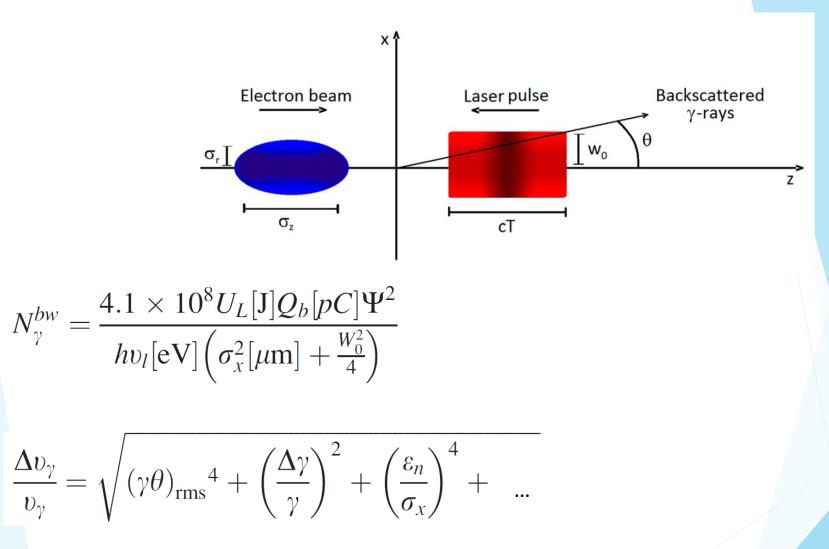


Thomson

Source

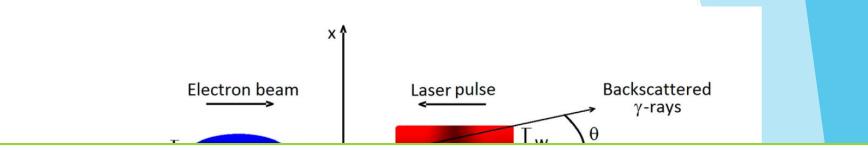
Reserch Activity Report

6D Phase Space Electron Beam Analysis And Optimization For Rf Linac Based Inverse Compton Scattering Radiation Sources

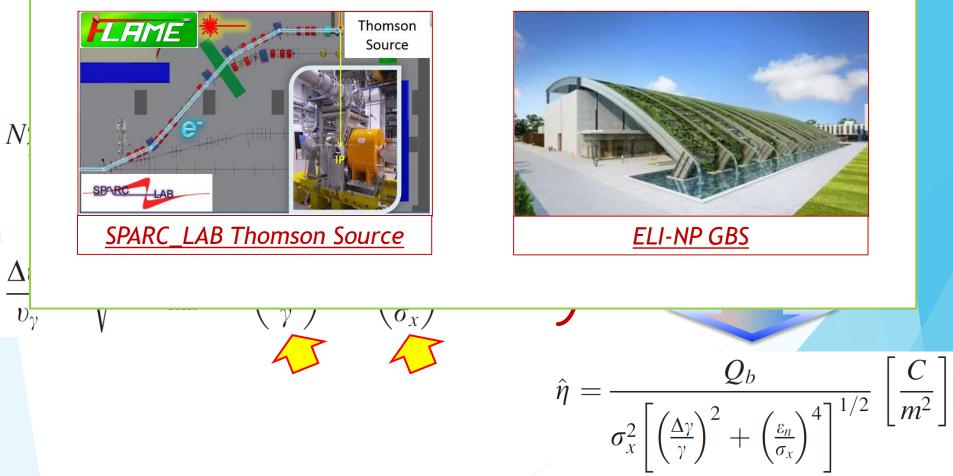


Anna Giribono

PhD Student in Accelerator Physics "La Sapienza" University of Rome <u>Supervisors:</u> Prof. Luigi Palumbo Doct. Cristina Vaccarezza on behalf of the **SPARC LAB and ELI-NP team**


