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analytically and to direct numerical evaluation: the CHIRON package



FV and PQ for Masses and Decay Constants                   Pisa, 29.07.2015 Thomas Rössler

•  
 
 
 
 

OUTLINE

Finite Volume (FV) for Masses and Decay Constants

FV for Partially Quenched (PQ) ChPT

CHIRON

Masses and Decay Constants in ChPT at Two-Loop
Finite Volume
Technicalities: Integral Classification and Reduction
Sunset diagram
Numerical input, numerical examples

PQ in a Nutshell: Group structure, dynamical fields,
Lagrangian
Neutral propagators, Double poles, Residues
Numerical examples

All quantities (both unquenched and PQ) now publicly available, both 
analytically and to direct numerical evaluation: the CHIRON package

Motivation: Lattice
Improve Lattice extrapolations, sanity 

checks, determination of LECs for ChPT, …



FV and PQ for Masses and Decay Constants                   Pisa, 29.07.2015 Thomas Rössler

• Ab-initio calculation using FORM
• Integral classification 

and reduction to a minimal set 
(see more later)

• Hair in the soup: Sunset!

• Framework here: Standard ChPT up to order p6,  
two and three flavour cases treated separately

Regularization/Renormalization:            ChPT version of MSbar

loops

LECs

Two-loop masses and decay constants
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Figure 3: Diagrammatic contributions to the pseudoscalar self-energy, up to O(p6). Cir-
cular vertices are of O(p2), the filled boxes are of O(p4), the open box is of O(p6).

major complication is given by the sunset diagram figure 3h). Apart from its property
of irreducibility to products of one-loop integrals, its momentum flow leads to an explicit
dependence on p2.12 For the time being, the evaluation of the three integrals13
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12Note also that whenever derivatives with respect to p2 play a role, the explicit dependence of integrals
on the external momentum will evidently lead to derivatives of these, thus making it necessary to evaluate
several more integrals explicitly, cf. section 8.

13We count three integrals since e. g. H22 can be reduced to the three remaining ones and products of
one-loop integrals. Similarly, the sunset integrals with both loop momenta standing in the numerator -
which are omitted in equation (33) - can be reduced to the aforementioned. A more complete view over
the Passarino-Veltman type reduction procedure used thoughout this thesis and the resulting identities
interrelating the intergrals can be found in section 7.
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Figure 2: Diagrammatic contributions to the pseudoscalar self-energy, up to O(p4). The
circles in a) and c) are of O(p2), the filled box in b) is of O(p4).

B(m2) =
1

i

∫
ddq

(2π)d
q2

q2 −m2
= m2A(m2) (24)

which leaves only one integral to be solved:

A(m2) =
m2

16π2

{

λ0 − ln(m2) +O(ϵ)

}

(25)

We choose a renormalization scheme which is a ChPT-specific variant of MSbar

λ0 =
1

ϵ̄
=

1

ϵ
+ ln(4π) + 1− γE (26)

The renormalization scale µ2 will cancel out of all physical results since the LECs cancel
by construction the µ2 dependence of the loop part.

As example, I show the loops contributions to the pion and the kaon self-energy.
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Table 1: Coefficients of the one-loop diagram contribution to the self-energy Σ4(p2) for the
pion, split up according to which operator of L4φ

2 contributes and which virtual particle
occupies the loop, given in units of the divergent integral A(m2). Note that derivatives
can come with the loop particles, thus introducing their masses into the result, as well as
with the external particles, introducing their own squared momenta. Lowest order mass
relations were applied to the symmetry-breaking terms. Observe also the cancellation of
the kaon mass dependence: In an unbroken SU(2), the pion has to remain massless.
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The LECs renormalize as

Li ≡ (µc)−2ϵ

(
−1

32π2ϵ
Γi + Lr

i (µ)

)

= (µ)−2ϵ

(
−1
32π2

Γiλ0 + Lr
i (µ) +O(ϵ)

)

(30)

with coefficients Γi, and ln c = −1/2(ln(4π) − γ + 1) specifying the finite part in our
renormalization conventions. The Lr

i thus acquire the already mentioned scale dependence

Lr
i (µ2) = Lr

i (µ1) +
Γi

16π2
ln

(
µ1

µ2

)

. (31)

The li in the SU(2) case renormalize in a similar manner, and authors usually quote the
µ-independent l̄i which are defined as

l̄i =
32π2

γi
lri (µ)− ln

M2
π

µ2
. (32)

For the numerical evaluation of the mass corrections ∆m4, one can promote the lowest
order masses in the p4 terms on the right hand side of equation (27) to physical masses.
Since the induced difference is of higher order, the formal accuracy is maintained. It should
be noted that the elimination of the lowest order parameters in favour of the physical ones
is not unique due to the Gell-Mann Okubo degeneracy. This plays a particular importance
if the complete mass expansion is done to higher order since a part of the higher order
terms will evidently acquire an explicit dependence on the specific choice for the elimination
procedure in the lower orders. The inverse pion decay constant can be promoted to its
physical value due to a similar argument.

6 Anatomy of the p6 calculation

The NNLO corrections to the pseudoscalar self-energy are, according to the power counting
scheme established in section 4, given by diagram contributions with up to two loops [5].
All relevant diagrams can be seen in figure 3. These are all tadpole10 integrals except for
the sunset diagram.

For the evaluation of the two-loop integrals, mainly two complications arise compared
to the NLO case. By considering figure 3, note that a new one-loop integral with a squared
propagator arises. Two of the three two-loop diagrams, i. e. diagrams f) and g), yield
simple products of one-loop integrals. This is very convenient, but note that expansions
as in equation (25) are no longer sufficient, and the terms linear in ϵ play a crucial role in
order to calculate the NNLO mass correction up to O(1) in the ϵ expansion.11 The other

10The term “tadpole” was introduced by Sidney Coleman. The background-interested reader might find
it amusing that the editor of the respective publication did not appreciate the terminology at first, but
caved in, once Sidney proposed “lollypop” and “spermion” as alternatives.

11In the infinite volume case of the mass correction, only A(m2) has to be known up to O(ϵ), known
from e. g. [6].
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Equation 38 has to be understood in the way that Σ4(M2
4 ) will be obtained by insertion

of the analytical expression for the NLO mass expansion. After cancellations, the differ-
ence to Σ4(M2

0 ) will then be of O(p6). We only implicitly require a consistent choice for
the elimination in terms of the pseudoscalar masses in Σ4 in order to have a consistent
perturbative series up to O(p6).

The very instructive equation (38) oversimplifies the actual procedure. If we want to
evaluate the mass correction by using physical meson masses as input, additional terms in
the higher orders will of course be generated. One generally finds for the mass correction
fulfilling all necessary features

{
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Here the first argument represents the lowest order parameters m̂ and ms that naturally
emerge in the calculation, together with a choice of their elimination in favour of the lowest
order meson masses, whereas the second argument represents the genuine p2 dependence.

By following this recipe, apart from the “infinite renormalization” that makes the O(p6)
finite, an additional “finite renormalization” occurs that depends on the (different kinds
of) specific choices at O(p4). Obviously, the new p6 terms coming from the self-energy
itself can - if overall p6 accuracy is sought - easily be expressed in terms of (any convenient
choice of) physical masses. These are again all formally equivalent.

Via diagrams i) from figure 3, the new LECs Ci enter the calculation. They renormalize
via

Ci ≡ (µc)−4ϵ
(γ2i
ϵ2

+
γ1i
ϵ

+ Cr
i (µ)

)

= µ−4ϵ (γ2iλ2 + γ1iλ1 + Cr
i (µ) +O(ϵ)) . (40)

Just to give one explicit example, I show the NLO and NNLO kaon mass correction in
infinite volume coming out of our calculation as a byproduct. All our results in infinite
volume for the masses and decay constants have been checked against the known results
[6].
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split                     appears then naturally
eliminate either integral (Bessel) or sum (Jacobi): diff. convergence behaviour
periodic BC, time kept continuous: break Lorentz

Here: Infinite volume masses serve as numerical input!

Finite Volume
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8 Corrections to the decay constants

The (physical) pion decay constant is defined by the coupling of the axial-vector current
to the pion,

⟨0|Aµ(0)|π−(p)⟩ = i
√
2pµFπ ; Aµ = ūγµγ5d . (59)

Amongst other things, it dictates the rate of leptonic charged pion decays as

Γ(0)(π → ℓν) =
G2

F |Vud|2F 2
π

4π
mπm

2
ℓ

(

1−
m2

ℓ

m2
π

)2

(60)

Its physical value in this convention is Fπ = 92.2 MeV.21 We also encounter its inverse
powers in the chiral expansions, e. g. of the pseudoscalar masses.22

The remaining two decay constants can be defined in a way similar to equation (59),
but for definiteness we will keep the example of the pion in the remainder of this section.

One way to calculate the chiral expansion of Fπ is via the axial-vector pseudoscalar
two-point function. The diagrams up to order p6 can be seen in figure 4. Their structural
similarity to the mass diagrams (cf. figure 3) facilitates their calculation. In addition to
these, the wavefunction renormalization of the external pion state has to be taken into
account. In its most general way, this can be seen from the LSZ theorem. Originally used
for scattering amplitudes, the argument holds for any kind of physical quantity. There are
different equivalent formulations (e. g. that differ if they use truncated Green’s functions
or not), so we only consider the easiest for our purpose. According to

out⟨φ1...φi|φi...φn⟩in = ⟨φ1...φn⟩ = Z−n
2Gtrunc(φ1, ...,φn) , (61)

an S-matrix element (or any other amplitude) can be calculated given the correspond-
ing truncated Green’s function and the wavefunction renormalization factors

√
Z of the

external fields. Each field thereby contributes with its own 1/
√
Z.

21There are several conventions that differ by different powers of
√
2.

22It formally enters as the lowest order parameter and will then be substituted for the physical one in
our calculations, cf. section 6.
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We have used the notation A(m2) to denote the O(1) term in the ϵ expansion of the
integral A(m2).

7 Finite volume effects

It is inevitably the nature of any lattice calculation that it is performed in a finite volume.
In order to perform a proper matching between a Lattice QCD calculation and ChPT, a
good control over the additional quantum corrections to physical quantities which emerge
due to the finiteness of the volume is required. Only then, ChPT can serve as a reliable
validity check for the lattice calculation, or LECs can be properly extracted from the lattice
result.

ChPT in a finite volume [9, 10, 11] was introduced already shortly after the introduction
of the theory itself. Conceptually, a finite volume is introduced that restricts the size
of the Euclidean 3-dimensional space. The “time“ dimension is assumed to be much
larger. This treatment self-evidently breaks Lorentz invariance. A Passarino-Veltman type
integral reduction can still be performed, provided that additional projections obeying the
remaining symmetry are allowed and explicitly taken into account.

The introduction of a finite volume with periodic boundary conditions naturally re-
stricts and discretizes the set of allowed momenta to propagate, thus promoting momentum
integrals to sums. Our calculations are done in the ”p–regime” defined by MπL≫ 1, i. e.
where the system is distorted mildly and the only change with respect to the continuous
case is the modification of the propagators of the meson fields due to the periodic boundary
conditions.

∫
dp

2π
F (p)→

1

L

∑

n∈Z

F (pn) ≡
∫

V

dp

2π
F (p), (43)

With the help of a Poisson summation formula, these can be moved back to a sum of
integrals

1

L

∑

n∈Z

F (pn) =
∑

lp

∫
dp

2π
eilpp F (p), (44)

where the summation over lp runs over the set of vectors of length nL and separation of
the lp = 0 term allows to elegantly perform a well-defined decomposition of an arbitrary
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Poisson
integral into an infinite volume (IV) and a finite volume (FV) part

I = I∞ + IV . (45)

The tensor reduction and the notation used for our integrals will be shown for the case
of a Euclidean space-time. They can be similarly obtained for a Minkowski space-time by
simple replacements and small adaptations. Regarding the transition and translation of
expressions between Euclidean and Minkowski space-time, the reader may consult section
C.

