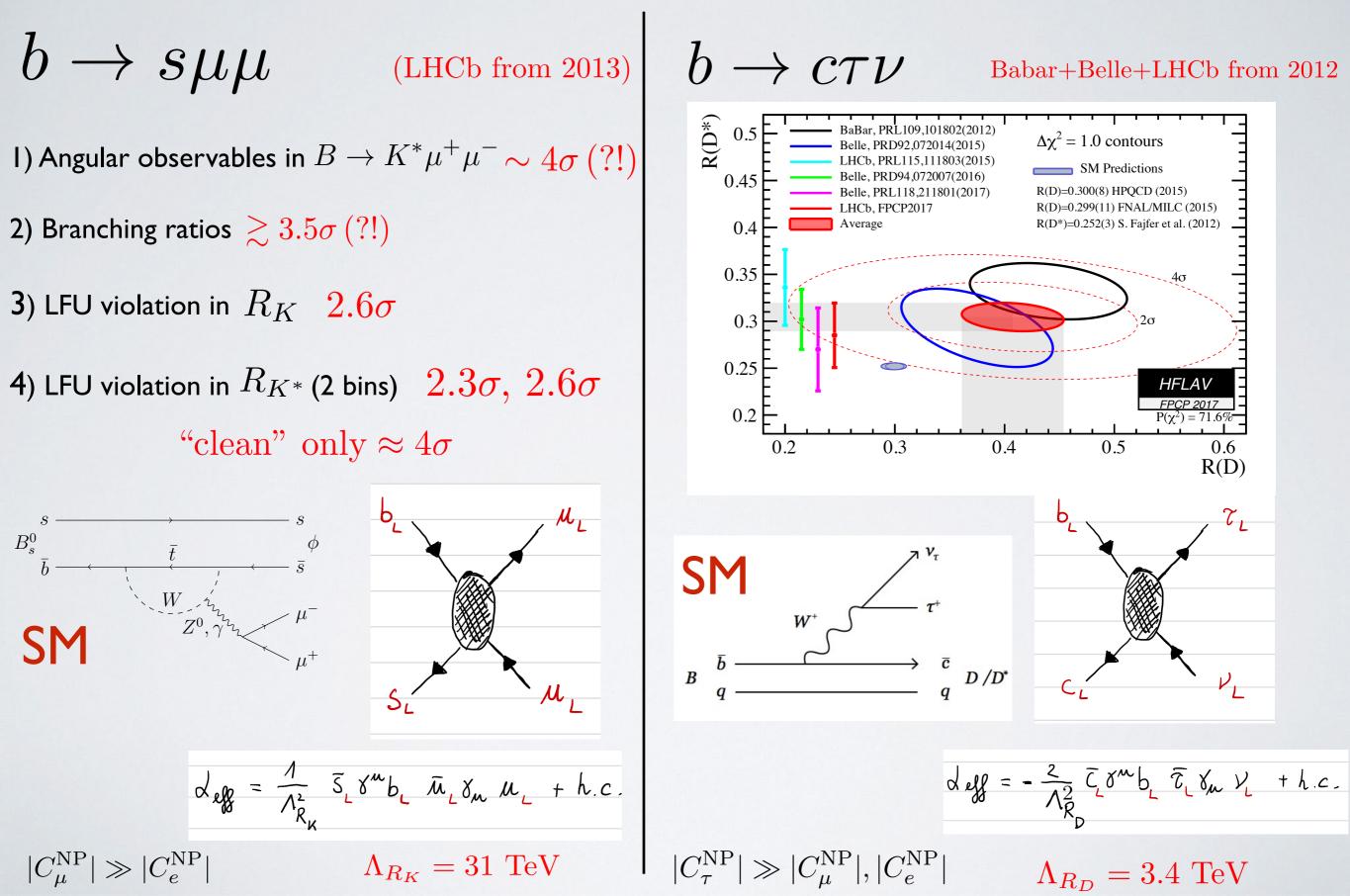
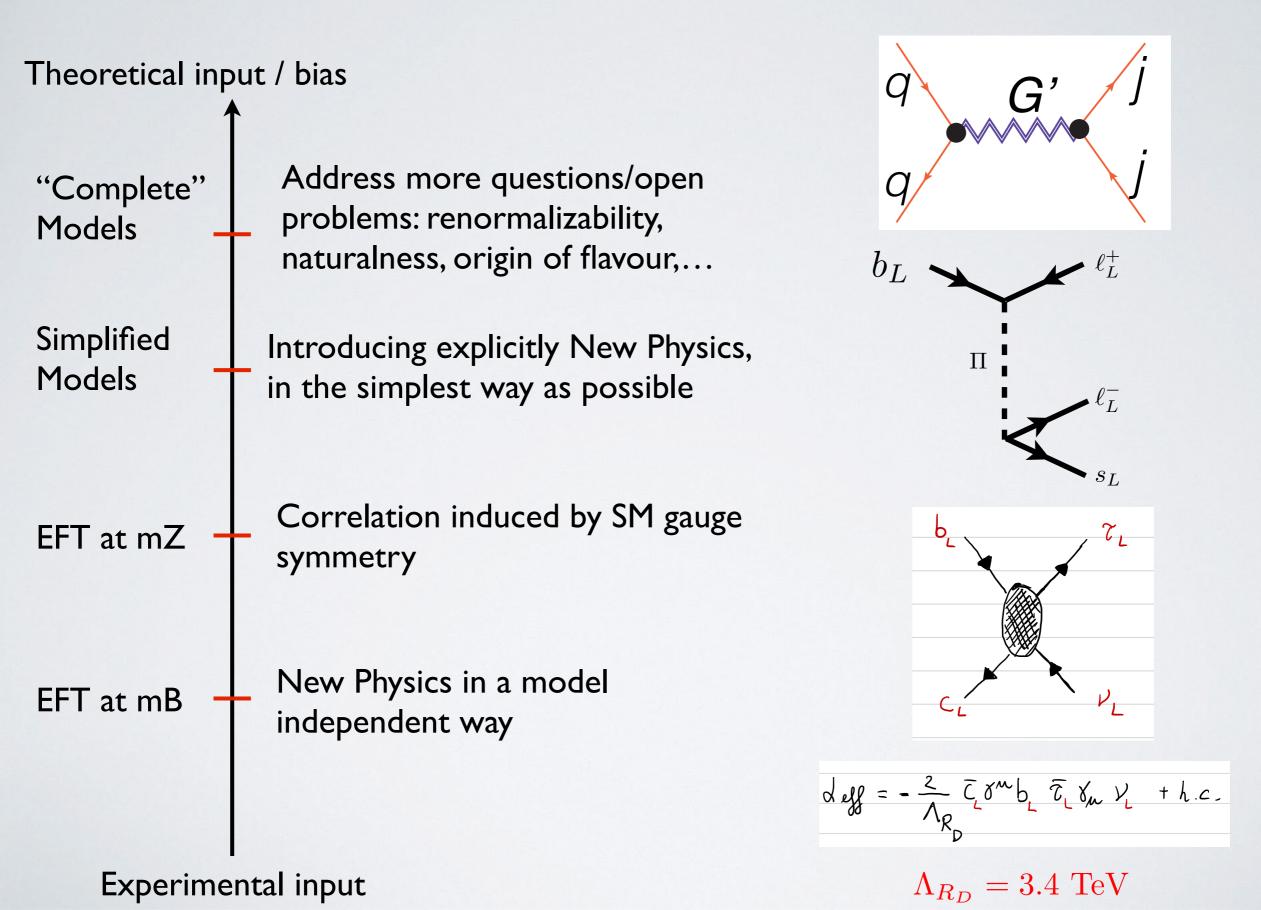