<u>Outline</u>

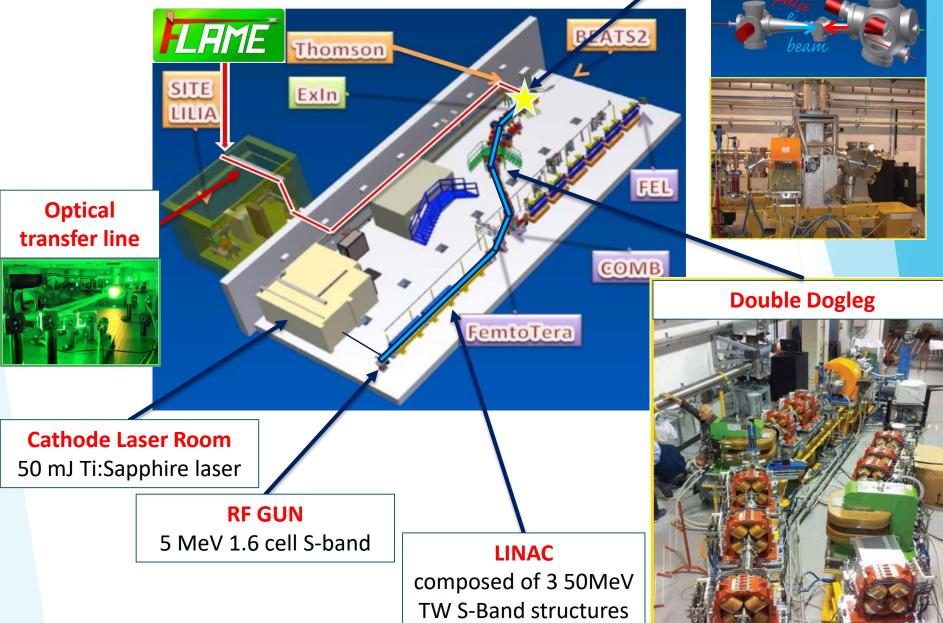
- 6D phase space electron beam analysis and optimization for RF linac based Inverse Compton Scattering Radiation Sources
 - 1. SPARC_LAB Thomson Source (20 500 keV)
 - 2. ELI-NP GBS (0.2 19.5 MeV)
- SPARC_LAB Thomson Source
 - SPARC_LAB experiments
 - First and second commissioning phase
- ELI-NP GBS
 - Start to end simulations
 - Linac error sensitivity studies
 - Quasi-constant gradient C-band structures
 - Longitudinal long-range wake field effects in multi bunch operation



High Brigthness Photoinjector + Intense High Power Laser System

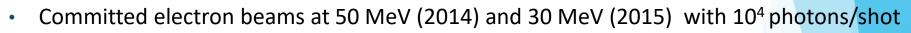
The SPARC LAB Thomson source

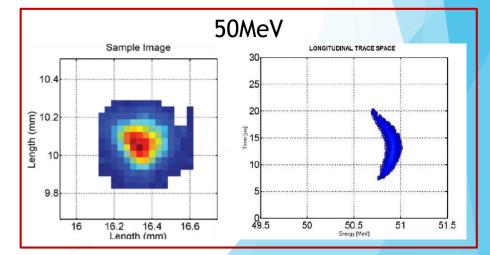
Peculiarities of the source are:

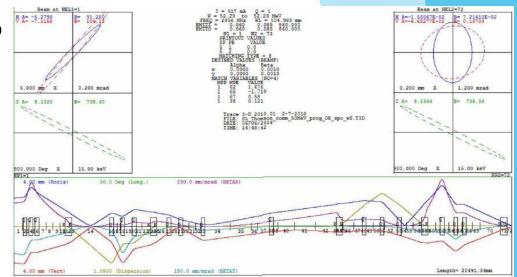

- 1. Energy tunability of the source in the range [20 500] keV
- 2. Moderate mono-chromaticity of the source with a BW (rms) $\leq 10\%$
- 3. Useful for medical imaging, cultural heritage, etc..