Regarding the Passarino-Veltman reduction, the four-vector

tµ ≡ (1, 0, 0, 0) (46)

is additionally allowed as projector in the FV case and sufficient to provide a reduction
to scalar components in the center-of-mass (cms) frame.16 We furthermore introduce the
purely spatial part of the metric as

tµν ≡ δµν − tµtν = diag(0, 1, 1, 1) (47)

as a convenient abbreviation.17

The remainder of this section has the aim to properly set up a notation for the inte-
grals. Since the structure of the FV integrals contains the (simpler) structure of the IV
integrals, we only show notation and reductions of the former. We use the integral notation
introduced in [7], i. e. we write the basic one-loop one-propagator integrals as

⌊X⌋ =
∫

V

ddr

(2π)d
X

(r2 +m2)n
, (48)

the one-loop two-propagator integrals as

⟨X⟩ =
∫

V

ddr

(2π)d
X

(r2 +m2
1)

n1((r − p)2 +m2
2)

n2
, (49)

and finally for the sunsets

⟨⟨X⟩⟩ ≡
∫

V

ddr

(2π)d
dds

(2π)d
X

(r2 +m2
1)

n1(s2 +m2
2)

n2((r + s− p)2 +m2
3)

n3
. (50)

16In this frame, p · lp = 0.
17Note that the FV effect has to be distinguished from other lattice effects, in particular also from the

introduction of a lattice spacing, although both of these effects have in common that they generally break
the three-dimensional Euclidean rotational symmetry down to a discrete cubic symmetry group. Note
also that this does not imply that the quantities that are evaluated cannot still be invariant under larger
symmetries. This is particularly obvious for our evaluation of quantities involving a single particle in its
cms frame with periodic boundary conditions: The quantities do not feel the cubic shape of the volume at
all, i. e. the volume is solely parametrized by a cubic length L via V = L3.
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2pµFπ ; Aµ = ūγµγ5d . (59)

Amongst other things, it dictates the rate of leptonic charged pion decays as

Γ(0)(π → ℓν) =
G2

F |Vud|2F 2
π

4π
mπm

2
ℓ

(

1−
m2

ℓ

m2
π

)2

(60)

Its physical value in this convention is Fπ = 92.2 MeV.21 We also encounter its inverse
powers in the chiral expansions, e. g. of the pseudoscalar masses.22
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two-point function. The diagrams up to order p6 can be seen in figure 4. Their structural
similarity to the mass diagrams (cf. figure 3) facilitates their calculation. In addition to
these, the wavefunction renormalization of the external pion state has to be taken into
account. In its most general way, this can be seen from the LSZ theorem. Originally used
for scattering amplitudes, the argument holds for any kind of physical quantity. There are
different equivalent formulations (e. g. that differ if they use truncated Green’s functions
or not), so we only consider the easiest for our purpose. According to

out⟨φ1...φi|φi...φn⟩in = ⟨φ1...φn⟩ = Z−n
2Gtrunc(φ1, ...,φn) , (61)

an S-matrix element (or any other amplitude) can be calculated given the correspond-
ing truncated Green’s function and the wavefunction renormalization factors

√
Z of the

external fields. Each field thereby contributes with its own 1/
√
Z.

21There are several conventions that differ by different powers of
√
2.

22It formally enters as the lowest order parameter and will then be substituted for the physical one in
our calculations, cf. section 6.
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We have used the notation A(m2) to denote the O(1) term in the ϵ expansion of the
integral A(m2).

7 Finite volume effects

It is inevitably the nature of any lattice calculation that it is performed in a finite volume.
In order to perform a proper matching between a Lattice QCD calculation and ChPT, a
good control over the additional quantum corrections to physical quantities which emerge
due to the finiteness of the volume is required. Only then, ChPT can serve as a reliable
validity check for the lattice calculation, or LECs can be properly extracted from the lattice
result.

ChPT in a finite volume [9, 10, 11] was introduced already shortly after the introduction
of the theory itself. Conceptually, a finite volume is introduced that restricts the size
of the Euclidean 3-dimensional space. The “time“ dimension is assumed to be much
larger. This treatment self-evidently breaks Lorentz invariance. A Passarino-Veltman type
integral reduction can still be performed, provided that additional projections obeying the
remaining symmetry are allowed and explicitly taken into account.

The introduction of a finite volume with periodic boundary conditions naturally re-
stricts and discretizes the set of allowed momenta to propagate, thus promoting momentum
integrals to sums. Our calculations are done in the ”p–regime” defined by MπL≫ 1, i. e.
where the system is distorted mildly and the only change with respect to the continuous
case is the modification of the propagators of the meson fields due to the periodic boundary
conditions.

∫
dp

2π
F (p)→

1

L

∑

n∈Z

F (pn) ≡
∫

V

dp

2π
F (p), (43)

With the help of a Poisson summation formula, these can be moved back to a sum of
integrals

1

L

∑

n∈Z

F (pn) =
∑

lp

∫
dp

2π
eilpp F (p), (44)

where the summation over lp runs over the set of vectors of length nL and separation of
the lp = 0 term allows to elegantly perform a well-defined decomposition of an arbitrary

20

+3/4H1(m
2
K , m

2
π, m

2
π, m

2
K)m

4
K − 5/2H1(m

2
K , m

2
π, m

2
η, m

2
K)m

4
K

−5/4H1(m
2
K , m

2
η, m

2
η, m

2
K)m

4
K −H1(m

2
η, m

2
π, m

2
K , m

2
K)m

4
K

+9/4H21(m
2
π, m

2
π, m

2
K , m

2
K)m

4
K − 9/32H21(m

2
K , m

2
π, m

2
π, m

2
K)m

4
K

+27/16H21(m
2
K , m

2
π, m

2
η, m

2
K)m

4
K + 9/4H21(m

2
K , m

2
K , m

2
K , m

2
K)m

4
K

+27/32H21(m
2
K , m

2
η, m

2
η, m

2
K)m

4
K

(42)
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Poisson
integral into an infinite volume (IV) and a finite volume (FV) part

I = I∞ + IV . (45)

The tensor reduction and the notation used for our integrals will be shown for the case
of a Euclidean space-time. They can be similarly obtained for a Minkowski space-time by
simple replacements and small adaptations. Regarding the transition and translation of
expressions between Euclidean and Minkowski space-time, the reader may consult section
C.

Regarding the Passarino-Veltman reduction, the four-vector

tµ ≡ (1, 0, 0, 0) (46)

is additionally allowed as projector in the FV case and sufficient to provide a reduction
to scalar components in the center-of-mass (cms) frame.16 We furthermore introduce the
purely spatial part of the metric as

tµν ≡ δµν − tµtν = diag(0, 1, 1, 1) (47)

as a convenient abbreviation.17

The remainder of this section has the aim to properly set up a notation for the inte-
grals. Since the structure of the FV integrals contains the (simpler) structure of the IV
integrals, we only show notation and reductions of the former. We use the integral notation
introduced in [7], i. e. we write the basic one-loop one-propagator integrals as

⌊X⌋ =
∫

V

ddr

(2π)d
X

(r2 +m2)n
, (48)

the one-loop two-propagator integrals as

⟨X⟩ =
∫

V

ddr

(2π)d
X

(r2 +m2
1)

n1((r − p)2 +m2
2)

n2
, (49)

and finally for the sunsets

⟨⟨X⟩⟩ ≡
∫

V

ddr

(2π)d
dds

(2π)d
X

(r2 +m2
1)

n1(s2 +m2
2)

n2((r + s− p)2 +m2
3)

n3
. (50)

16In this frame, p · lp = 0.
17Note that the FV effect has to be distinguished from other lattice effects, in particular also from the

introduction of a lattice spacing, although both of these effects have in common that they generally break
the three-dimensional Euclidean rotational symmetry down to a discrete cubic symmetry group. Note
also that this does not imply that the quantities that are evaluated cannot still be invariant under larger
symmetries. This is particularly obvious for our evaluation of quantities involving a single particle in its
cms frame with periodic boundary conditions: The quantities do not feel the cubic shape of the volume at
all, i. e. the volume is solely parametrized by a cubic length L via V = L3.
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The reduction of the one-loop one-propagator integrals reads

⌊1⌋V = AV ,

⌊rµ⌋V = 0,

⌊rµrν⌋V = δµνA
V
22 + tµνA

V
23,

⌊rµrνrα⌋V = 0. (51)

The general two-propagator case allows for momentum flow, the full reduction can only be
performed in the cms frame as18

⟨1⟩V
∣
∣
cms

= BV ,

⟨rµ⟩V
∣
∣
cms

= pµB
V
1 ,

⟨rµrν⟩V
∣
∣
cms

= pµpνB
V
21 + δµνB

V
22 +BV

23tµν ,

⟨rµrνrα⟩V
∣
∣
cms

= pµpνpαB
V
31 + (δµνpα + δµαpν + δναpµ)B

V
32

+ (tµνpα + tµαpν + tναpµ)B
V
33, (52)

The same holds for the sunset integrals. Here, the case with non-vanishing momentum
flow is necessary for our calculation (cf. figure 3 h). Since in an arbitrary frame only a
partial reduction

⟨⟨1⟩⟩V ≡ HV ,

⟨⟨rµ⟩⟩V ≡ HV
1 pµ +HV

3µ,

⟨⟨sµ⟩⟩V ≡ HV
2 pµ +HV

4µ,

⟨⟨rµrν⟩⟩V ≡ HV
21 pµpν +HV

22 δµν +HV
27µν ,

⟨⟨rµsν⟩⟩V ≡ HV
23 pµpν +HV

24 δµν +HV
28µν ,

⟨⟨sµsν⟩⟩V ≡ HV
25 pµpν +HV

26 δµν +HV
29µν , (53)

is possible, we specify to the cms frame where we can write

⟨⟨1⟩⟩V ≡ HV ,

⟨⟨rµ⟩⟩V ≡ HV
1 pµ,

⟨⟨sµ⟩⟩V ≡ HV
2 pµ,

⟨⟨rµrν⟩⟩V ≡ HV
21 pµpν +HV

22 δµν +HV
27 tµν ,

⟨⟨rµsν⟩⟩V ≡ HV
23 pµpν +HV

24 δµν +HV
28 tµν ,

⟨⟨sµsν⟩⟩V ≡ HV
24 pµpν +HV

25 δµν +HV
29 tµν . (54)

18The integral B0 that appears in the masses and decay constants can be considered either be considered
the general integral B with zero momentum flow or alternatively as the one-propagator integral A with
the propagator squared, cf. equation (48) with n = 2. The same reduction as for A with n = 1 applies,
obviously without necessity to specify to the cms frame.
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2 pµ,

⟨⟨rµrν⟩⟩V ≡ HV
21 pµpν +HV

22 δµν +HV
27 tµν ,

⟨⟨rµsν⟩⟩V ≡ HV
23 pµpν +HV

24 δµν +HV
28 tµν ,

⟨⟨sµsν⟩⟩V ≡ HV
24 pµpν +HV

25 δµν +HV
29 tµν . (54)

18The integral B0 that appears in the masses and decay constants can be considered either be considered
the general integral B with zero momentum flow or alternatively as the one-propagator integral A with
the propagator squared, cf. equation (48) with n = 2. The same reduction as for A with n = 1 applies,
obviously without necessity to specify to the cms frame.