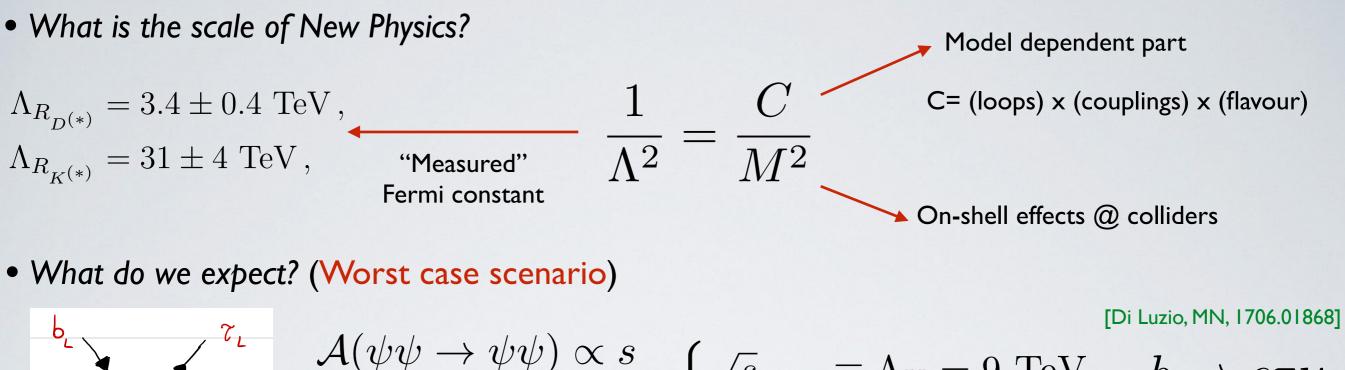
Collider Implications of Flavour Anomalies