Beams Parameters @IP							
Electron Beam Q = 100 - 800 pC							
Energy 30 - 150 MeV							
Energy spread	%						
Bunch length	15 - 20	ps					
$\varepsilon_{n_{x,y}}$ 1 – 3 mm mrac							
Focal Spot Size	5 - 20	μm					
Laser Beam λ = 800 nm							
Energy 0.2 - 2 J							
Focal Spot Size	10	μm					

SPARC_LAB - Beam Specifications					
Energy 20 – 500 keV					
Flux within FWHM BW	10 ⁹	N _{ph} /pulse			
BW (rms)	10	%			
Source Size	10	μm			




The SPARC LAB Thomson source


- Simulations of the beam envelope up to the IP have been performed with the TSTEP/TRACE 3D code (Elegant)
 - Space charge contribution
 - At IP σ_{x,y} ≈ 50 μm
 - Correction of the horizontal dispersion in the double dogleg
- Measured parameters

Spot size focusing limited by the background noise on radiation diagnostic system.

Beams Parameters @IP						
Energy	50.6 ± 0.2	30 ± 0.2	MeV			
Energy spread	0.1	0.06	%			
Bunch length	3.1 ± 0.2	2.2 ± 0.1	ps			
ε _{nx.v}	≈ 2.2	≈ 4.0	mm mrad			
Focal Spot Size	90 ± 3	110 ± 9	μm			

TRACE 3D simulation of Twiss parameters along the LINAC

The ELI-NP γ-source

Peculiarities of the γ -source are:

- 1. Energy tunability of the γ -source in the range [0.2 20.0] MeV
- 2. Mono-chromaticity of the γ -source with a BW (rms) $\leq 0.5\%$
- 3. Peak brilliance of the γ -source > $10^{21} [N_{ph}/s \cdot mm^2 \cdot mrad^2 \cdot 0.1\%]$
- 4. Useful for nuclear physics and a wide range of applications

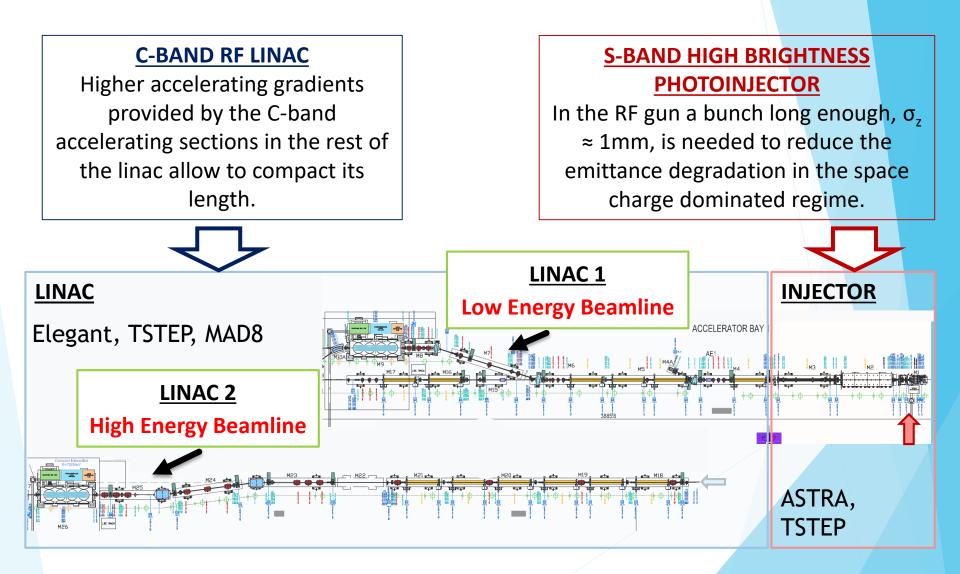
- 75 MeV ≤ Energy Tunability of Electron Beam ≤ 740 MeV
 - $0.04\% \leq \text{Energy Spread of Electron Beam (%)} \leq 0.1\%$
 - 0.2 mm mrad $\leq \epsilon_n \leq 0.6$ mm mrad
 - $15 \ \mu m \le \sigma_t \le 30 \ \mu m$