22

The reduction of the one-loop one-propagator integrals reads

⌊1⌋V = AV ,

⌊rµ⌋V = 0,

⌊rµrν⌋V = δµνA
V
22 + tµνA

V
23,

⌊rµrνrα⌋V = 0. (51)

The general two-propagator case allows for momentum flow, the full reduction can only be
performed in the cms frame as18

⟨1⟩V
∣
∣
cms

= BV ,

⟨rµ⟩V
∣
∣
cms

= pµB
V
1 ,

⟨rµrν⟩V
∣
∣
cms

= pµpνB
V
21 + δµνB

V
22 +BV

23tµν ,

⟨rµrνrα⟩V
∣
∣
cms

= pµpνpαB
V
31 + (δµνpα + δµαpν + δναpµ)B

V
32

+ (tµνpα + tµαpν + tναpµ)B
V
33, (52)

The same holds for the sunset integrals. Here, the case with non-vanishing momentum
flow is necessary for our calculation (cf. figure 3 h). Since in an arbitrary frame only a
partial reduction

⟨⟨1⟩⟩V ≡ HV ,

⟨⟨rµ⟩⟩V ≡ HV
1 pµ +HV

3µ,

⟨⟨sµ⟩⟩V ≡ HV
2 pµ +HV

4µ,

⟨⟨rµrν⟩⟩V ≡ HV
21 pµpν +HV

22 δµν +HV
27µν ,

⟨⟨rµsν⟩⟩V ≡ HV
23 pµpν +HV

24 δµν +HV
28µν ,

⟨⟨sµsν⟩⟩V ≡ HV
25 pµpν +HV

26 δµν +HV
29µν , (53)

is possible, we specify to the cms frame where we can write

⟨⟨1⟩⟩V ≡ HV ,

⟨⟨rµ⟩⟩V ≡ HV
1 pµ,

⟨⟨sµ⟩⟩V ≡ HV
2 pµ,

⟨⟨rµrν⟩⟩V ≡ HV
21 pµpν +HV

22 δµν +HV
27 tµν ,

⟨⟨rµsν⟩⟩V ≡ HV
23 pµpν +HV

24 δµν +HV
28 tµν ,

⟨⟨sµsν⟩⟩V ≡ HV
24 pµpν +HV

25 δµν +HV
29 tµν . (54)

18The integral B0 that appears in the masses and decay constants can be considered either be considered
the general integral B with zero momentum flow or alternatively as the one-propagator integral A with
the propagator squared, cf. equation (48) with n = 2. The same reduction as for A with n = 1 applies,
obviously without necessity to specify to the cms frame.

22

cms
In infinite volume A22 can be rewritten in terms of A. At finite volume, the relation is

dA22(m
2) + 3A23(m

2) = m2A(m2) . (3)

This is used to remove A22 from our expressions. In addition we do an expansion in ϵ with
d = 4− 2ϵ via

A(m2) = λ0
m2

16π2
+ A(m2) + AV (m2) + ϵ

(

Aϵ(m2) + AV ϵ(m2)
)

+ · · · . (4)

with λ0 =
1
ϵ +log(4π)+1−γ and similarly for the other one-loop integrals. λ0 corresponds

to the usual MS variant used in ChPT. Doing the renormalization introduces a subtraction
point dependence which corresponds to using for A(m2) and B

0
(m2)

A(m2) =
−m2

16π2
log

m2

µ2
, B

0
(m2) =

−1

16π2

(

log
m2

µ2
+ 1

)

. (5)

The sunset integrals are defined as
{

H,Hµ, H
s
µ, Hµν , H

rs
µν , H

ss
µν

}

(m2
1, m

2
2, m

2
3, p) =

1

i2

∫

V

ddr

(2π)d
dd1

(2π)d
{1, rµ, sµ, rµrν , rµsν , sµsν}

(r2 −m2
1) (s2 −m2

2) ((r + s− p)2 −m2
3)

. (6)

The subscript V again indicates that the spatial dimensions are a discrete sum rather than
an integral. The conventions correspond to those in infinite volume of [21]. The interchange
r,m2

1 ↔ s,m2
2 shows that H

s
µ, H

ss
µν are related directly to Hr

µ, H
rr
µν . H

rs
µν can also be related

to Hµν using the trick shown in [21] which remains valid at finite volume in the cms frame
[15].

In the cms frame we define the functions1

Hµ = pµH1 (7)

Hµν = pµpνH21 + gµνH22 + tµνH27 .

The arguments of all functions in the cms frame are (m2
1, m

2
2, m

2
3, p

2). These functions
satisfy the relations, valid in finite volume [15],

H1(m
2
1, m

2
2, m

2
3, p

2) +H1(m
2
2, m

2
3, m

2
1, p

2) +H1(m
2
3, m

2
1, m

2
2, p

2) = H(m2
1, m

2
2, m

2
3, p

2) ,

p2H21 + dH22 + 3H27 −m2
1H = A(m2

2)A(m
2
3) . (8)

The arguments of the sunset functions in the second relation are all (m2
1, m

2
2, m

2
3, p

2). These
relations have been used to remove H22 from the final result and simplify the expressions
somewhat.

1In the cms frame we have that tµν = gµν − pµpν/p2 but the given separation appears naturally in the
calculation [15]. It also avoids singularities in the limit p → 0.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 1: Diagrammatic contributions to the pseudoscalar self-energy, up to O(p6). Circu-
lar vertices are of O(p2), the filled boxes are of O(p4), the open box is of O(p6). The tree
level diagrams (a,b,i) do not contribute to finite volume corrections.

be done in two ways. For one-loop tadpole integrals the first one was introduced in the
original work [5, 6, 7] and one remains with a sum over Bessel functions, that for large
ML converges fast. The other method can be found in [18] and one remains with an
integral over a Jacobi theta function, this method can be used for small and medium ML
as well. The extensions to other one-loop integrals can be done in both cases by combining
propagators with Feynman parameters. The first method was extended to the equal mass
two-loop sunset integral in [21]. The general mass case was then done in both methods in
[24]. The methods are explained in detail in [24] for both the one and two-loop case. Note
that here we use Minkowski notation for the integrals.

On the side of the tadpole integrals, we use a notation that does a first classification
according to the total power n = n1+n2+...+nmax of the propagator, i. e. the powers of the
propagators with different masses m1, m2, ..., mmax are to be summed over. We label the
integrals A,B,C,D for n = 1, 2, 3, 4 respectively, since total powers up to 4 are necessary
for the calculation, as is clear from the discussion of double poles in section XYZ. The n
different mass scales will be listed as consecutive arguments of the integral. Alternatively,
if only one mass scale in total is present, we omit its repetition as a shorthand notation.
Due to the diagram BLA and the modified neutral sector of PQChPT as compared to the
unquenched case, up to two different mass scales can occur at NNLO.

Due to different numerator structures, both scalar and tensor integrals will occur, e. g.
in the simplest case of one single propagator raised to single power

{

A(m2), Aµν(m
2)
}

=
1

i

∫

V

ddr

(2π)d
{1, rµrν}
(r2 −m2)

. (25)

For reasons of space restrictions, we do not show a complete set of all relations used for
the simplification of our result in the remainder, but only one simple case per different
“type”. The other cases can be derived in a straightforward manner by means of the same
principle.
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integrals with diff. kind of numerator structures related
other symmetry identities (e.g. masses of the sunsets)

          
permutation symmetries, e.g.

Passarino-Veltman for FV:

eliminate 22-integrals as in IV computation

Simplification

Relations between these integrals follow immediately from the reduction procedure by
taking Lorentz contractions. In our calculations, we use

p2H21 + dH22 + 3H27 +m2
1H = A(m2

2)A(m
2
3) (55)

to eliminate H22 and
dA22(m

2) + 3A23(m
2) +m2A(m2) = 0 . (56)

to eliminate A22 as traditionally done in the IV computations.19

An important comment has to be made about the finite volume sunset integrals.
Whereas the one-loop finite volume integrals are purely finite, the corrections to the HV

come with a single pole in ϵ. Note that these poles are obviously necessary to properly
cancel the divergences in the final result.20 We calculated the coefficients with the help of
the partial result in [7] and found

H̃V =
λ0

16π2

(

AV (m2
1) + AV (m2

2) + AV (m2
3)
)

+
1

16π2

(

AV ϵ(m2
1) + AV ϵ(m2

2) + AV ϵ(m2
3)
)

+HV ,

H̃V
1 =

λ0
16π2

1

2

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

2

(

AV ϵ(m2
2) + AV ϵ(m2

3)
)

+HV
1 ,

H̃V
21 =

λ0
16π2

1

3

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

3

(

AV ϵ(m2
2) + AV ϵ(m2

3)
)

+HV
21 ,

H̃V
27 =

λ0
16π2

(

AV
23(m

2
1) +

1

3
A23(m

2
2)) +

1

3
AV

23(m
2
3)

)

+
1

16π2

(

AV ϵ
23 (m

2
1) +

1

3
AV ϵ

23 (m
2
2 +

1

3
AV ϵ

23 (m
2
3))

)

+HV
27 . (57)

For the finite part of the sunsets, we also separated the corresponding one-loop FV terms
AV ϵ as it was implicitly done in [7]. All terms containing AV ϵ then cancelled as expected
in the expressions for the masses and decay costants calculated in this thesis.

Regarding our numerical evaluation of the FV correction to a physical quantity, it
should be noted that we use physical IV masses as input for our numerical evaluation.
Additional terms will emerge in the p6 expression due to that choice. The generalization
of equation (39) therefore is

19A similar relation between the B0 type integrals was not needed since the integrals did not occur in
the calculation.

20In the one-loop reducible part of the two-loop terms, products of IV one-loop integrals with FV one-
loop integrals will emerge, i. e. FV integrals multiplied by a pole.
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Relations between these integrals follow immediately from the reduction procedure by
taking Lorentz contractions. In our calculations, we use

p2H21 + dH22 + 3H27 +m2
1H = A(m2

2)A(m
2
3) (55)

to eliminate H22 and
dA22(m

2) + 3A23(m
2) +m2A(m2) = 0 . (56)

to eliminate A22 as traditionally done in the IV computations.19

An important comment has to be made about the finite volume sunset integrals.
Whereas the one-loop finite volume integrals are purely finite, the corrections to the HV

come with a single pole in ϵ. Note that these poles are obviously necessary to properly
cancel the divergences in the final result.20 We calculated the coefficients with the help of
the partial result in [7] and found

H̃V =
λ0

16π2

(

AV (m2
1) + AV (m2

2) + AV (m2
3)
)

+
1

16π2

(

AV ϵ(m2
1) + AV ϵ(m2

2) + AV ϵ(m2
3)
)

+HV ,

H̃V
1 =

λ0
16π2

1

2

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

2

(

AV ϵ(m2
2) + AV ϵ(m2

3)
)

+HV
1 ,

H̃V
21 =

λ0
16π2

1

3

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

3

(

AV ϵ(m2
2) + AV ϵ(m2

3)
)

+HV
21 ,

H̃V
27 =

λ0
16π2

(

AV
23(m

2
1) +

1

3
A23(m

2
2)) +

1

3
AV

23(m
2
3)

)

+
1

16π2

(

AV ϵ
23 (m

2
1) +

1

3
AV ϵ

23 (m
2
2 +

1

3
AV ϵ

23 (m
2
3))

)

+HV
27 . (57)

For the finite part of the sunsets, we also separated the corresponding one-loop FV terms
AV ϵ as it was implicitly done in [7]. All terms containing AV ϵ then cancelled as expected
in the expressions for the masses and decay costants calculated in this thesis.

