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● Tagged  beams 
● Applications: 

e
 cross section

● Beamline and decay tunnel instrumentation
● Rate and dose at the tagger station
● Background, efficiencies, rates at the neutrino detector
● Perspectives and conclusions
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Tagged neutrino beams
The ''forbidden dream'' of  physicists: detect simultaneously both 
the neutrino at the far detector and the associated lepton at 
production → unique tag of flavor at production

L. Hand, 1969, V. Kaftanov, 1979 (/K → 

)

G. Vestergombi, 1980, R. Bernstein, 1989 (K →
e
)

S. Denisov, 1981, R. Bernstein, 1989 (K
e3

)

L. Ludovici, P. Zucchelli, hep-ex/9701007 (K
e3

)

L. Ludovici, F. Terranova, EPJC 69 (2010) 331 (K
e3

)

 B. Pontecorvo, Lett. Nuovo Cimento, 25 (1979) 257

What's new here: a beam design optimized for (
e
)  

● using K+ → e+ 0 
e
 (K+

e3
 decays) 

● taking advantage of the progress in fast and radiation-hard detectors at the LHC

Literature:
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Importance and status of (
e
)

● Despite lepton universality in weak interactions the 

/

e
 ratio suffers from 

uncertainties related to nuclear effects (Phys. Rev. D86 (2012) 052003).
● Current mesurements (Gargamelle, T2K) are limited by systematics. 

● T2K recent measurement:
sys

 = 16%  (12% from the  flux)

● Measurement of leptonic CP violation: modulations in the energy spectrum of 
e
 from 



 → 

e
 : knowing well the 

e
 cross section is extremely valuable for future 

experiments planned worldwide (HyperK, LBNF/O).

T2K
1407.7389v2

HyperK
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Tagging e+ from  → e+
e
 

''SINGLE TAG'' = count ''all'' prompt e+ instrumenting the decay tunnel 

N(e+

prompt
) =  N(

e
)

Produced
 = ' N(

e
)

Detector

' geometrical acceptances of tagger and  detector (K decay kinematics) 

1) could measure 
e
) removing the largest uncertainty related to the flux 

(driven by hadro-production in the target)

CC(
e
)      N(

e

CC, Observed)/ N(
e
)

Detector

''DOUBLE TAG'' prompt e+ in time coincidence with 
e

CC at  detector  

...
2) could veto the intrinsic 

e
 background in conventional neutrino beams 

3) could measure E(
e
) event-by-event from the energies of e+ and 

BR(K
e3

) = (5.07 ± 0.04) %
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Concept for the tagger

Channel  at far detector Angular spread (*) kinematics

 → 


Bulk of 


+ ~ 4 mrad 2-body

+ → +

 → 

e+
e








e
 from  decay in 

flight (DIF)+(anti)

 

e+ ~ 28 mrad 3 body (low mass)

K+ → 0 e+ 
e


e
 from K

e3
e+ ~ 88 mrad 3 body (high mass)

Undecayed /p  / O(3 mrad)(**)

Other  decays 


No prompt e+

(*) RMS assuming p = 8.5 GeV (see below)
(**) depends on the focusing system

Let's assume a beam of collimated pions and kaons selected in sign and momentum.

K+

e+

0


e

tagger
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Concept for the tagger

K+

e+

0


e

tagger

● Good tagging efficiency for e+ from K
e3

 

thanks to the high emission angle
● e+ from DIF suppressed by  L


 << L  

and low emission angle (28 vs 88 mrad)

What else hits the tagger ?

● hadrons and  from K,  decays (mostly 
at low angle). Must be efficiently 
discriminated from e+

●  from K and  decays: easy to 
discriminate

● undecayed /K/p.  Very few/none if the 
incoming beam is collimated enough.

Angular distribution of e+ from K
e3
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Beam design considerations

From K+ decays
From + decays in flight

K+ decay ''earlier'':

(/m)


 = 0.13 (/m)


The 
e
/


 ratio roughly scales as:

To get a sizeable 
e
  from K

e3
 with 

reduced 
e
 from DIF:

1) keep the tunnel ''short''  (L)
2) increase the parent energy ()

→ 
e
 at far proportional to the 

decaying + → e+

Increasing E(K,) ~  

* increased R
K/

 

* < loss in the transport line 
* better e/ separation  
* E(

e
) higher than the R.O.I.  