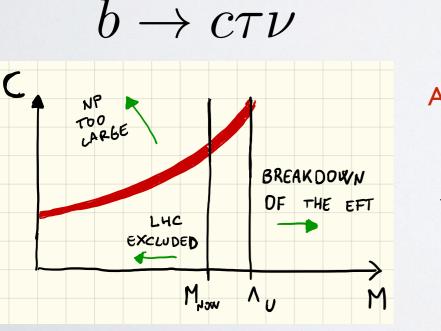

M. Nardecchia




2 March 2018, Les Rencontres de Physique de la Vallée d'Aoste, La Thuile

Flavour Anomalies

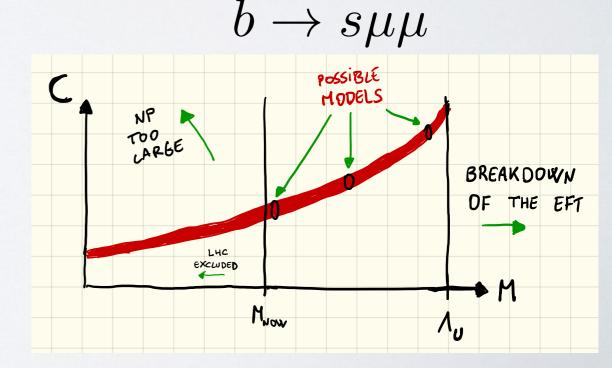
Outline of the talk


Tree-Level Pertubative Unitarity criterium

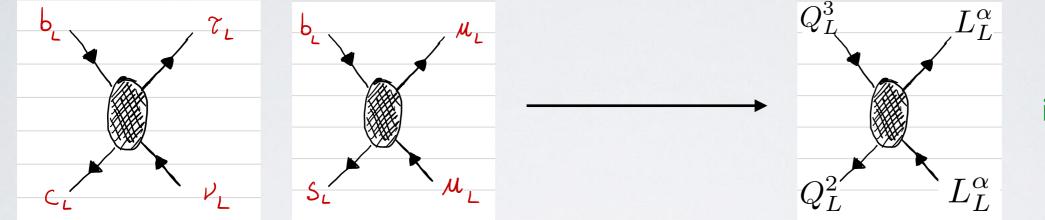
 $|\mathcal{A}_{J=0}| < 1/2$


$$\begin{cases} \sqrt{s}_{max} \equiv \Lambda_U = 9 \text{ TeV} & b \to c\tau\nu \\ \sqrt{s}_{max} \equiv \Lambda_U = 80 \text{ TeV} & b \to s\mu\mu \end{cases}$$

An old lesson:VV scattering... $\Lambda_U = 2 \text{ TeV}, m_h = 125 \text{ GeV}$

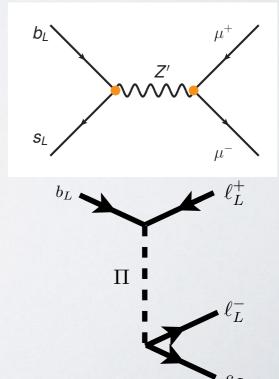

• What do we expect? (Warning: a simplified cartoon!)

 \mathcal{V}_{Γ}


$$M_{now} \gtrsim 1 \text{ TeV}$$

Vertical (gauge) structure

• Fits to data suggest a sizeable (most likely dominant) contribution of the New Physics to left currents for both quarks and leptons


 $C_{S}(\overline{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{j})(\overline{L}_{L}^{\alpha}\gamma^{\mu}L_{L}^{\beta}) + C_{T}(\overline{Q}_{L}^{i}\gamma^{\mu}\sigma^{a}Q_{L}^{j})(\overline{L}_{L}^{\alpha}\gamma^{\mu}\sigma^{a}L_{L}^{\beta})$

SU(2) structure induce correlations

• Collider implication: Quantum numbers of tree level mediators restricted

Mediator	Spin	SM irrep	c_1/c_3	$R_{D^{(*)}}$	$R_{K^{(*)}}$	No $d_i \to d_j \nu \overline{\nu}$
Z'	1	(1, 1, 0)	∞	×	\checkmark	×
V'	1	(1,3,0)	0	\checkmark	\checkmark	×
S_1	0	$(\overline{3}, 1, 1/3)$	-1	\checkmark	×	×
S_3	0	$(\overline{3}, 3, 1/3)$	3	\checkmark	\checkmark	×
U_1	1	(3, 1, 2/3)	1	\checkmark	\checkmark	\checkmark
U_3	1	(3, 3, 2/3)	-3	\checkmark	\checkmark	×

Horizontal (flavour) structure

• Considering the whole set of data (neutral and charged currents), a possible link with the SM flavour structure is emerging

 $\begin{array}{ll} b \to c\tau\nu & 3_q \to 2_q 3_\ell 3_\ell \\ b \to s\mu\mu & 3_q \to 2_q 2_\ell 2_\ell \end{array} \begin{array}{l} \text{SMVS NP} & |C_{\tau}^{\text{NP}}| \gg |C_{\mu}^{\text{NP}}| \gg |C_e^{\text{NP}}| \\ \text{A link?} & |Y_{\tau}^{SM}| \gg |Y_{\mu}^{SM}| \gg |Y_e^{SM}| \end{array}$