Regarding our numerical evaluation of the FV correction to a physical quantity, it
should be noted that we use physical IV masses as input for our numerical evaluation.
Additional terms will emerge in the p6 expression due to that choice. The generalization
of equation (39) therefore is

19A similar relation between the B0 type integrals was not needed since the integrals did not occur in
the calculation.

20In the one-loop reducible part of the two-loop terms, products of IV one-loop integrals with FV one-
loop integrals will emerge, i. e. FV integrals multiplied by a pole.

23

integral into an infinite volume (IV) and a finite volume (FV) part

I = I∞ + IV . (45)

The tensor reduction and the notation used for our integrals will be shown for the case
of a Euclidean space-time. They can be similarly obtained for a Minkowski space-time by
simple replacements and small adaptations. Regarding the transition and translation of
expressions between Euclidean and Minkowski space-time, the reader may consult section
C.

Regarding the Passarino-Veltman reduction, the four-vector

tµ ≡ (1, 0, 0, 0) (46)

is additionally allowed as projector in the FV case and sufficient to provide a reduction
to scalar components in the center-of-mass (cms) frame.16 We furthermore introduce the
purely spatial part of the metric as

tµν ≡ δµν − tµtν = diag(0, 1, 1, 1) (47)

as a convenient abbreviation.17

The remainder of this section has the aim to properly set up a notation for the inte-
grals. Since the structure of the FV integrals contains the (simpler) structure of the IV
integrals, we only show notation and reductions of the former. We use the integral notation
introduced in [7], i. e. we write the basic one-loop one-propagator integrals as

⌊X⌋ =
∫

V

ddr

(2π)d
X

(r2 +m2)n
, (48)

the one-loop two-propagator integrals as

⟨X⟩ =
∫

V

ddr

(2π)d
X

(r2 +m2
1)

n1((r − p)2 +m2
2)

n2
, (49)

and finally for the sunsets

⟨⟨X⟩⟩ ≡
∫

V

ddr

(2π)d
dds

(2π)d
X

(r2 +m2
1)

n1(s2 +m2
2)

n2((r + s− p)2 +m2
3)

n3
. (50)

16In this frame, p · lp = 0.
17Note that the FV effect has to be distinguished from other lattice effects, in particular also from the

introduction of a lattice spacing, although both of these effects have in common that they generally break
the three-dimensional Euclidean rotational symmetry down to a discrete cubic symmetry group. Note
also that this does not imply that the quantities that are evaluated cannot still be invariant under larger
symmetries. This is particularly obvious for our evaluation of quantities involving a single particle in its
cms frame with periodic boundary conditions: The quantities do not feel the cubic shape of the volume at
all, i. e. the volume is solely parametrized by a cubic length L via V = L3.

21

will be sufficient, where we have used the notation of [7]

⟨⟨X⟩⟩ =
1

i2

∫
ddq

(2π)d
ddr

(2π)d
X

(q2 −m2
1) (r

2 −m2
2) ((q + r − p)2 −m2

3)
. (34)

With the exception of the simple one-loop calculation in section 5, all computations
have been carried out with the help of FORM [8]. This includes the generation of all
contributions to a diagram of given topology as well as all successive manipulations in
order to simplify the expressions.

We apply Passarino-Veltman type identities to reduce the occuring integrals to a mini-
mal set. For the one-loop integrals, only the two scalar integrals (with one and two powers
of the propagator) serve as a basis set, i. e. in addition to A(m2) (see equation (23)) we
need the two-propagator integral with zero momentum flow

B0(m
2) =

1

i

∫
ddq

(2π)d
1

(q2 −m2)2
. (35)

For the sunsets, we can apply different kinds of symmetry identities to make further
cancellations work out. Whereas H is symmetric in all three mass arguments, only the
second and third argument can be interchanged in the other two integrals. The relation
between H1 and H

H1(m
2
1, m

2
2, m

2
3; p

2) +H1(m
2
2, m

2
1, m

2
3; p

2) +H1(m
2
3, m

2
1, m

2
2; p

2) = H(m2
1, m

2
2, m

2
3; p

2) (36)

can be applied and trivially implies also

H1(m
2, m2, m2; p2) = 1/3 H(m2, m2, m2; p2). (37)

The evaluation of the NNLO mass correction requires, apart from the NNLO corrections
to the self-energy, again a self-consistent solution to the pole equation (cf. equation (17)).
In addition to the new diagrammatic contributions, new NNLO terms also arise from the
NLO self-energy since the latter is now supposed to be evaluated at the NLO mass and
inverse decay constant in order to maintain formal p6 accuracy.14 In this way, also the
specific choice of meson masses in the NLO terms of the self-energy enters explicitly at
O(p6): Mass expressions that were degenerate at O(p4) due to the lowest order relations
will generate different terms in the higher orders.15 In a rather sketchy way, we thus
generally evaluate

M2 −M2
0 −Σ4(M

2
0 )

︸ ︷︷ ︸

O(p4)

−Σ4(M
2
4 ) + Σ4(M

2
0 )

︸ ︷︷ ︸

O(p6)

−Σ6(M
2
0 )

︸ ︷︷ ︸

O(p6)

= O(p8). (38)

14It is worth to note that neither the new diagrammatic pieces nor the “renormalization” terms from
the NLO self-energy are finite in four dimensions when taken alone, but only their sum.

15Both effects, on the one hand the effect of the evaluation of the self-energy at NLO corrected masses
and inverse decay constant and on the other hand the choice regarding degenerate expressions, are evidently
entangled and can - in a practical calculation - be taken into account in one go.
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FV sunsets have residue in ε: must cancel one-loop „IV*FV“ terms

Also, finite part for FV sunsets defined differently than in the IV splits

This ensures cancellation of one-loop ε-terms: Sanity check!

Sunsets continued: Sanity checks

We now split the functions in an infinite volume part H̃i and a finite volume correction
H̃V

i with Hi = H̃i+H̃V
i . The infinite volume part was derived in [21]. For the finite volume

parts we define

H̃V =
λ0

16π2

(

AV (m2
1) + AV (m2

2) + AV (m2
3)
)

+
1

16π2

(

AV ϵ(m2
1) + AV ϵ(m2

2) + AV ϵ(m2
3)
)

+HV ,

H̃V
1 =

λ0

16π2

1

2

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

2

(

AV ϵ(m2
2) + AV ϵ(m2

3)
)

+HV
1 ,

H̃V
21 =

λ0

16π2

1

3

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

3

(

AV ϵ(m2
2) + AV ϵ(m2

3)
)

+HV
21 ,

H̃V
27 =

λ0

16π2

(

AV
23(m

2
1) +

1

3
A23(m

2
2)) +

1

3
AV

23(m
2
3)
)

+
1

16π2

(

AV ϵ
23 (m

2
1) +

1

3
AV ϵ

23 (m
2
2 +

1

3
AV ϵ

23 (m
2
3))
)

+HV
27 , (9)

Note that the finite parts are defined slightly different compared to the infinite volume
definition in [21]. Here we have pulled out the extra parts with AV ϵ. These functions
cancel in the final result. We will also use the derivatives w.r.t. p2 of the sunset integrals.
These we denote with and extra prime, HV ′

i ≡ (∂/∂p2)HV
i .

The functions HV
i can be computed with the methods of [15]. They correspond to

adding the parts labeled with G and H in Sect. 4.3 and the part of Sect. 4.4 in [15].
We have in addition added the derivatives w.r.t. p2 for all the integrals and checked the
analytical results with numerical differentiation.

For all cases discussed we have done checks that both methods, via Bessel or Jacobi
theta functions, give the same results.

4 Two-flavour results

The diagrams needed to obtain the mass are shown in Fig. 1. We write the result for the
mass at finite volume in the form

mV 2
π = m2

π +∆Vm2
π , ∆Vm2

π = ∆Vm2(4)
π +∆Vm2(6)

π . (10)

m2
π and Fπ denote the infinite volume physical pion mass and decay constant. We have

reproduced the expression for the infinite volume mass derived in [22, 23, 24]. The extra
parts due to the finite volume are

F 2
π∆

Vm2(4)
π = −

1

2
m2

πA
V (m2

π) ,

F 4
π∆

Vm2(6)
π = m4

πA
V (m2

π)
(

− lr4 + 5 lr3 + 8 lr2 + 14 lr1
)

+m2
πA

V
23(m

2
π)
(

− 12 lr2 − 6 lr1
)

+AV (m2
π)
(

13/12
1

16π2
m4

π − 7/4A(m2
π)m

2
π

)

+ AV (m2
π)

2
(

− 3/8m2
π

)

+AV (m2
π)B

0V (m2
π)
(

1/4m4
π

)

+HV (m2
π, m

2
π, m

2
π, m

2
π)
(

5/6m4
π

)

+HV
21(m

2
π, m

2
π, m

2
π, m

2
π)
(

3m4
π

)

+HV
27(m

2
π, m

2
π, m

2
π, m

2
π)
(

− 3m2
π

)

. (11)
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In infinite volume A22 can be rewritten in terms of A. At finite volume, the relation is

dA22(m
2) + 3A23(m

2) = m2A(m2) . (3)

This is used to remove A22 from our expressions. In addition we do an expansion in ϵ with
d = 4− 2ϵ via

A(m2) = λ0
m2

16π2
+ A(m2) + AV (m2) + ϵ

(

Aϵ(m2) + AV ϵ(m2)
)

+ · · · . (4)

with λ0 =
1
ϵ +log(4π)+1−γ and similarly for the other one-loop integrals. λ0 corresponds

to the usual MS variant used in ChPT. Doing the renormalization introduces a subtraction
point dependence which corresponds to using for A(m2) and B

0
(m2)

A(m2) =
−m2

16π2
log

m2

µ2
, B

0
(m2) =

−1

16π2

(

log
m2

µ2
+ 1

)

. (5)

The sunset integrals are defined as
{

H,Hµ, H
s
µ, Hµν , H

rs
µν , H

ss
µν

}

(m2
1, m

2
2, m

2
3, p) =

1

i2

∫

V

ddr

(2π)d
dd1

(2π)d
{1, rµ, sµ, rµrν , rµsν , sµsν}

(r2 −m2
1) (s2 −m2

2) ((r + s− p)2 −m2
3)

. (6)

The subscript V again indicates that the spatial dimensions are a discrete sum rather than
an integral. The conventions correspond to those in infinite volume of [21]. The interchange
r,m2

1 ↔ s,m2
2 shows that H

s
µ, H

ss
µν are related directly to Hr

µ, H
rr
µν . H

rs
µν can also be related

to Hµν using the trick shown in [21] which remains valid at finite volume in the cms frame
[15].

In the cms frame we define the functions1

Hµ = pµH1 (7)

Hµν = pµpνH21 + gµνH22 + tµνH27 .

The arguments of all functions in the cms frame are (m2
1, m

2
2, m

2
3, p

2). These functions
satisfy the relations, valid in finite volume [15],

H1(m
2
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2
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2
3, p

2) +H1(m
2
2, m

2
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2
1, p

2) +H1(m
2
3, m

2
1, m

2
2, p

2) = H(m2
1, m

2
2, m

2
3, p

2) ,

p2H21 + dH22 + 3H27 −m2
1H = A(m2

2)A(m
2
3) . (8)

The arguments of the sunset functions in the second relation are all (m2
1, m

2
2, m

2
3, p

2). These
relations have been used to remove H22 from the final result and simplify the expressions
somewhat.