* longer decay (tunnel)  

L = 100 mL = 50 m

(neglecting 

from  w.r.t. 


from )

→ Chosen trade-off: 
p(K+/) ~ 8.5 GeV/c +/- 20% 
L = 50 m

~ 10 % (see later)

     5.07 %
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Setup and simulation tools

● p-target interactions: FLUKA 2011 (cross-checked w. BMPT param.)                      
Be target: L= 1.1 m  3 mm. Energies: 30, 50, 60, 70, 120, 450 GeV/c          
(JPARC, U-70 at Protvino, NUSTORM 1ry beamline, FNAL-MI, CERN-SPS)

● K+/ charge selection, focusing, transport: not simulated in detail (horns for fast 
extraction, quad/solenoid focusing for slow extraction. See next → )

● K+/ decays and propagation in the tunnel (GEANT4, two independent)

● e/+ interactions with the fast calorimeter (GEANT4, up to hits level)

● e energy reconstruction: smearing with a realistic parametrisation

●  detector at 100 m: not sim. t ~1-10 ns, good NC-0 rejection, 500 t

50 m
100 m

17 m

Hadron window
10x10 cm² 

   < 3 mrad

Tagger
R

in
 = 0.40 m, R

ou
 = 0.57 m

det.

Beam dump

… dirt ...

p-target

 Transport line
+ 8.5 GeV/c ± 20%
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Geometrical acceptance

● % of e at -detector with a tagged 
e+ = 85% (tagger geometrical 
acceptance – forward ''hole'')

● % of tagged e+  with a e at far  = 
80% (far det. geometrical 
acceptance)

50 m
100 m

17 m

Hadron window
10x10 cm2

Tagger
R

in
 = 0.40 m, R

ou
 = 0.57 m

det.

Beam dump

… dirt ...

p-target

Transport line
+ 8.5 GeV/c ± 20%


e 

 

Radial profiles at the  detector (z = 100m)

e from Ke3 @ far e+ from Ke3 @ CAL

80 %              85 %

 < 3 mrad

20 m
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Neutrinos at the  detector

104 
e
CC

Detector at 100 m from the hadron window with a cross sectional area of 
17.7 x 17.7 m². Mass = 500 t (isoscalar)

● Only 3.3 % of 
e
 from DIF (low-E)

● <E> = 3 GeV, FWHM = 3.5 GeV
Interesting region of long baseline 
projects is well covered.
● A good rejection power for NC  is 

still necessary (large 

 flux).

The 
e
 flux is proportional to the e+ flux measured in the CAL.

It does NOT depend on:
hadroproduction, R

K/p
, PoT, 2ry beamline transport efficiency

It depends on:
geometrical efficiency of far detector, e+ efficiency in the CAL and backgrounds

1.95 1013 K+/
e

CC
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Transport line/focusing system
● The secondary hadrons have to be captured, sign-selected and transported 

to the instrumented decay tunnel

● Requirements at the tagging station:

● K+ and + in a 8.5 GeV/c ± 20 % momentum bite 

● distributed over a 10 x 10 cm² window 

● dN/d uniform in [0, 3] mrad

● Geom. acceptance of the dec. tunnel, 

– A = 4xx' = 4yy'  = 4 x (5 cm) x (3 mrad) = 0.6 mm rad

● Time structure: a 2 ms extraction

– Used for example in the past at the CERN WANF. 
– Horn pulses have this typical time development even for beams with     

 O(10 s) extractions (NOvA, T2K).
● Length: ~10 m induces a 16% loss from early decays

Not decayed hadrons do 
not intercept the tagger → 
acceptable rates
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Options for the focusing system

p 

Magnetic horn

p 

Lithium lens
(optional) K+

K+

Large aperture
quadrupoles + 
dipoles + 
collimators

● No detailed simulation/optimization. Considered two focusing schemas based 
on realistic figures (literature, e.g. the NUSTORM proposal)

● Option 2: static concept 

● Option 1: magnetic horn based
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Particle rates along the tagger

Maximum rates 
at about 20 m from 
the target (broad)

all
e+





Z position 50 m0 mH
z/

cm
2Max rate 

(kHz/cm2)

 190

 190

 100

 20

all 500

These rates are 
manageable with a 
proper choice of the 
detector technology
→ see later 

Assuming to have 1010  in a 2 ms spill at the tunnel entrance→ 

~ 500 kHz/cm2

~ 15 kHz/cm2
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Transport line/focusing system: option 1
● Adopts a magnetic pulsed horn (compatible with a 2 ms extraction)
● We assume a 85% collection efficiency (from NUSTORM) in the momentum bite. 
● For each proton energy (E

p
) we have considered the (x,x',y,y') phase space 5 cm 

downstream of the target
● We have figured out in this space the ellipse with emittance (

xx' 
= 

yy'
= 0.15 mm rad) 

maximizing the  rate → figure out the maximal collectable +/PoT (see below)
● 1.94 x 1013 K+ are needed per 

e

CC with a 500 t detector and the given setup (does 

not depend on E
p
) → count how many PoT are needed to get 104 

e

CC (= 1% stat. 

err. measurement).