The ELI-NP γ-source

Technical Design Report

E-Gammas proposal for the ELI-NP Gamma beam System

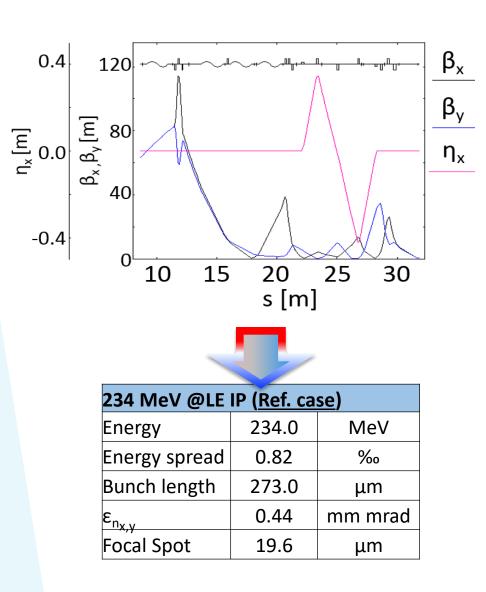
With 79 tables and 252 figures

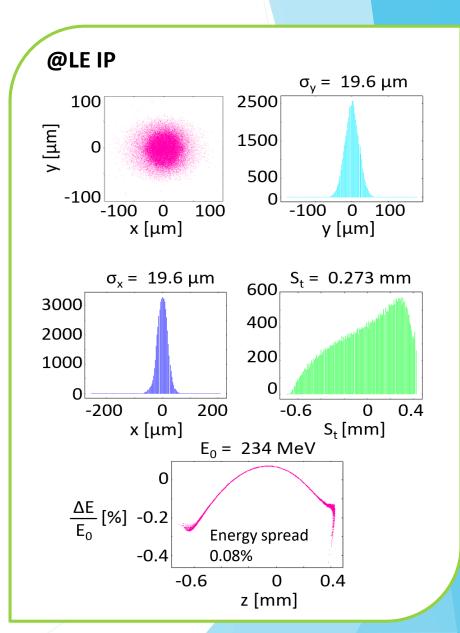

Beams Parameters @IP					
Electron Beam Q = 25 - 400 pC					
Energy 75 – 740 MeV					
Energy spread	0.04 - 0.1	%			
Bunch length	100 - 400	μm			
ε _{n_{x,y}}	0.2 – 0.6	mm mrad			
Focal Spot Size	> 15	μm			
Laser Beam λ = 515 nm					
Energy	0.2 - 0.4	J			
Focal Spot Size	> 28	μm			

GBS - Beam Specifications						
Energy	0.2 – 20.0	MeV				
Flux within FWHM BW	≤ 2.6•10 ⁵	N _{ph} /pulse				
Peak brilliance	10 ²⁰ - 10 ²³	N _{ph} /s∙mm²∙ mrad²∙0.1%				
BW (rms)	≤ 0.5	%				
Source Size	10 - 30	μm				

Machine layout

HYBRID SCHEME CONSISTING IN A SPARC-LIKE S-BAND HIGH BRIGHTNESS PHOTOINJECTOR FOLLOWED BY A C-BAND RF LINAC


Start to end simulations


- Intensive e⁻ Beam Dynamics (BD) simulations for several Working Points (WPs) to optimise the photon beam parameters
- Several beams from the S-band injector tracked along the C-band booster linac
- C-band structures in off-crest operation to preserve the energy spread in the entire energy range.

	γ-source WP [MeV]	Energy @IP [MeV]	Energy @Inj Exit [MeV]	Energy spread [‰]	Bunch length [µm]	ε _{n_{x,y} [mm mrad]}	β _{x,y} [m]	σ _{x,y} [μm]
	0.20	75	70.5	1.14	275	0.51	0.16	23.5
	1.00	165	81.5	0.86	274	0.44	0.43	20.0
LINAC	2.00	234	81.5	0.82	273	0.44	0.43	19.5
	2.85	280	81.5	0.78	275	0.45	0.50	19.5
	3.50	312	91.5	0.80	278	0.41	0.55	19.5
2	10.00	530	81.5	0.45	272	0.44	0.71	17.5
LINAC	13.00	605	81.5	0.43	273	0.44	0.71	17.5
	19.50	740	120 - 146	2.0 – 3.5	700	> 0.45	-	-