• Motivated flavour ansatz in the quark sector (MFV, U(2), Partial Compositeness, Froggat-Nielsen) predicts dominant coupling of the New Physics with the third family.

$$\frac{\overline{c}\gamma^{\mu}b}{\overline{t}\gamma^{\mu}b} = \mathcal{O}(\lambda^2) \quad , \quad \frac{\overline{s}\gamma^{\mu}b}{\overline{b}\gamma^{\mu}b} = \mathcal{O}(\lambda^2) \quad \lambda = 0.23 \quad \text{(Cabibbo angle)}$$

Collider implications

- NP getting closer $\begin{cases} M \lesssim 3 \text{ TeV} & b \to c \tau \nu \\ M \lesssim 20 \text{ TeV} & b \to s \mu \mu \end{cases}$

- Better to look for resonant decays of the mediators into SM fermions of the third family

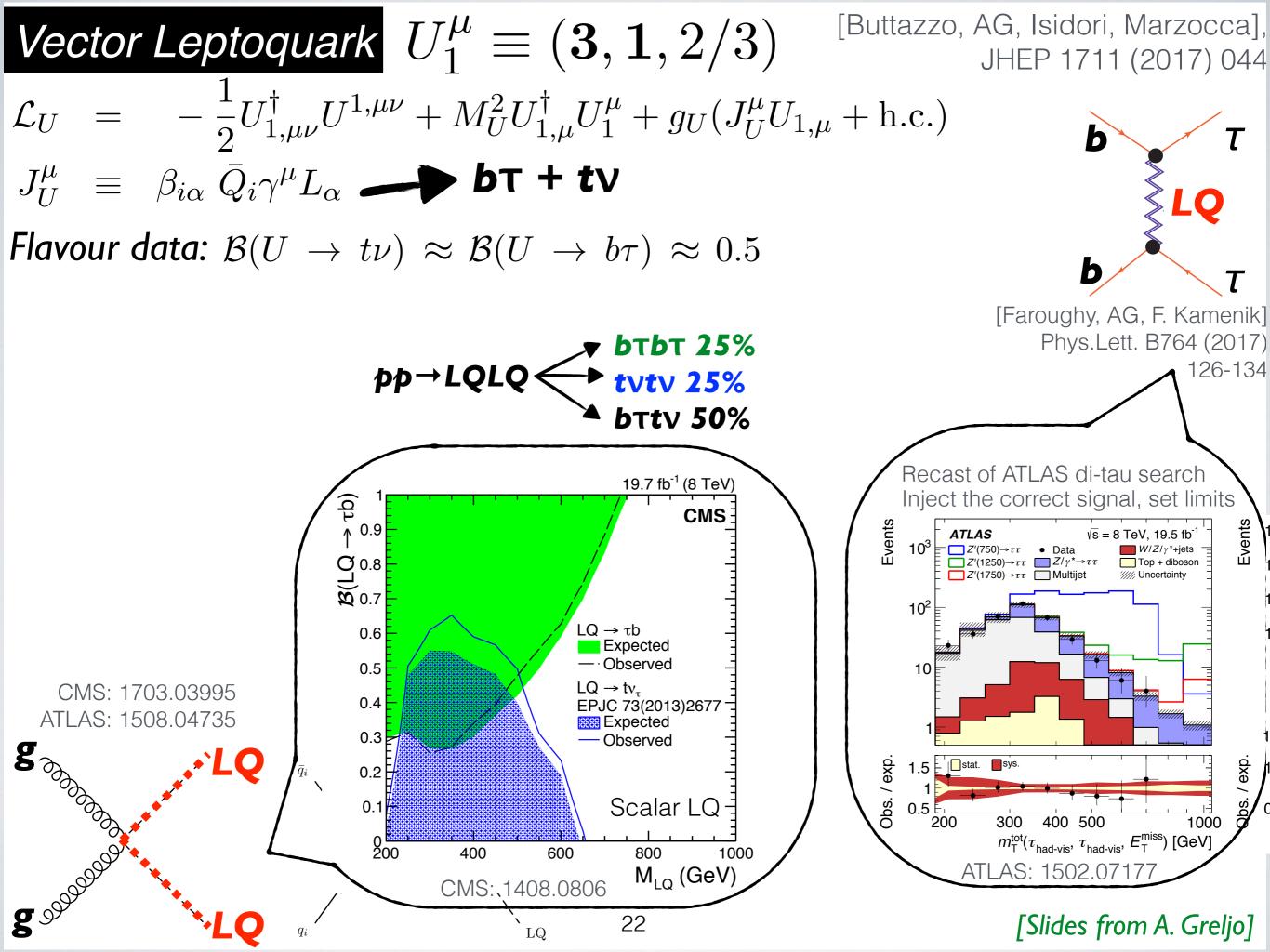
Where to look at LHC?