Needed spills

~2 x 108

FLUKA simulation + emittance 
optimization in the phase space

Simple 
conversion

Simple 
conversion

Integrated PoT: 
achievable(*)!
Number of spills: 
might be challenging 
(depend on realistic 
repetition rates, 
need Hz. Multi-turn 
extraction ?)

* JPARC > 6.6 x 1020 PoT
   CNGS = 1.8 x 1020 PoT

2.4x1013 pot/spill every 6s

   NuMI = 10.7 x 1020 PoT

1.94 x 1013 K+ / 
e

CC 
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Transport line/focusing system: option 2
● We assume to be able to focus only those pions and 

kaons emitted in the momentum bite and in a 80 Sr 
cone centered in the forward direction (a small angular 
forward acceptance like the one achievable with a purely 
static focusing and bending channel). Large aperture 
quadrupoles might eventually be replaced by a Lithium 
lens device → )

● This option implies a loss of acceptance of ~ x 10 ( and 
correspondingly more PoT for a given neutrino rate).

● Could sustain longer proton pulses. http://www.lns.cornell.edu/public/CBN/2012/CBN12-1/CBN12-1.pdf

* JPARC > 6.6 x 1020 PoT
   CNGS = 1.8 x 1020 PoT
   NuMI = 10.7 x 1020 PoT
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Layout of the e+ tagger

t
0
 layer: a pre-shower providing absolute timing of arrival of the charged particle → rejects 

neutral background (). 

Calorimeter: Copper absorber (X
0
 = 1.436 cm, 

 
= 18.5 cm).Thickness (17 cm): > 3


 for 

particles at 88 mrad. Longitudinally segmented tiles. Area = 10 cm².

Vacuum chamber: 1.5 mm Be or 1 mm Al (to reduce conversion prob. before the t
0
 layer)

Instrumenting z = 10-50 m, m(CAL) = 185 t. Area ~ 100m2  → ~ 4 x 105 channels (including t
0
)
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e+/ separation
Defining E

1,2
 as the E deposited in a cylinder w. 

● r = 2R
Moliere

 (3.2 cm for Cu)

● h = 5n X
0
  (7.2 and 14.4 cm)

Selection:
● Coincidence with hits in t

0
 detector

● E
tot

 > 300 MeV

● R
1
 = E

1
 / E

tot
 > 0.2

● R
2
 = E

2
 / E

tot
 > 0.7

the smearing is done on E
tot

e+

+

e+

+

Spectra of K
e3

 e+ 

and + from K+ → 
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Pile-up and radiation

→ Both issues not critical

→  5% pile-up probability (= RSt
cal

)

Pile-up mostly from the overlap of a K
μ2

 muon with a candidate e+ (N.B. 

not decayed pions and kaons do not intercept the CAL)

Recovery time, t
cal 

= 10 ns

Rate, R = 0.5 MHz/cm2

Tile surface, S ~ 10 cm2

Possible mitigation: veto (also offline) mip-like and punch-through particles using the 
longitudinal segmentation of the CAL and eventually a muon catcher (Fe + chambers)

Radiation

150 MJ (but 64% into muons) from 1.94 x 1017 K+ decays (~ 104 
e

CC)

Mass: 3X
0 
(4.3cm) for 40 m of length (Cu) → 38 t → integrated dose < 1.26 kGy

(~100 kGy for CMS forward ECAL)
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Possible technology for the CAL

● Scintillator tile calorimeter developed 
for the ILC (CALICE AHCAL) 

● Readout: SiPM + WLS fibers

● but with a much coarser longitudinal 
segmentation.

● Copper could be used as absorber

NA62 LAV llayout
(10 x 10 x 37 cm crystals)

CALICE AHCAL prototype

3.3 x 3.3 x 17 cm
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Background  budget after selection
Signal K

e3
 ~ 5% of all  decays. Bulk:  from K

2 
(63%), from K+ → (21%)

● emis-id ~10-3  adding K
2

 , K
3

 and  DIF
● +/e+ dominates (e.m. component of hadronic shower): 

→ e+)  = 2.2 % → 18 % of fake e+ 
● 0/e+ Mis-id if the  converts in the t

0
 detector or in the vacuum chamber in front

1.5 mm Be →  → e+)  = 3 x 10-3 → < 2 % of fake e+ from (6% with 1 mm Al)  
CAL in vacuum region as for NA62 Large-Angle-Veto → 0

NB. fake e+ from  →  (5%) and  in  → 0  (2-6%) could be removed vetoing  
from the decay vertex. Requires t

0
-detector with 

t 
O(100 ps) ~ 

z
 O(1m): not used here.
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Systematics
● The number of reconstructed positrons is proportional to the e flux.

● The dependence of the e flux  from hadron yield, kaons/pions ratio, secondary 
transport efficiency and number of PoT is thus by-passed.