Start to end simulations

Example: 2.0 MeV y-source WP

Linac error sensitivity studies

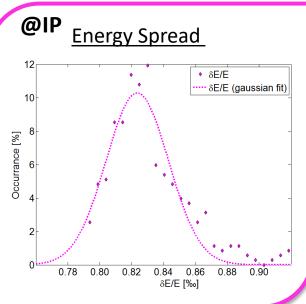
<u>The Method</u>

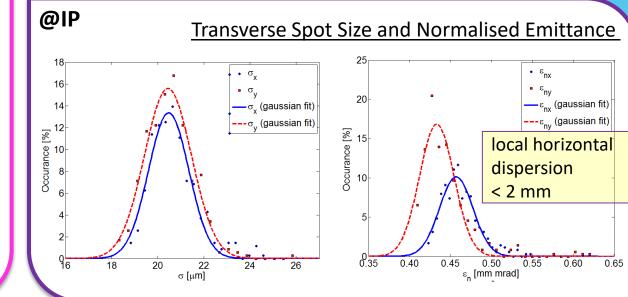
- BD simulations over a sample of 100 machine runs aimed to:
 - 1. Test the robustness of the linac to any possible error
 - 2. Provide jitter and alignment specifications for accelerating structures and magnets.
- Final BD simulations over a sample of 350 machine runs for several WPs for both Low Energy beam line and the High Energy beam line.
 - 1. Trajectory correction with Elegant routines
 - Last vertical and horizontal steerers used to maximise the luminosity at IP
 - 3. Errors as indicated in the Table.

Linac Transfer Line Specifications

C-band Accelerating Sections

RF Voltage [ΔV]	< 2	‰
RF Phase [Δφ]	< 1	Deg
Alignment on transverse plane [Δxy]	< 70	μm
<u>Quadrupoles</u>		
Geometric strength [Δk]	< 3	‰
Alignment on transverse plane [Δxy]	< 70	μm
Tilt about incoming longitudinal axis	< 1	mrad
[Δθ]		mau
<u>Dipoles</u>		
Bend angle [ΔB]	< 1	‰
Tilt about incoming longitudinal axis	< 1	mrad
[Δθ]		IIIIau
<u>Steerers</u>		
Strenght [∆k]	< 0.2	μrad
<u>BPMs</u>		
Resolution	< 20	μm
<u>Cavity BPMs</u>		
Resolution	< 5	μm

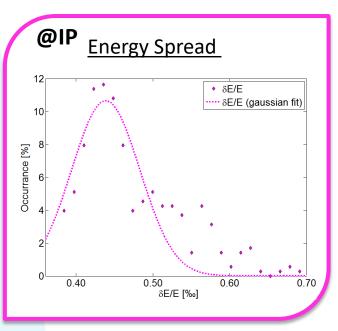


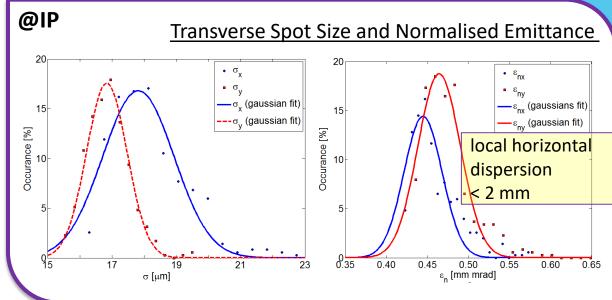

LE linac error sensitivity studies

2.0 MeV y-source WP

- Linac sensitivity studies done for each WP at LE IP.
- The analysis has been in terms of electron beam quality at LE IP.
- Deviation from the reference value of few percents.
- The parameters are still in specifications.