1In the cms frame we have that tµν = gµν − pµpν/p2 but the given separation appears naturally in the
calculation [15]. It also avoids singularities in the limit p → 0.
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Figure 3.1: Pion decay π+ → µ+νµ.
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3.7 Application at Lowest Order: Pion De-
cay

As an example of a tree-level calculation we discuss the weak decay π+ →
µ+νµ which will allow us to relate the free parameter F0 of L2 to the pion-
decay constant. According to Eq. (3.52) we only need to consider tree-level
diagrams with vertices of L2.

At the level of the degrees of freedom of the Standard Model, pion decay
is described by the annihilation of a u quark and a d̄ antiquark, forming the
π+, into a W+ boson, propagation of the intermediate W+, and creation of
the leptons µ+ and νµ in the final state (see Figure 3.1). The coupling of
the W bosons to the leptons is given by

L = − g

2
√

2

[
W+

α ν̄µγ
α(1 − γ5)µ + W−

α µ̄γα(1 − γ5)νµ

]
, (3.70)

whereas their interaction with the quarks forming the Goldstone bosons is
effectively taken into account by inserting Eq. (1.152) into the Lagrangian
of Eq. (3.69). Let us consider the first term of Eq. (3.69) and set rµ = 0
with, at this point, still arbitrary lµ.

Exercise 3.7.1 Using DµU = ∂µU + iUlµ derive

F 2
0

4
Tr[DµU(DµU)†] = i

F 2
0

2
Tr(lµ∂

µU †U) + · · · ,

where only the term linear in lµ is shown.

If we parameterize

lµ =
8∑

a=1

λa

2
laµ,
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8 Corrections to the decay constants

The (physical) pion decay constant is defined by the coupling of the axial-vector current
to the pion,

⟨0|Aµ(0)|π−(p)⟩ = i
√
2pµFπ ; Aµ = ūγµγ5d . (59)

Amongst other things, it dictates the rate of leptonic charged pion decays as

Γ(0)(π → ℓν) =
G2

F |Vud|2F 2
π

4π
mπm

2
ℓ

(

1−
m2

ℓ

m2
π

)2

(60)

Its physical value in this convention is Fπ = 92.2 MeV.21 We also encounter its inverse
powers in the chiral expansions, e. g. of the pseudoscalar masses.22

The remaining two decay constants can be defined in a way similar to equation (59),
but for definiteness we will keep the example of the pion in the remainder of this section.

One way to calculate the chiral expansion of Fπ is via the axial-vector pseudoscalar
two-point function. The diagrams up to order p6 can be seen in figure 4. Their structural
similarity to the mass diagrams (cf. figure 3) facilitates their calculation. In addition to
these, the wavefunction renormalization of the external pion state has to be taken into
account. In its most general way, this can be seen from the LSZ theorem. Originally used
for scattering amplitudes, the argument holds for any kind of physical quantity. There are
different equivalent formulations (e. g. that differ if they use truncated Green’s functions
or not), so we only consider the easiest for our purpose. According to

out⟨φ1...φi|φi...φn⟩in = ⟨φ1...φn⟩ = Z−n
2Gtrunc(φ1, ...,φn) , (61)

an S-matrix element (or any other amplitude) can be calculated given the correspond-
ing truncated Green’s function and the wavefunction renormalization factors

√
Z of the

external fields. Each field thereby contributes with its own 1/
√
Z.

21There are several conventions that differ by different powers of
√
2.

22It formally enters as the lowest order parameter and will then be substituted for the physical one in
our calculations, cf. section 6.
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(f) (g) (h) (i)

Figure 4: Diagrammatic contributions to the pseudoscalar decay constants, up to O(p6).
Circular vertices are of O(p2), the filled boxes are of O(p4), the open box is of O(p6). The
wiggly lines denote the external source field that is coupled to the desired current. Note
the necessity for the wavefunction renormalization of the external pseudoscalar to obtain
the physical decay constants, as discussed in the text.

A Construction of the chiral Lagrangian

The construction of the chiral NLO Lagrangian can be systematically achieved by a careful
consideration of the transformation behaviour of the single elements under the symmetries
of QCD and their successive combination into larger building blocks and finally invariants.
Table 3 lists the transformation properties of the elements which lead to the general chiral
Lagrangian (in the notation used throughout section 3).

The enumeration of the possible terms can also be done very elegantly in a slightly
different notation. We introduce this new formalism first in order to then construct the
chiral Lagrangian in the general flavour case, later specifying to nf = 2 and nf = 3.
Starting from ChPT in the external field formulation with the canocial transformation
behaviour
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Wavefunction renormalization (LSZ):
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The underlying reason is that the propagator pole of the bare two-point function ac-
quires under resummation a residue Z−1 with Z = 1+ dΣ

dp2
|p2=M2

phys
. This residue is absorbed

into a rescaling of the respective field φ → φ′ =
√
Zφ.23 The effect of the rescaling then

enters explicitly for all n-point functions (with n ̸= 2). In the case of our two-point func-
tion which involves one external pion field, one power of the wavefunction renormalization
has to be divided out.24 Schematically, since

⟨φφ⟩ ≃
i

Z(p2 −Mphys)2
+ non-pole terms

⟨φ′φ′⟩ ≃
i

(p2 −Mphys)2
+ non-pole terms, (62)

we find for the amplitudes that involve only one scalar field

⟨φaµ⟩ ≃
i

Z(p2 −Mphys)2
iΠ+ non-pole terms

⟨φ′aµ⟩ ≃
i√

Z(p2 −M2
phys)

iΠ+ non-pole terms (63)

with iΠ being the diagrammatic contribution. The fields φ′ are then normalized to single
particle states and the physical amplitudes resulting from the calculation are finite.

As formal input for an expression for Fπ to O(p6), apart from the axial-vector pseu-
doscalar two-point function, we need again the pseudoscalar two-point function Σ(p2), all
to the same order.25

9 Conclusions

Starting from the symmetries of QCD, Chiral Perturbation Theory for mesons has been
introduced up to O(p6). Simple one- and two-loop examples have been given for computa-
tions in infinite volume, the canonical scheme for powercounting of masses and momenta
has been revisited. The reader has been introduced to finite volume computations, the in-
tegrals emerging in the calculation have been classified. For the decay constants, remarks
about wavefunction renormalization have been made. The appendices provide further de-
tails and deeper background information about selected topics.

23Note that Z as defined here is sometimes denoted by Z−1, in particular in the traditional renormal-
ization literature, i. e. φbare =

√
Zφr with φr being the renormalized field. The bare propagator residue

is correspondingly Z.
24In an n-point function, these would be n powers of

√
Z to be divided out. Each external leg gets a

resummation factor 1/Z (when expressed in terms of the truncated Green’s function) that is only partially
cancelled by the wavefunction renormalization

√
Z.

25Formally, Σ(p2) up to O(p6) will yield dΣ
dp2 up to O(p4), to be multiplied by the lowest order expression

for the axial-vector pseudoscalar two-point function that starts at O(p2). (The order counting here is
done in terms of masses and momenta in the numerators, not in terms of the suppression via pion decay
constants.)
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Numerics: Input

The decay constants for the mesons are defined similarly to (12) via

⟨0|ūγµγ5d|π−(p)⟩ =
√
2iFπpµ ,

⟨0|ūγµγ5s|K−(p)⟩ =
√
2iFKpµ ,

⟨0|
1√
6

(

ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s
)

|η(p)⟩ =
√
2iFηpµ . (17)

Note that since we work in the isospin limit, we use the octet axial current to define the
eta decay constant.

We define
F V
i = Fi +∆VFi , ∆VFi = ∆VF (4)

i +∆VF (6)
i , (18)

for i = π, K, η. The pion, kaon and eta decay constants at two-loop order in infinite
volume are known, [21], we have reproduced that result. Note that we give the corrections
to the decay constants here, not divided by the chiral limit decay constant as in [21]. Note
the correction for the expressions for the infinite volume decay constants described in the
erratum of [28]. The correct expressions can be downloaded from [29]

The order p4 results are

Fπ∆
VF (4)

π = AV (m2
π) + AV (m2

K)
(

1/2
)

,

Fπ∆
VF (4)

K = AV (m2
π)
(

3/8
)

+ AV (m2
K)
(

3/4
)

+ AV (m2
η)
(

3/8
)

,

Fπ∆
VF (4)

η = AV (m2
K)
(

3/2
)

. (19)

These agree with [9, 10, 27]. The p6 expressions are again rather long and are given
in App. B. The contributions with at most one-pion propagator at finite volume were
calculated in [27] for the kaon in three flavour ChPT, the expression for the pion was done
in two-flavour ChPT and discussed above. We agree with the Lr

i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
we needed to get agreement for the two-flavour pion decay constant.

6 Numerical results

For numerical input we use Fπ = 92.2 MeV, mπ = mπ0 = 134.9764 MeV, the average mK

with electromagnetic effects removed with the estimate of [30], mK = 494.53 MeV, and
mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
[31]. We always use a subtraction scale µ = 770 MeV.

6.1 Two-flavour results

The lri we use we define via the usual l̄i defined at the scale of the charged pion mass. The
actual value we use are l̄1 = −0.4, l̄2 = 4.3, l̄3 = 3.0, l̄4 = 4.3. The relative finite volume
corrections to m2

π are shown in Fig. 2(a) as a function of mπL. We have checked that
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Note that since we work in the isospin limit, we use the octet axial current to define the
eta decay constant.

We define
F V
i = Fi +∆VFi , ∆VFi = ∆VF (4)

i +∆VF (6)
i , (18)

for i = π, K, η. The pion, kaon and eta decay constants at two-loop order in infinite
volume are known, [21], we have reproduced that result. Note that we give the corrections
to the decay constants here, not divided by the chiral limit decay constant as in [21]. Note
the correction for the expressions for the infinite volume decay constants described in the
erratum of [28]. The correct expressions can be downloaded from [29]
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These agree with [9, 10, 27]. The p6 expressions are again rather long and are given
in App. B. The contributions with at most one-pion propagator at finite volume were
calculated in [27] for the kaon in three flavour ChPT, the expression for the pion was done
in two-flavour ChPT and discussed above. We agree with the Lr

i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
we needed to get agreement for the two-flavour pion decay constant.

6 Numerical results

For numerical input we use Fπ = 92.2 MeV, mπ = mπ0 = 134.9764 MeV, the average mK

with electromagnetic effects removed with the estimate of [30], mK = 494.53 MeV, and
mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
[31]. We always use a subtraction scale µ = 770 MeV.

6.1 Two-flavour results

The lri we use we define via the usual l̄i defined at the scale of the charged pion mass. The
actual value we use are l̄1 = −0.4, l̄2 = 4.3, l̄3 = 3.0, l̄4 = 4.3. The relative finite volume
corrections to m2

π are shown in Fig. 2(a) as a function of mπL. We have checked that
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⟨0|ūγµγ5d|π−(p)⟩ =
√
2iFπpµ ,
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in two-flavour ChPT and discussed above. We agree with the Lr
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mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
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i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
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Numerics: Input

The decay constants for the mesons are defined similarly to (12) via
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Note that since we work in the isospin limit, we use the octet axial current to define the
eta decay constant.

We define
F V
i = Fi +∆VFi , ∆VFi = ∆VF (4)

i +∆VF (6)
i , (18)

for i = π, K, η. The pion, kaon and eta decay constants at two-loop order in infinite
volume are known, [21], we have reproduced that result. Note that we give the corrections
to the decay constants here, not divided by the chiral limit decay constant as in [21]. Note
the correction for the expressions for the infinite volume decay constants described in the
erratum of [28]. The correct expressions can be downloaded from [29]
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These agree with [9, 10, 27]. The p6 expressions are again rather long and are given
in App. B. The contributions with at most one-pion propagator at finite volume were
calculated in [27] for the kaon in three flavour ChPT, the expression for the pion was done
in two-flavour ChPT and discussed above. We agree with the Lr

i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
we needed to get agreement for the two-flavour pion decay constant.