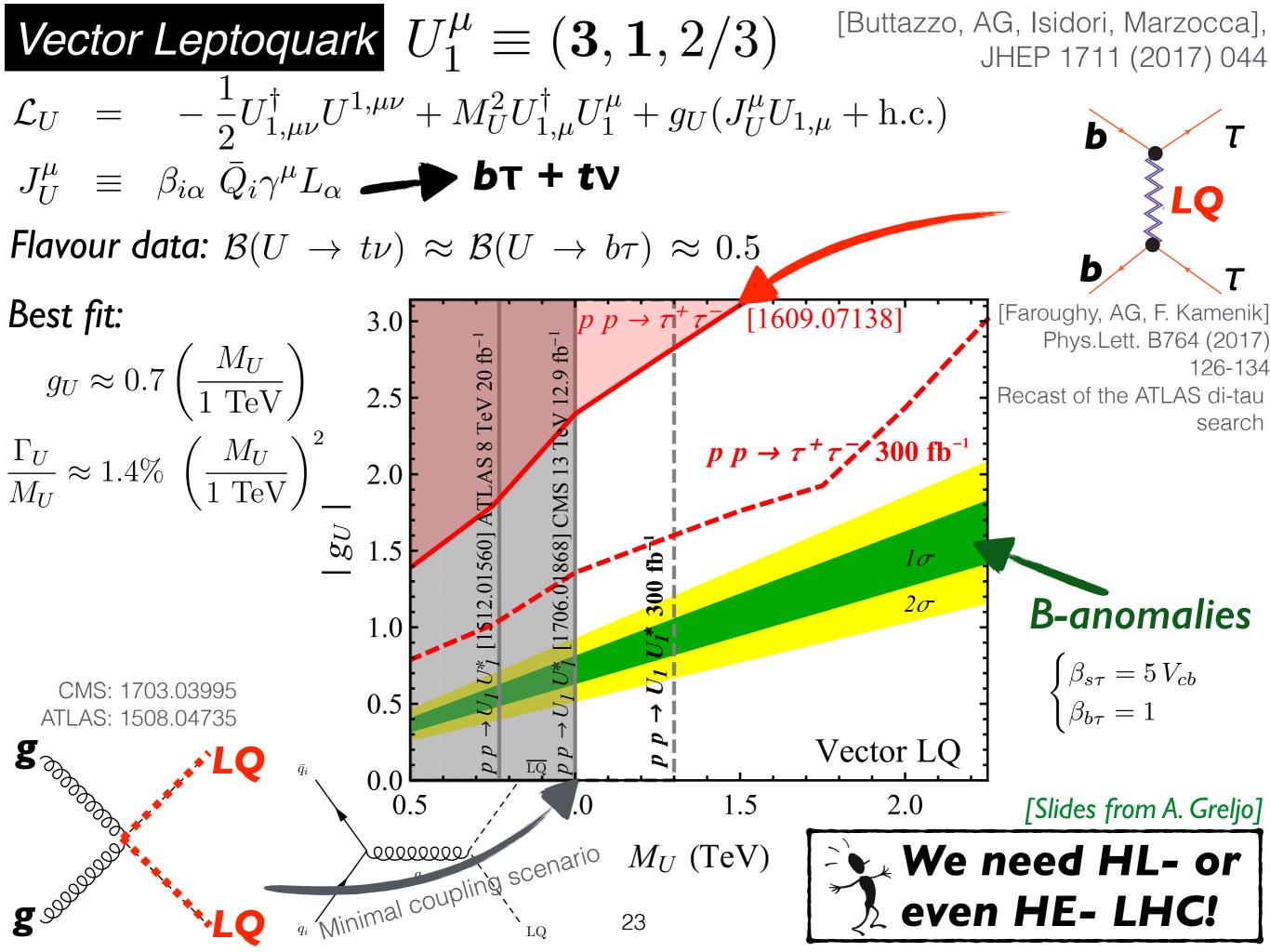
Simplified Model	Spin	SM irrep	c_1/c_3	$R_{D^{(*)}}$	$R_{K^{(*)}}$	No $d_i \to d_j \nu \overline{\nu}$
Z'	1	(1, 1, 0)	∞	×	\checkmark	×
V'	1	(1, 3, 0)	0	\checkmark	\checkmark	×
S_1	0	$(\overline{3}, 1, 1/3)$	-1	\checkmark	×	×
S_3	0	$(\overline{3}, 3, 1/3)$	3	\checkmark	\checkmark	×
U_1	1	(3, 1, 2/3)	1	\checkmark	\checkmark	\checkmark
U_3	1	(3, 3, 2/3)	-3	\checkmark	\checkmark	×