234 MeV @IP	Without errors	With errors	
Energy	234.0	234.3 ± 0.3	MeV
Energy spread	0.82	0.82 ± 0.02	‰
Bunch length	273.0	274.5 ± 6.0	μm
ε _{n_{x,y}}	0.44	0.46 ± 0.02	mm mrad
Focal Spot	19.6	20.5 ± 1.0	μm
ΔC_{x-y}	0	0.2 ± 0.5	μm

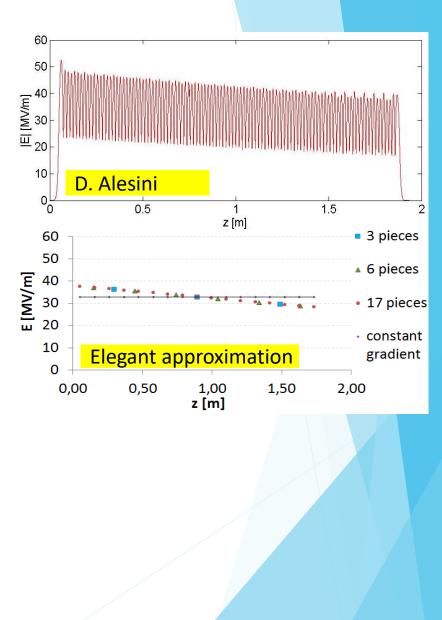



HE linac error sensitivity studies

<u>10.0 MeV γ-source WP</u>

- Linac sensitivity studies done for each WP at HE IP.
- The analysis has been in terms of electron beam quality at HE IP.
- Deviation from the reference value of few percents.
- The parameters are still in specifications.

530 MeV @IP	Without errors	With errors	
Energy	529.6	529.8 ± 0.5	MeV
Energy spread	0.45	0.44 ± 0.05	‰
Bunch length	272.0	272.1 ± 5.2	μm
ε _{n_{x,y}}	0.44	0.47 ± 0.02	mm mrad
Focal Spot	17.3	17.8 ± 1.1	μm
ΔC_{x-y}	0	0.1 ± 0.5	μm



The Model

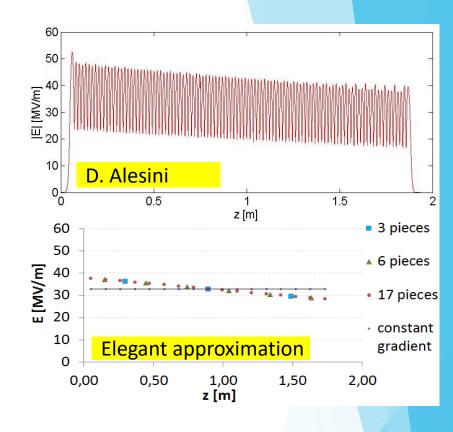
- C-band cavities splitted in more pieces to provide a good enough approximation to the real gradient profile.
- RF focusing carefully treated with Elegant routines based on the Serafini-Rosensweig model.

The Method

- 1. Studies on the <u>first</u> C-band cavity @33MV/m
- 2. Studies on the **overall** C-band linac matched for the 234 MeV electron beam.

The Model

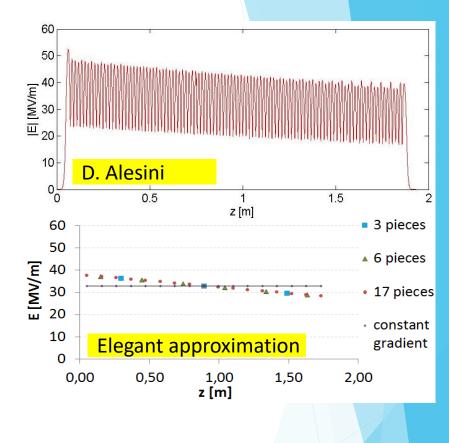
- C-band cavities splitted in more pieces to provide a good enough approximation to the real gradient profile.
- RF focusing carefully treated with Elegant routines based on the Serafini-Rosensweig model.


The Method

- 1. Studies on the **first** C-band cavity @33MV/m
- 2. Studies on the rall C-band linac matched for the 234 cron beam.