6 Numerical results

For numerical input we use Fπ = 92.2 MeV, mπ = mπ0 = 134.9764 MeV, the average mK

with electromagnetic effects removed with the estimate of [30], mK = 494.53 MeV, and
mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
[31]. We always use a subtraction scale µ = 770 MeV.

6.1 Two-flavour results

The lri we use we define via the usual l̄i defined at the scale of the charged pion mass. The
actual value we use are l̄1 = −0.4, l̄2 = 4.3, l̄3 = 3.0, l̄4 = 4.3. The relative finite volume
corrections to m2

π are shown in Fig. 2(a) as a function of mπL. We have checked that
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These agree with [9, 10, 27]. The p6 expressions are again rather long and are given
in App. B. The contributions with at most one-pion propagator at finite volume were
calculated in [27] for the kaon in three flavour ChPT, the expression for the pion was done
in two-flavour ChPT and discussed above. We agree with the Lr

i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
we needed to get agreement for the two-flavour pion decay constant.
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For numerical input we use Fπ = 92.2 MeV, mπ = mπ0 = 134.9764 MeV, the average mK

with electromagnetic effects removed with the estimate of [30], mK = 494.53 MeV, and
mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
[31]. We always use a subtraction scale µ = 770 MeV.

6.1 Two-flavour results

The lri we use we define via the usual l̄i defined at the scale of the charged pion mass. The
actual value we use are l̄1 = −0.4, l̄2 = 4.3, l̄3 = 3.0, l̄4 = 4.3. The relative finite volume
corrections to m2

π are shown in Fig. 2(a) as a function of mπL. We have checked that
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These agree with [9, 10, 27]. The p6 expressions are again rather long and are given
in App. B. The contributions with at most one-pion propagator at finite volume were
calculated in [27] for the kaon in three flavour ChPT, the expression for the pion was done
in two-flavour ChPT and discussed above. We agree with the Lr

i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
we needed to get agreement for the two-flavour pion decay constant.
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For numerical input we use Fπ = 92.2 MeV, mπ = mπ0 = 134.9764 MeV, the average mK

with electromagnetic effects removed with the estimate of [30], mK = 494.53 MeV, and
mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
[31]. We always use a subtraction scale µ = 770 MeV.
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The lri we use we define via the usual l̄i defined at the scale of the charged pion mass. The
actual value we use are l̄1 = −0.4, l̄2 = 4.3, l̄3 = 3.0, l̄4 = 4.3. The relative finite volume
corrections to m2
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in two-flavour ChPT and discussed above. We agree with the Lr

i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
we needed to get agreement for the two-flavour pion decay constant.
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mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
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i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
we needed to get agreement for the two-flavour pion decay constant.
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mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
[31]. We always use a subtraction scale µ = 770 MeV.
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The lri we use we define via the usual l̄i defined at the scale of the charged pion mass. The
actual value we use are l̄1 = −0.4, l̄2 = 4.3, l̄3 = 3.0, l̄4 = 4.3. The relative finite volume
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π are shown in Fig. 2(a) as a function of mπL. We have checked that
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Self-consistent unphysical points

mπ mK mη Fπ FK/Fπ Fη/Fπ m̂/m̂phys ms/msphys ms/m̂
134.9764∗ 494.53∗ 545.9 92.2∗ 1.199 1.306 1∗ 1∗ 27.3

100 487.14 540.46 90.4 1.219 1.337 0.547 1.000 49.9
300 549.6 593.73 101.4 1.099 1.154 5.025 1.000 5.43
100 400 446.53 87.3 1.199 1.293 0.518 0.644 33.9
100 495 549.07 90.7 1.219 1.340 0.550 1.037 51.4
300 495 533.00 100.3 1.094 1.138 4.867 0.778 4.36
495 495 495.00 108.0 1 1 12.70 0.465 1

Table 1: The self consistent solution for the infinite volume values of mη, Fπ, FK , Fη

and the output quark mass ratios compared with the physical one. Units for dimensional
quantities are in MeV . The input values for the physical case are starred.
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Figure 4: The finite volume corrections to the pion mass squared at mπ = mπ0 . All other
inputs are given in the text. Plotted is the quantity (mV 2

π −m2
π)/m

2
π. (a) Comparison of

the two- and three-flavour ChPT results. (b) The corrections for the three-flavour case
also showing the Lr

i dependent part.

Lr
i -dependent part of the p

6 contribution are of the expected size. However, there is a very
strong cancellation between the two parts leaving a very small positive correction. The
total finite volume correction for the eta mass in negative.

We can also check how the finite volume correction depends on the different masses. In
Fig. 6 we have plotted the corrections to the pion mass squared for a number of different
scenarios. In Fig. 6(a) we look at three cases. The bottom two line are the the physical
case labeled with mπ = mπ0 while the top four lines are with mπ = 100 MeV. There we
have plotted two cases, mK = 400 and 495 MeV. The effect of the change in the pion
mass is quite large while the effect due to the kaon mass change is smaller. The effect of
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Figure 2: The relative finite volume corrections for the mass squared and decay constant
of the pion in two-flavour ChPT at a fixed infinite volume pion mass mπ = mπ0 . Shown
are the one-loop or p4 corrections, the full p6 result and the part only dependent on the
lri , p

6lri and the sum of the p4 and p6 result. mπL = 2, 4 correspond to L ≈ 2.9, 5.8 fm.
(a) The pion mass, plotted is (mV 2

π − m2
π)/m

2
π. (b) The pion decay constant. Plotted is

−(F V
π − Fπ)/Fπ.

changing the scale to µ = 500 MeV does not change the result, but it does increase the lri
part. The equivalent plot for the relative correction to Fπ is shown in Fig. 2(b).

We can also perform a study of the corrections at other values of mπ or as a function
of mπ. One of the problems here is what to with the value of Fπ that should be used.
If we use the infinite volume formulas to two-loop order of [24] which are expressed in
the form Fπ/F = f(Fπ, mπ) for another pion mass m̃π we determine the associated value
of the decay constant, F̃π by solving F̃π/Fπ = f(F̃π, m̃π)/f(Fπ, mπ) numerically. The
contribution from the p6 LECs cri we have put to zero. This procedure might differ from
the the values of F̃π used in [12]. To compare with their numerical results we have plotted
in Fig. 3 the equivalent of their Fig. 5. Namely Rmπ

= mV
π /mπ − 1 where we have

numerically calculated Rmπ
=
√

(m2
π +∆Vm2

π)/m
2
π − 1. The calculated values of Fπ are

90.1, 103.2, 113.8 for mπ = 100, 300, 500 MeV. The resulting values of Rmπ
as shown in

Fig. 3(a) are in reasonable agreement with Fig. 5 in [12]. There is already a difference at
order p4, so we suspect it is simply due to somewhat different values of Fπ. The one-loop
result for RFπ

agrees with Fig. 2 in [26] with small differences probably due to the difference
in Fπ and the difference in the lri -dependent part. Our result for the p6 result is somewhat
larger.
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of the pion in two-flavour ChPT at a fixed infinite volume pion mass mπ = mπ0 . Shown
are the one-loop or p4 corrections, the full p6 result and the part only dependent on the
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6lri and the sum of the p4 and p6 result. mπL = 2, 4 correspond to L ≈ 2.9, 5.8 fm.
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changing the scale to µ = 500 MeV does not change the result, but it does increase the lri
part. The equivalent plot for the relative correction to Fπ is shown in Fig. 2(b).

We can also perform a study of the corrections at other values of mπ or as a function
of mπ. One of the problems here is what to with the value of Fπ that should be used.
If we use the infinite volume formulas to two-loop order of [24] which are expressed in
the form Fπ/F = f(Fπ, mπ) for another pion mass m̃π we determine the associated value
of the decay constant, F̃π by solving F̃π/Fπ = f(F̃π, m̃π)/f(Fπ, mπ) numerically. The
contribution from the p6 LECs cri we have put to zero. This procedure might differ from
the the values of F̃π used in [12]. To compare with their numerical results we have plotted
in Fig. 3 the equivalent of their Fig. 5. Namely Rmπ

= mV
π /mπ − 1 where we have

numerically calculated Rmπ
=
√

(m2
π +∆Vm2

π)/m
2
π − 1. The calculated values of Fπ are

90.1, 103.2, 113.8 for mπ = 100, 300, 500 MeV. The resulting values of Rmπ
as shown in

Fig. 3(a) are in reasonable agreement with Fig. 5 in [12]. There is already a difference at
order p4, so we suspect it is simply due to somewhat different values of Fπ. The one-loop
result for RFπ

agrees with Fig. 2 in [26] with small differences probably due to the difference
in Fπ and the difference in the lri -dependent part. Our result for the p6 result is somewhat
larger.
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Numerical examples: Pion mass

mπ mK mη Fπ FK/Fπ Fη/Fπ m̂/m̂phys ms/msphys ms/m̂
134.9764∗ 494.53∗ 545.9 92.2∗ 1.199 1.306 1∗ 1∗ 27.3

100 487.14 540.46 90.4 1.219 1.337 0.547 1.000 49.9
300 549.6 593.73 101.4 1.099 1.154 5.025 1.000 5.43
100 400 446.53 87.3 1.199 1.293 0.518 0.644 33.9
100 495 549.07 90.7 1.219 1.340 0.550 1.037 51.4
300 495 533.00 100.3 1.094 1.138 4.867 0.778 4.36
495 495 495.00 108.0 1 1 12.70 0.465 1

Table 1: The self consistent solution for the infinite volume values of mη, Fπ, FK , Fη

and the output quark mass ratios compared with the physical one. Units for dimensional
quantities are in MeV . The input values for the physical case are starred.
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Figure 4: The finite volume corrections to the pion mass squared at mπ = mπ0 . All other
inputs are given in the text. Plotted is the quantity (mV 2

π −m2
π)/m

2
π. (a) Comparison of

the two- and three-flavour ChPT results. (b) The corrections for the three-flavour case
also showing the Lr

i dependent part.

Lr
i -dependent part of the p

6 contribution are of the expected size. However, there is a very
strong cancellation between the two parts leaving a very small positive correction. The
total finite volume correction for the eta mass in negative.

We can also check how the finite volume correction depends on the different masses. In
Fig. 6 we have plotted the corrections to the pion mass squared for a number of different
scenarios. In Fig. 6(a) we look at three cases. The bottom two line are the the physical
case labeled with mπ = mπ0 while the top four lines are with mπ = 100 MeV. There we
have plotted two cases, mK = 400 and 495 MeV. The effect of the change in the pion
mass is quite large while the effect due to the kaon mass change is smaller. The effect of
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Numerical examples: Pion decay constant
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Figure 9: The finite volume corrections to the pion decay constant at mπ = mπ0 . All other
inputs are given in the text. Plotted is the quantity −(F V

π − Fπ)/Fπ. (a) Comparison of
the two- and three-flavour ChPT results. (b) The corrections for the three-flavour case
also showing the Lr

i dependent part.

seen from (16). As a result, that part is very small. The total result comes mainly from
two-loop order. The eta mass has a negative one-loop finite volume contribution. The
pure loop part and the Lr

i -dependent part of the p6 contribution are of the expected size.
However, there is a very strong cancellation between the two parts leaving a very small
positive correction. The total finite volume correction for the eta decay constant is quite
small.