Colourless mediators

Leptoquarks

I) Resonance searches for charged current anomalies

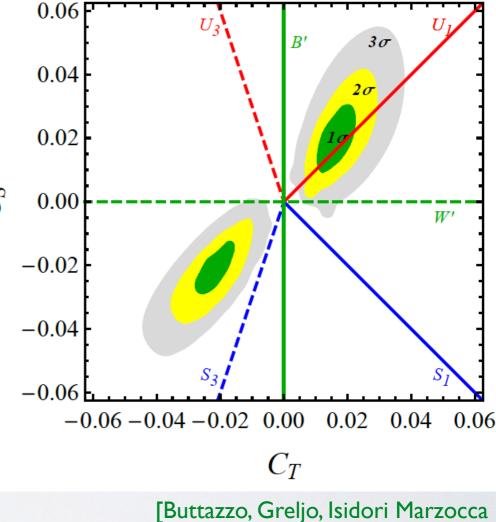

- Colourless mediator Z'+V' not viable (excluded already Z'
 ightarrow au au)
- Vector Leptoquark, UI, decaying into SM fermions of the third family
- Scalar Leptoquarks, SI + S3, decaying into SM fermions of the third family
- More complicated linear combinations can be thought


2) Resonance searches for neutral current anomalies only (and no flavour bias)

- Z' to muons
- Leptoquark in final states with muons

3) Non-resonant searches

- High-pT dilepton tails $pp o au au, pp o \mu \mu$ [See Greljo, Marzocca 1704.09015]


The Vector Leptoquark

Simplified Model	Spin	SM irrep	c_1/c_3	$R_{D^{(*)}}$	$R_{K^{(*)}}$	No $d_i \to d_j \nu \overline{\nu}$
Z'	1	(1, 1, 0)	∞	×	\checkmark	×
V'	1	(1, 3, 0)	0	\checkmark	\checkmark	×
S_1	0	$(\overline{3}, 1, 1/3)$	-1	\checkmark	×	×
S_3	0	$(\overline{3}, 3, 1/3)$	3	\checkmark	\checkmark	×
U_1	1	(3, 1, 2/3)	1	\checkmark	\checkmark	\checkmark
U_3	1	(3, 3, 2/3)	-3	\checkmark	\checkmark	×

• Remarkably there is a unique solution, if we consider a single mediator

A clear winner!
$$U_{\mu} = (3, 1, 2/3)$$

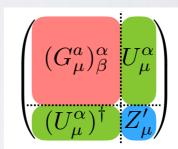
• A spin I state calls for a UV completion. This is not an academic question, collider searches are dominated by the phenomenology of the extra states that emerge with the leptoquark.

1706.07808]

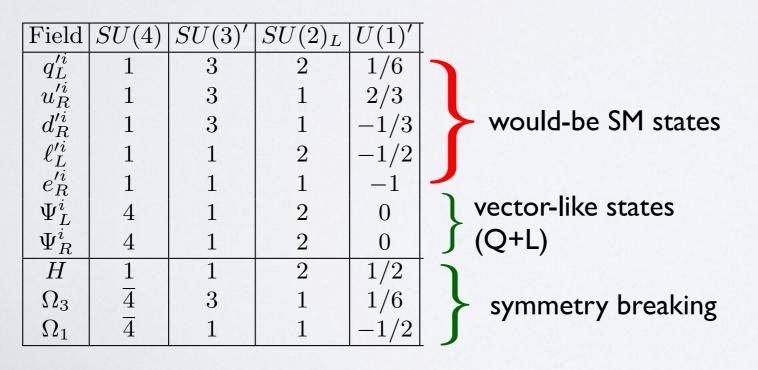
SU(4) Pati-Salam

PRD (1975)