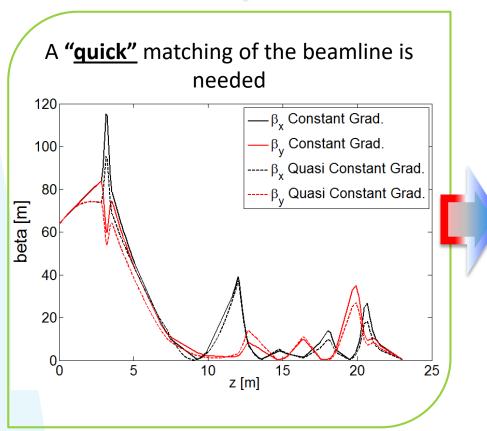
Quasi constant gradient behavior affects mainly the transverse beam dynamics resulting in a decrease of the spot size:

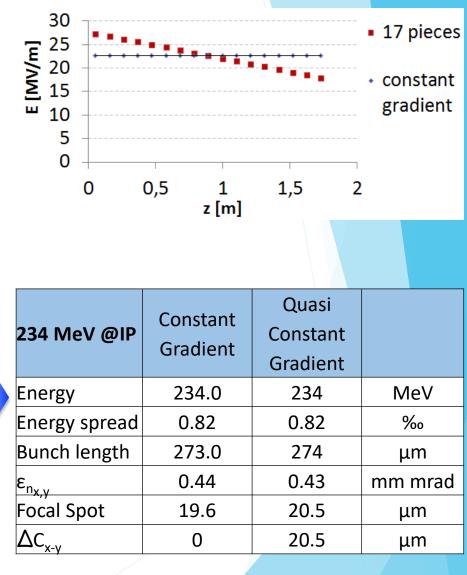
the gradient at the entrance (38MV/m) is much stronger than the one in case of a constant gradient cavity (33MV/m).


Beam parameters @first C-band section exit							
1	3	6	17				
0.910	0.911	0.912	0.912	%			
274	274	274	274	μm			
140	140	140	140	MeV			
334	323	320	318	μm			
	1 0.910 274 140	130.9100.911274274140140	1360.9100.9110.912274274274140140140	136170.9100.9110.9120.912274274274274140140140140			

The Model

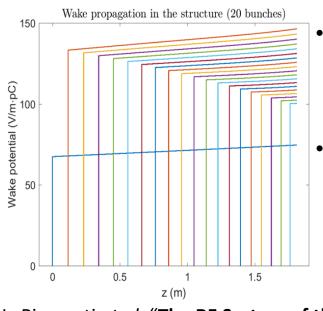
- C-band cavities splitted in more pieces to provide a good enough approximation to the real gradient profile.
- RF focusing carefully treated with Elegant routines based on the Serafini-Rosensweig model.


The Method


- 1. Studies on the **<u>first</u>** C-band cavity @33MV/m
- 2. Studies on the **overall** C-band linac matched for the 234 MeV electron beam.

<u>The Method</u>

- 1. Studies on the first C-band cavity @33MV/m
- 2. Studies on the **overall** C-band linac matched for the 234 MeV electron beam.