● The geometrical efficiency of the neutrino detector and of the tagger need to be 
known (tipically not critical). Residual dependence from: 

● the Ke3 decay kinematics (very well studied, experimentally) 

● the divergence of the beam at the entrance of the decay tunnel (could be 
measured in situ with low-intensity runs)

● The slope of the momentum distribution of K+ in the momentum bite (quite flat)

● Test beam characterisation of the calorimeter before installation.

● ~1 % systematics looks possible (even tough only a full simulation might give a 
more precise answer)
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''Double tag'' mode?

● With T
extr

= 1s (1 obs. e+ / 30 ns) and = 1 ns →  A = 2 % 

NB. Previous beam parameters (T
extr

 = 2 ms spill) not suitable (1 e+ / 70 ps 

observed). Even assuming  = 50 ps (→ A = 50%), the intrinsic limit related to the 
imperfect knowledge of the decay point transverse position starts to play a role 
(~80 ps uncertainty).

Accidental tag 
probability

measured e+ from K
e3 

per extraction fake e+ per extraction

Time coincidence between  


e

CC and e+       t-/c| <  

t : the difference between the e+ and the 
e

CC time (~100 ns).

 the linear sum of the timing resolutions of the e+ tagger and neutrino detector 

NB.
e

CC/spill ~ 5 x10-5
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Associating a single neutrino interaction to a tagged positron with a 
low probability of having picked up a fake coincidence would allow to 
know ''a priori'' the energy of that neutrino (event by event).

Tagger acceptance for K
e3 

(e+ + ) pairs = ~ 70% 

(→ still high even adding the  requirement)
 
E


resolution: mainly limited by the ignorance of the parent K+  energy 

(momentum bite 
p
 = 20%) besides the energy resolution on the e+:

For 3 GeV 
e
: [K+ (8.5 GeV) →  

e
 (3 GeV) + {e+}(5.5 GeV)]


E = 

em
 

p
GeV (i.e. ~20 %)

This could of course be combined with direct measurement at the far 
detector.

''Double tag'' mode?
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Present ''double tag'' mode challenges

● 1 s beam extraction is needed to cope with accidental coincidences 
and reasonably standard time resolutions 

● BUT magnetic horns cannot be pulsed at ~100 kA for so long (Joule 
heating) → should rely on static focusing components (or high-duty cycle 
Lithium lenses) at the expense of a lower collection efficiency

● Cosmic ray background increase

– O(10x) larger than in single tag mode

● Momentum bite → reflects directly on the achievable neutrino energy 
resolution. Being more selective → drop in statistics, PoT cost.
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Conclusions
● The development of fast, radiation hard detectors allows for a 
reconsideration of the old idea of tagged neutrino beams. 

● Tagging efficiencies: 59%. Background contamination ~ 18%. 85% of e+ 
with a e crossing the far detector.

● Single tag mode: 
● can be employed to reduce systematics in the determination of the initial 
flux (flux depends on kinematic corrections) and measure the e cross-
section

● 1 % precision (104 e
CC) achievable with a 0.5 kt detector and a 

reasonable amount of PoT (0.5-5x1020 PoT depending on the proton 
energy). Large number of spills (~2 x 108 ) might pose restrictions (to be 
better investigated). 

● Double tag mode can be implemented to veto e intrinsic component of the 
beam and reconstruct the  energy at source.

● Challenged by high accidental rates requiring long proton extractions (1 s) 



  26

 

Tagged neutrino beams, What Next (Padova) 01/12/2014

Thank you !

50 m
100 m

17 m

Hadron window
10x10 cm2

Tagger
R

in
 = 0.40 m, R

ou
 = 0.57 m

det.

Beam dump

… dirt ...

p-target

Transport line
+ 8.5 GeV/c ± 20%   < 3 mrad

104 
e

CC

T2K 1407.7389v2
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Neutrinos from protons

+

K+ K0

L
K-

+


 a




e a

e

-

-

K0

S

pN
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Neutrinos from protons

+

K+

+


 a




e a

e

pN

-

-

Sign-selecting the secondaries
Consider e+ like CC (assume NC0 rejection)
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Neutrinos from protons

+

K+

+


e a

e

pN

-

-

Sign-selecting the secondaries
Consider e+ like CC (assume NC0 rejection)
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Neutrinos from protons

K+


e

pN

Sign-selecting the secondaries
Consider e+ like CC (assume NC0 rejection)
Consider large angle e+ only and shorten tunnel
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Intrinsic uncertainty 

t
e+


e

CC


e

t ~ 50-100 m/c = 170-330 ns. The difference between the e+ and the 
e
CC time.

Realistic 
t 
of 50 ps (contribution from tagger and neutrino detector timing resolution)

Coincidence t-/c| < 
t

This assumes that the e+ and the neutrino are isocronous which is not perfectly true due 
to the e+ emission angle. The correction is of O(R

in
/2c) ~ 80 ps


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