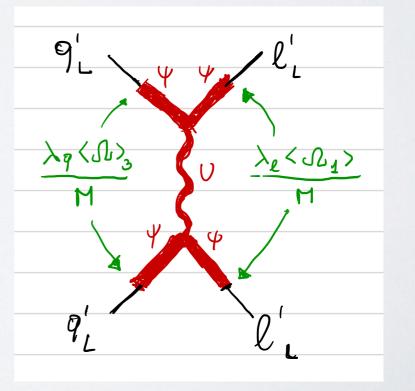
Quantum numbers of the leptoquark known reasiest option: Rati Salam ΔC_{10}^{μ} (following from $G_{PS} = SU(4)_{PS} \overset{\text{chosen set}}{|\lambda_{sb}^q| < 5|V_{cb}|},$ of points within the 1σ preferred region of the EFT fit: V_{cb} is the set of the effect of the effe $G_{PS} \to G_{\mathcal{B}}^{\text{The red cross denotes the } 1\sigma} \underset{q \text{ preferred values of the } \mathcal{B}_{\mathcal{F}}^{\text{The red cross denotes the } 1\sigma} \underset{q \text{ preferred values of the } \mathcal{B}_{\mathcal{F}}^{\text{The red cross denotes the } 1\sigma} \underset{q \text{ preferred values } \mathcal{B}_{\mathcal{F}}^{\text{The red cross denotes the } 1\sigma} \underset{q \text{ preferred values } \mathcal{B}_{\mathcal{F}}^{\text{The red cross denotes } \mathcal{B}_{\mathcal{F}}^{\text{T$ (green). predicted from U(2) symmetry, $\lambda_{bs} \sim V_{ts}$, with high luminosity an interesting region will be probed. For example, in the U(2) flavour models of Ref. [29, 33, 34, 57] a small predicted from U(2) symmettices λ_s necessary with this haunti-bounds from A problem: bounds from the context of an explicit vector leptoquark model in Section A problem: bounds from the fourth of the probed. For example, in the U(2) Size of the state of the benchmarks to be probed. For example, yalue of λ_{bs} Simelessing the first the first of the state of the $6 B - \overline{B}$ mixing hile is discussed in the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} is the same time AC^{μ} in Eq. (10). The expected 2σ is the same time AC^{μ} is the same time X 3) Single-operator for the anomalies of the second strong of the secon mixing." On the one flavour-diagonal coeff Sterle warsor the strange and the second state of the second se flavour-diagonal coefficient $e_{q\mu}$ is show the limits on λ^{q} when ting at the same time $r_{q\mu} = 0$ is non-vanishing, flavour-diagonal coefficient $e_{q\mu}$ is non-vanishing, Ory Fig. We infits Preeze MEN model details. Another problem: bounds from an and the standard of the 2, abundantly produced by D_{hs} rell $0.000 \text{ pm} = 1.000 \text{$ *q* obtained after integrating out the $\lambda_{bs}^{\mu} \leq -0.097 (P(V_{bs}^*, V_{ti})^2)$ $(\overline{b}_L \gamma_\mu d_I^{\text{actions}})$ $\lambda_{bs}^{d} > 0.049 \ (0.36), \ \lambda_{bs}^{u} > 0.072 \ (0.77)$ $Q_{J_{\mu}}^{J_{\mu}} = g_O^{(1),ij}(\bar{Q}_i \gamma_{\mu} Q_j)$ • After all Pati-Salam was (http://www.sect.in. the context.off.G. J. some capple of $\lambda_{hs}^{c} > 0.003$ (0.02); $\lambda_{explaining 0} + 0$ served pattern of deviations in the rare B.


The 4321 model

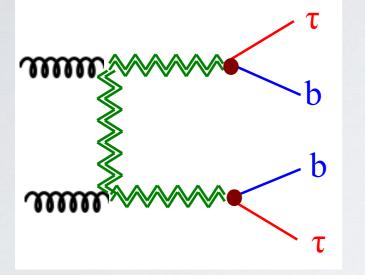
[L. Di Luzio, A. Greljo, MN 1708.08450]


• We need two ingredients: an enlarged, gauge, structure and extra matter fields

 $G = SU(4) \times SU(3)' \times SU(2)_L \times U(1)'$ New states from the breaking: $\downarrow \langle \Omega_3 \rangle, \langle \Omega_1 \rangle$ $SU(4) \times SU(2) \times SU(2) \times SU(2) \land S$


• Extra gauge bosons resonances (color octet and Z') are present $2M_{q'}^2 + 2M_{Z'}^2$

Field content Searches at LHC!



Color octet and Z' are the most important states

Direct Searches (gauge sector)

 Leptoquark, pair production by QCD interactions, decay into third family fixed by the anomaly:

 $\begin{cases} U \to b\tau^+, & \text{BR} = 50 \% \\ U \to t\overline{\nu}, & \text{BR} = 50 \% \end{cases}$

(CMS search for spin-0 1703.03995) (recast for spin-1 in 1706.01868) (see also 1706.05033)

 $m_U > 1.3 \,\, {
m TeV}$ leptoquark mass sets the overall scale

- Z', dangerous Drell-Yann processes suppressed because coupling to the first family is reduced due to small U(1)' coupling. $\sim g_Y/g_4$
- g', coupling to the first family given by the SU(3)' factor $\sim g_s/g_4$ resonant dijets search particularly sensitive (ATLAS 1703.09127)
- However bump searches loose in sensitivity when the width-to-mass ratio is too large, in our case the decay width is naturally large because of the decay into heavy quarks

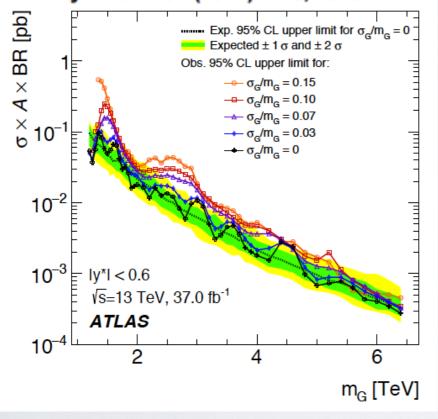
 $\frac{\Gamma}{m} \lesssim 15\%$ from exp. analysis