We can also check how the finite volume correction depends on the different masses. In
Fig. 6 we have plotted the corrections to the pion decay constant for a several scenarios. In
Fig. 11(a) we look at three cases. The bottom two lines are the the physical case labeled
with mπ = mπ0 while the top four lines are with mπ = 100 MeV. There we have plotted
two cases, mK = 400 and 495 MeV. The effect of the change in the pion mass is quite large
while the effect due to the kaon mass change is smaller. In Fig. 11(b) we can see the effect
of only varying the pion mass.

We have plotted the same cases for the finite volume corrections to the kaon decay
constant in Fig. 12. In Fig. 12(a), the bottom two-lines are the physical case. The four
top lines are with mπ = 100 MeV, where the smaller kaon mass gives a somewhat larger
correction. In Fig. 12(b) we have shown the corrections for a fixed kaon mass but three
different pion masses. The bottom three lines are the one-loop result while the top three
lines are the full result. Note that, as it should be, the case where the pion mass and
kaon mass are the finite volume corrections to the kaon are the same as for the pion in
Fig. 11(b). This is another small check on our result.
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Kaon & eta

Numericale examples: Three flavour Decay constants
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Figure 10: The corrections to the kaon and eta decay constant for the physical case. Plotted
is the quantity −(F V

i −Fi)/Fi for i = K, η. Shown are the one-loop, the two-loop, the sum
and the two-loop Lr

i dependent part. (a) Kaon. (b) Eta.
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Figure 11: The finite volume corrections to the pion decay constant for a number of cases
listed in Tab. 1. Plotted is the quantity −(F V

π −Fπ)/Fπ. (a) Physical case and (mπ, mK) =
(100, 495) and (100, 400) MeV. (b) mK = 495 MeV and mπ = 100, 300, 495 MeV. The size
L is given in units of the physical π0 mass.

We have plotted the same cases once more for the finite volume corrections to the
eta decay constant squared in Fig. 13. In Fig. 13(a) the one-loop corrections for the
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The decay constants for the mesons are defined similarly to (12) via

⟨0|ūγµγ5d|π−(p)⟩ =
√
2iFπpµ ,

⟨0|ūγµγ5s|K−(p)⟩ =
√
2iFKpµ ,

⟨0|
1√
6

(

ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s
)

|η(p)⟩ =
√
2iFηpµ . (17)

Note that since we work in the isospin limit, we use the octet axial current to define the
eta decay constant.

We define
F V
i = Fi +∆VFi , ∆VFi = ∆VF (4)

i +∆VF (6)
i , (18)

for i = π, K, η. The pion, kaon and eta decay constants at two-loop order in infinite
volume are known, [21], we have reproduced that result. Note that we give the corrections
to the decay constants here, not divided by the chiral limit decay constant as in [21]. Note
the correction for the expressions for the infinite volume decay constants described in the
erratum of [28]. The correct expressions can be downloaded from [29]

The order p4 results are

Fπ∆
VF (4)

π = AV (m2
π) + AV (m2

K)
(

1/2
)

,

Fπ∆
VF (4)

K = AV (m2
π)
(

3/8
)

+ AV (m2
K)
(

3/4
)

+ AV (m2
η)
(

3/8
)

,

Fπ∆
VF (4)

η = AV (m2
K)
(

3/2
)

. (19)

These agree with [9, 10, 27]. The p6 expressions are again rather long and are given
in App. B. The contributions with at most one-pion propagator at finite volume were
calculated in [27] for the kaon in three flavour ChPT, the expression for the pion was done
in two-flavour ChPT and discussed above. We agree with the Lr

i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
we needed to get agreement for the two-flavour pion decay constant.

6 Numerical results

For numerical input we use Fπ = 92.2 MeV, mπ = mπ0 = 134.9764 MeV, the average mK

with electromagnetic effects removed with the estimate of [30], mK = 494.53 MeV, and
mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
[31]. We always use a subtraction scale µ = 770 MeV.

6.1 Two-flavour results

The lri we use we define via the usual l̄i defined at the scale of the charged pion mass. The
actual value we use are l̄1 = −0.4, l̄2 = 4.3, l̄3 = 3.0, l̄4 = 4.3. The relative finite volume
corrections to m2

π are shown in Fig. 2(a) as a function of mπL. We have checked that
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Numericale examples: Three flavour Decay constants
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Figure 10: The corrections to the kaon and eta decay constant for the physical case. Plotted
is the quantity −(F V

i −Fi)/Fi for i = K, η. Shown are the one-loop, the two-loop, the sum
and the two-loop Lr

i dependent part. (a) Kaon. (b) Eta.
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Figure 11: The finite volume corrections to the pion decay constant for a number of cases
listed in Tab. 1. Plotted is the quantity −(F V

π −Fπ)/Fπ. (a) Physical case and (mπ, mK) =
(100, 495) and (100, 400) MeV. (b) mK = 495 MeV and mπ = 100, 300, 495 MeV. The size
L is given in units of the physical π0 mass.

We have plotted the same cases once more for the finite volume corrections to the
eta decay constant squared in Fig. 13. In Fig. 13(a) the one-loop corrections for the
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Figure 12: The finite volume corrections to the kaon decay constant for a number of cases
listed in Tab. 1. Plotted is the quantity −(F V

K−FK)/FK . (a) Physical case and (mπ, mK) =
(100, 495) and (100, 400) MeV. (b) mK = 495 MeV and mπ = 100, 300, 495 MeV. The size
L is given in units of the physical π0 mass.

physical case and mπ, mK = 100, 495 MeV are extremely close, since it only depends on
the kaon mass. The p6 corrections for both cases are quite different though. Finally, for
mπ, mK = 100, 400 MeV both the one- and two-loop corrections are larger but the total
correction remains fairly small. In Fig. 13(b) we have shown the corrections for a fixed
kaon mass but three different pion masses. The p4 correction is thus identical for the three
cases. The correction for mπ, mK = 495 MeV agrees with the pion and kaon corrections
for this case. The total correction remains small for all cases.

We did not compare with the numerical results in [27], since there was a small mistake
in the relevant figures [32].

7 Conclusions

In this paper we calculated the finite volume corrections to two-loop order in ChPT. The
pion mass and decay constant we calculated both in two and three-flavour ChPT. The kaon
and eta mass and decay constant we obtained in three-flavour ChPT. These expressions in
the main text and the appendices are the main result of this work.

We have compared as far as possible with existing work, where we are in agreement
with the known one-loop results and have some disagreements with the existing results at
two-loop order. What we agree on and differ on is discussed in Sects. 4 and 5. Note that a
full comparison at the analytical level was not possible due to the large differences in the
loop integral treatments.
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Now: Partially Quenched
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• Goldstones                                                          „9x9“  
 
                                                                           „supersymmetric“  
 
                  (Sharpe, Shoresh)  

• reduction of operators:  
 
but no Cayley-Hamilton

PQ in a Nutshell

and sea sector, another set of so-called ghost quarks is added. These are “bosonic” in the
sense that they are treated as commuting variables. With their masses fixed to the same
numerical values as present in the valence sector, they will cancel exactly the contribution
coming from closed valence quark loops.

The corresponding Goldstone degrees of freedom are written as

Φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[

qV q̄V
] [

qV q̄S
] [

qV q̄B
]

[

qS q̄V
] [

qS q̄S
] [

qS q̄B
]

[

qB q̄V
] [

qB q̄S
] [

qB q̄B
]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3)

since the chiral symmetry group is formally extended to the graded

G = SU(nval + nsea|nval)L × SU(nval + nsea|nval)R .2 (4)

Note that the meson fields containing one single ghost quark only will themselves obey
fermionic, i. e. anticommuting, statistics.

The structure of the Lagrangian is the same as in standard ChPT for a generic number
of flavours. At one-loop, it is thus given by

L4 =
12
∑

i=0

L̂iXi + contact terms

= L̂0 ⟨uµuνuµuν⟩+ L̂1 ⟨uµuµ⟩2 + L̂2 ⟨uµuν⟩⟨uµuν⟩
+ L̂3 ⟨(uµuµ)

2⟩+ L̂4 ⟨uµuµ⟩⟨χ+⟩+ L̂5 ⟨uµuµχ+⟩

+ L̂6 ⟨χ+⟩2 + L̂7 ⟨χ−⟩2 +
L̂8

2
⟨χ2

+ + χ2
−⟩

− iL̂9 ⟨fµν
+ uµuν⟩+

L̂10

4
⟨f 2

+ − f 2
−⟩

+ iL̂11

〈

χ̂−

(

∇µuµ −
i

2
χ̂−

)〉

+ L̂12

〈

(

∇µuµ −
i

2
χ̂−

)2
〉

+ Ĥ1 ⟨F 2
L + F 2

R⟩+ Ĥ2 ⟨χχ†⟩, (5)

where the generalized Goldstone manifold is parametrized as

u ≡ exp
(

iΦ/(
√
2F̂ )

)

(6)

2The precise structure of the symmetry group is somewhat different, but the one given here is sufficient
for both the present discussion as well as for practical calculations. The “approximate” symmetry group
reproduces the right Ward identities. [10, 45]

3

performed. The Three-Flavour PQChPT Lagrangian (equation (5)) thus remains to have
11 LECs for PQChPT. The terms proportional to L11 and L12 can be absorbed into higher
orders since the lowest-order equation of motion is given by

∇µuµ −
i

2
χ̂− = 0. (11)

Table 1 gives an overview over the remaining LECs for different cases of ChPT and
PQChPT through NNLO. For the case of three sea quarks, L0 is conventially eliminated in
unquenched ChPT by means of Cayley-Hamilton relations. The LECs for the unquenched
case are related to PQChPT via

Lr
1 = Lr(3pq)

1 + Lr(3pq)
0 /2,

Lr
2 = Lr(3pq)

2 + Lr(3pq)
0 ,

Lr
3 = Lr(3pq)

3 − 2Lr(3pq)
0 , (12)

indicating also that a numerical value for L0 cannot be obtained by experiment, but can
be determined only via PQQCD Lattice simulations.

For extraction of LECs for standard ChPT with three flavours, one thus makes the
common choice

Lr(3pq)
11 = Lr(3pq)

12 = 0. (13)

Caution is called when the matching of PQChPT is supposed to be done in order to obtain
unquenched two-flavour LECs. The choice of terms in the original two-flavour Gasser-
Leutwyler Lagrangian differs by an L11 type term. This makes no difference at NLO, but
in order to obtain the right relations at NNLO between the li, ci and the Li, Ki one should
take

Lr(2pq)
11 = −lr4/4, Lr(2pq)

12 = 0. (14)

3 The propagator and notation for residues and low-

est order masses

We present the formulas here in terms of the mass parameters χi, defined as the eigenvalues
of the lowest order mass matrix.

The variant of PQChPT, as considered in this paper, comes with three valence quarks
(masses χ1, χ2, χ3) and three sea quarks (masses χ4, χ5, χ6). The additional ghost quarks
emerging only in the supersymmetric formulation have masses χ7, χ8, χ9 which do not
appear explicitly since they are fixed to the ones in the valence sector, i.e. χ7 = χ1,
χ8 = χ2, χ9 = χ3.

We use the numbers dval and dsea to denote the number of non-degenerate quark masses
in each sector. In the case of two non-degenerate mass scales for one sector, it is the
two masses with the lowest indices that we set degenerate, which will in turn both be

5

and sea sector, another set of so-called ghost quarks is added. These are “bosonic” in the
sense that they are treated as commuting variables. With their masses fixed to the same
numerical values as present in the valence sector, they will cancel exactly the contribution
coming from closed valence quark loops.