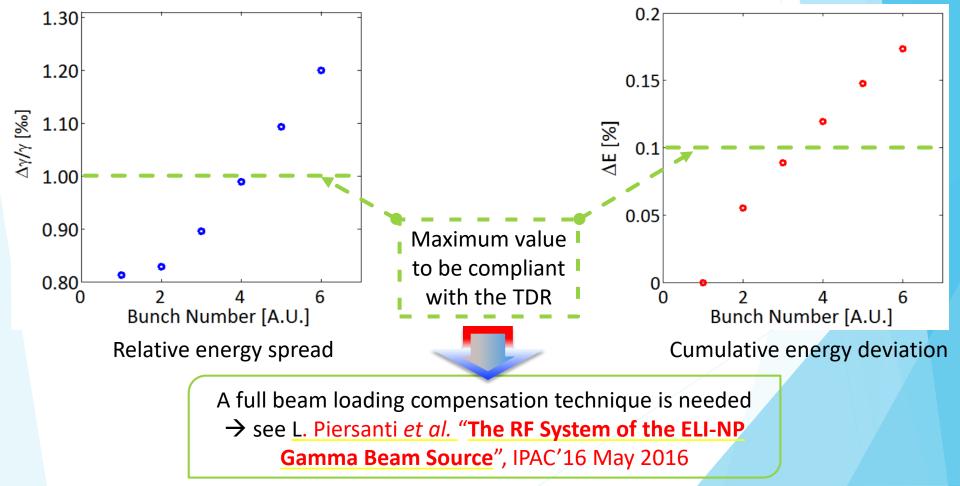
Multi bunch operation

- The multi bunch operation together with the 100 Hz rep. rate allows to increase the gamma flux
- In the multi bunch configuration long range wake fields arise both longitudinal and transverse
- Studies on the electron beam quality at LE IP in case of on-axis motion so that the transverse long-range wake fields can be neglected.

Multi bunch operation# bunches in the
train32Bunch separation T_b 16Bunch separation T_b 16Energy variation
along the train ΔE <0.1

Model for long range longitudinal wake fields

Longitudinal wake fields propagation inside the C-band accelerating cavities calculated at different instances corresponding to the n^{th} bunch arrive (n=0,1, ..., 20)


Full beam loading compensation technique can avoid the energy modulation along the train reducing the longitudinal phase space degradation at the collision with the laser pulse

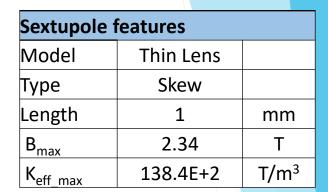
L. Piersanti et al. "The RF System of the ELI-NP Gamma Beam Source", IPAC'16 May 2016

Multi bunch operation

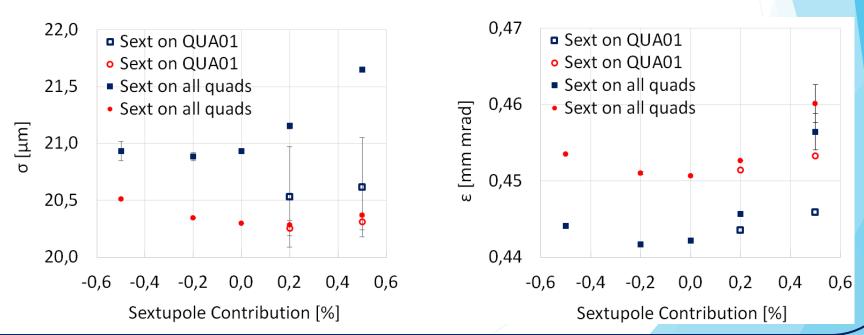
<u>The Method</u>

- Studies for the beamline matched for the 312 MeV electron beam
- Simulated with the Elegant code superimposing long-range wake fields to short-range wake fields
- After the passage of 20 bunches the wake field reaches a steady state, so we do not expect observable deviation from the bunch 20th to the last of the train

Conclusions


- Expertise coming from high brightness linear accelerators and high quality high power ps laser system enables the production of high spectral density monochromatic and tunable energy photon sources
- SPARC_LAB Thomson commissioning is still on going but interesting results have been observed
- > Start to end simulations for the ELI-NP Gamma Beam System has been completed
- Machine sensitivity analyses has been completed and suggest that the machine is robust to errors in the specified range
- > The effect of quasi constant gradient accelerating structures on the BD has been evaluated
- Longitudinal wake field effects in multi bunch operations have been considered underlying the importance of the full beam loading technique
- Analyses have been also carried out on sextuple terms, dark current completion, etc..

Thank you!!!


Sextupolar term on D-type QUADs

<u>The Method</u>

- Studies for the beamline matched for the 234 MeV electron beam.
- Sextupolar terms acts if a non zero dispersion occurs
 → errors have been included

<u>Slightly</u> degradation of σ and ϵ at IP on vertical (circles) and horizontal (squares) planes. The beam is still in specifications