$$\frac{\Gamma_{g'}}{m_{g'}} = 28\%$$
 our benchmark

Need large g4... $g_4 \gtrsim 3$

 $m_{g'}$ $\stackrel{\frown}{=}$ 1.9 TeV

 $m_{B/T}$ + 1.7 TeV

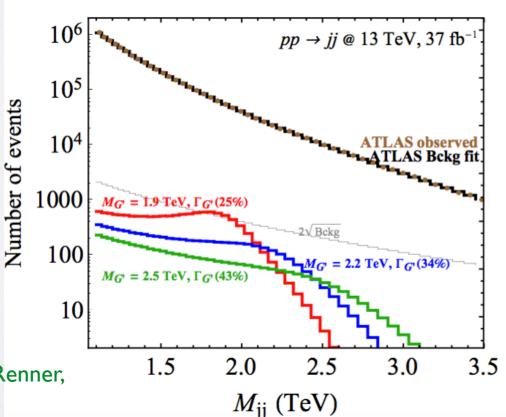

 $m_U - 1.5 \text{ TeV}$

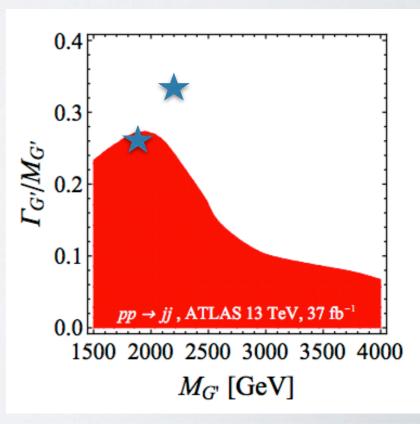
 $m_{Z'} m_{L_{\tau}} + 1.3 \text{ TeV}$

 $m_{C/S}, m_{L_{\mu}}$ + 740 GeV

Colour octet vector at the LHC

Phys.Rev. D96 (2017) no.5, 052004


- We are looking for
 - Background fitted to data
- Exclusion limit are reported with benchmark up to

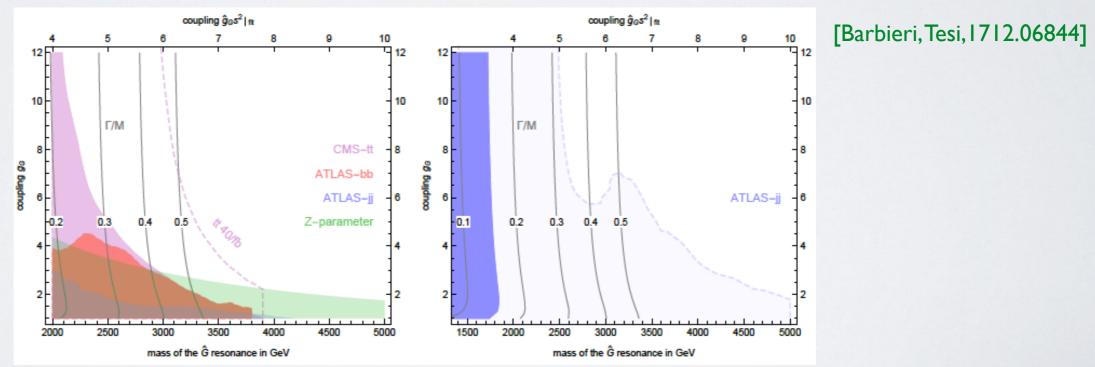

 $\frac{\Gamma}{m} \lesssim 15\%$

 In models aiming at explaining charged current anomalies, large widths are expected, we invite the experimental collaborations to consider larger values as benchmarks

• We have interference with the background!

[Greljo,Di Luzio, Fuentes-Martin, MN, Renner, in preparation]

Ğ


Other channels of interest

• Depending on the value of the parameters/models, it is important to consider also:

$$\begin{cases} g' \to t\bar{t} \\ g' \to b\bar{b} \\ Z' \to t\bar{t} \\ Z' \to b\bar{b} \\ Z' \to \tau\tau \end{cases}$$

Final states containing quarks and leptons of the third family: a correlation with the flavour structure hinted by the anomalies. Top is present because of SU(2) gauge structure.

• This holds also in strongly coupled models. As before states don't decouple and large widths are expected. $M_U=M_{g^\prime}=M_{Z^\prime}$

 Fair to say that all the models are under pressure by various simultaneous constraints (EW and FCNC observables, direct searches)

Conclusions

- Flavour anomalies are surviving in a coherent way in both charged current (2012) and neutral current (2013).
- There is a physics program ongoing from LHCb: we are waiting for run 2 results, as well as new measurements $\Delta P_5', R(\phi), R(\Lambda), R(\Lambda), R(D_s), R(\Lambda_c), R(\Lambda_c^*), + \dots$
- Current anomalies in B decays have a simple and consistent interpretation at the effective field theory level.
- The NP scale inferred from the charged current anomalies is within the reach of present or near future colliders.
- Leptoquarks stands out as preferred mediators to be searched at colliders.
- In UV "complete" models with vector leptoquarks main signal in direct searches could arise from neutral states decaying into SM fermions of the third family. Typically we expect large decay widths.
- If charged current anomalies disappears, NP could be at much higher energy.