The corresponding Goldstone degrees of freedom are written as

Φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[

qV q̄V
] [

qV q̄S
] [

qV q̄B
]

[

qS q̄V
] [

qS q̄S
] [

qS q̄B
]

[

qB q̄V
] [

qB q̄S
] [

qB q̄B
]

⎞

⎟

⎟

⎟

⎟
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⎟

⎟

⎠

, (3)

since the chiral symmetry group is formally extended to the graded

G = SU(nval + nsea|nval)L × SU(nval + nsea|nval)R .2 (4)

Note that the meson fields containing one single ghost quark only will themselves obey
fermionic, i. e. anticommuting, statistics.

The structure of the Lagrangian is the same as in standard ChPT for a generic number
of flavours. At one-loop, it is thus given by

L4 =
12
∑

i=0

L̂iXi + contact terms

= L̂0 ⟨uµuνuµuν⟩+ L̂1 ⟨uµuµ⟩2 + L̂2 ⟨uµuν⟩⟨uµuν⟩
+ L̂3 ⟨(uµuµ)

2⟩+ L̂4 ⟨uµuµ⟩⟨χ+⟩+ L̂5 ⟨uµuµχ+⟩

+ L̂6 ⟨χ+⟩2 + L̂7 ⟨χ−⟩2 +
L̂8

2
⟨χ2

+ + χ2
−⟩

− iL̂9 ⟨fµν
+ uµuν⟩+

L̂10

4
⟨f 2

+ − f 2
−⟩

+ iL̂11

〈

χ̂−

(

∇µuµ −
i

2
χ̂−

)〉

+ L̂12

〈

(

∇µuµ −
i

2
χ̂−

)2
〉

+ Ĥ1 ⟨F 2
L + F 2

R⟩+ Ĥ2 ⟨χχ†⟩, (5)

where the generalized Goldstone manifold is parametrized as

u ≡ exp
(

iΦ/(
√
2F̂ )

)

(6)

2The precise structure of the symmetry group is somewhat different, but the one given here is sufficient
for both the present discussion as well as for practical calculations. The “approximate” symmetry group
reproduces the right Ward identities. [10, 45]
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3

similar to the exponential representation in standard ChPT, we have furthermore intro-
duced

uµ = i
{

u†(∂µ − irµ) u− u (∂µ − ilµ) u
†
}

,

χ± = u†χ u† ± uχ† u,

fµν
± = uF µν

L u† ± u†F µν
R u, (7)

as well as the quantity
χ̂− ≡ χ− − ⟨χ−⟩/nsea (8)

and ordinary traces have been replaced by supertraces which are denoted by ⟨ ⟩ defined in
terms of the ordinary ones by

Str

(

A B
C D

)

= TrA− TrD . (9)

The supersinglet Φ0, generalizing the η′, is integrated out to account for the axial anomaly
as in standard ChPT, implying the additional condition

⟨Φ⟩ = Str (Φ) = 0 . (10)

As opposed to the unquenched case, note the impact of this procedure onto the structure
of the neutral propagator (cf. section 3).

Table 1: The different sets of LEC:s for unquenched (nf ) and partially quenched (nsea)
ChPT. The number of physically relevant terms in each set is indicated by nph, and the
number of contact terms by nct. The relationships between the various LEC:s are discussed
in the text.

ChPT ChPT ChPT PQChPT PQChPT

nf , nsea 2 3 n 2 3

LO F,B F0, B0 F̂0, B̂ F, B F0, B0

NLO li Li L̂i L(2pq)
i L(3pq)

i

nph + nct 7+3 10+2 11+2 11+2 11+2

NNLO ci Ci Ki K(2pq)
i K(3pq)

i

nph + nct 52+4 90+4 112+3 112+3 112+3

As has been argued above, a calculation in PQChPT has to be performed using a larger
set of operators since no further reduction by means of Cayley-Hamilton relations can be
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•       Taking masses degenerate requires taking 
•               the proper limit! Challenge!

Technicalities: Neutral propagatorrepresented by the mass scale with the lowest index, e.g. in the case dsea = 2 we have
χ4 = χ5 ̸= χ6 and expressions will be explicitly dependent on χ4 and χ6 only.

The flvour-charged propagator is fully given by

−i Gc
ij(k) =

ϵj
k2 − χij + iε

(i ̸= j) . (15)

with χij ≡ (χi + χj)/2 corresponding to the lowest order meson masses, and the signature
vector ϵj defined as +1 for the flavor indices of the nval + nsea fermionic quarks, and as −1
for the flavor indices of the nval bosonic ghost quarks. In the present calculation, with the
number of valence and sea quarks as given above, ϵj thus takes the values

ϵj =

{

+1 for j = 1, . . . , 6
−1 for j = 7, 8, 9 .

(16)

The flavour-neutral propagator on the other hand suffers from additional contributions
emerging from the elimination of the Φ0. We write it as

Gn
ij(k) = Gc

ij(k) δij −Gq
ij(k)/nsea. (17)

The additional terms are either

−i Gq
ij(k) =

Ri
jπη

k2 − χi + iε
+

Rj
iπη

k2 − χj + iε

+
Rπ

ηij

k2 − χπ + iε
+

Rη
πij

k2 − χη + iε
, (18)

if i = j or χi = χj , or

−i Gq
ij(k) =

Rd
i

(k2 − χi + iε)2
+

Rc
i

k2 − χi + iε

+
Rπ

ηii

k2 − χπ + iε
+

Rη
πii

k2 − χη + iε
, (19)

i ̸= j and χi ̸= χj . In the latter case, the sum of single poles is supplemented with an
unphysical double pole. Since double poles emerge due to the partial quenching in the
valence sector, they disappear by taking the appropriate unquenched limit.

The propagators above depend also on the neutral pion and eta masses in the sea quark
sector, denoted by χπ and χη. Defined as solution to the equations

χπ + χη =
2

3
(χ4 + χ5 + χ6) ,

χπχη =
1

3
(χ4χ5 + χ5χ6 + χ4χ6) , (20)

they are non-polynomial in the sea quark masses for three non-degenerate quark masses,
i. e. dsea = 3. For dsea = 2 one has instead χπ = χ4 and χη = 1/3χ4 + 2/3χ6.
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Theadditionaltermsareeither

−iGq
ij(k)=

Ri
jπη

k2−χi+iε
+
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+

Rη
πij

k2−χη+iε
,(18)
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+
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+
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3
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χπχη=
1

3
(χ4χ5+χ5χ6+χ4χ6),(20)

theyarenon-polynomialintheseaquarkmassesforthreenon-degeneratequarkmasses,
i.e.dsea=3.Fordsea=2onehasinsteadχπ=χ4andχη=1/3χ4+2/3χ6.

6

represented by the mass scale with the lowest index, e.g. in the case dsea = 2 we have
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+
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+
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i ̸= j and χi ̸= χj . In the latter case, the sum of single poles is supplemented with an
unphysical double pole. Since double poles emerge due to the partial quenching in the
valence sector, they disappear by taking the appropriate unquenched limit.

The propagators above depend also on the neutral pion and eta masses in the sea quark
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χπ + χη =
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(χ4 + χ5 + χ6) ,

χπχη =
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3
(χ4χ5 + χ5χ6 + χ4χ6) , (20)

they are non-polynomial in the sea quark masses for three non-degenerate quark masses,
i. e. dsea = 3. For dsea = 2 one has instead χπ = χ4 and χη = 1/3χ4 + 2/3χ6.
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Using the more general quantities

Rz
ab = χa − χb,

Rz
abc =

χa − χb

χa − χc

,

Rz
abcd =

(χa − χb)(χa − χc)

χa − χd

,

Rz
abcdefg =

(χa − χb)(χa − χc)(χa − χd)

(χa − χe)(χa − χf)(χa − χg)
, (21)

we define the residues R of the neutral meson propagator in equations (18) and (19) as

Ri
jkl = Rz

i456jkl,

Rd
i = Rz

i456πη,

Rc
i = Ri

4πη +Ri
5πη +Ri

6πη − Ri
πηη −Ri

ππη. (22)

Note on the side these quantities vanish when i takes the value of a sea quark index. The
sea-quark propagators thus do not contribute any double poles as expected since these
originate from the quenching in the valence sector.

For dsea = 2, the needed residues simplify to

Ri
jk = Rz

i46jk,

Rd
i = Rz

i46η,

Rc
i = Ri

4η +Ri
6η − Ri

ηη. (23)

The corresponding propagator can be obtained by removing all pion indices as well as the
pion mass pole from equations (18) and (19).

The physically less interesting case dsea = 1 immediately yields χπ = χη = χ4. All
residues from the sea quark sector are reduced to numbers, only

Ri
j = Rz

i4j ,

Rd
i = Rz

i4 , (24)

can still appear where the double-pole residue has been retained only for notational con-
sistency.

4 Comments on the finite volume integrals

The loop integrals at finite volume at one-loop are well known. The difference with infinite
volume is that there is a sum over discrete momenta in every direction with a finite size
rather than a continuous integral. The use of the Poisson summation formula allows to
identify the infinite volume part and the finite volume corrections. The remainder can
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•     one-loop diagram topologies: up to total power 4, up to 2 different mass scales

•     sunset

•         infinite and finite parts different for every n!

•         Lots of new identities between integrals of  
             different n!

•         Note: related to n=1 by differentiation with  
          respect to mass squared!

•         => systematic way to obtain new identities
•           & numerical crosscheck

Double poles

For a proper tensor reduction at finite volume, more Lorentz structures are possible
than in the infinite volume case. We define the tensor tµν as the spatial part of the
Minkowski metric gµν , to express these. For the center-of-mass (cms) case this is sufficient.
The needed functions for the above example are

Aµν(m
2) = gµνA22(m

2) + tµνA23(m
2) . (26)

We then use Passarino-Veltman identities in order to further simplify the result. For
consistency with the infinite volume computations, we again remove the A22-type integrals,
now via

dA22(m
2) + 3A23(m

2) = m2A(m2) (27)

at finite volume.
Each integral undergoes a split into infinite volume contribution and finite volume

correction by means of a Poisson summation formula while simultaneously being expanded
in ϵ up to necessary order.

A(m2) = λ0
m2

16π2
+ A(m2) + AV (m2) + ϵ

(

Aϵ(m2) + AV ϵ(m2)
)

+ · · · . (28)

Here, λ0 =
1
ϵ
+ log(4π) + 1− γ. The sunset integrals, defined as

{

H,Hµ, H
s
µ, Hµν , H

rs
µν , H

ss
µν

}

(n,m2
1, m

2
2, m

2
3, p) =

1

i2

∫

V

ddr

(2π)d
dds

(2π)d
{1, rµ, sµ, rµrν , rµsν , sµsν}

(r2 −m2
1)

n1 (s2 −m2
2)

n2 ((r + s− p)2 −m2
3)

n3
, (29)

now come with eight different pole configurations. We label these by the index n according
to table BLA.

The interchange (r,m2
1, n1) ↔ (s,m2

2, n2) shows that Hs
µ, H

ss
µν are related directly to

Hr
µ, H

rr
µν . Hrs

µν can also be related to Hµν using the trick shown in [30] and also used in
[24], now taking the pole configurations into account properly. The resulting Hµν and Hµ

can then be reduced to six pole configurations only, cf. table 2, the bracketed ones can be
eliminated via interchange of the latter two loop momenta. In the scalar case H , only four
pole configurations are needed.

For the partially quenched calculation we thus generalized the sunset integrals via

H(χi,χj,χk; p
2) → H(n,χi,χj,χk; p

2), (30)

introducing the new index n for the pole configurations as the first argument. Note on the
side that all new pole configurations are related to the trivial one by differentiation with
respect to the mass scales.

In the cms frame, we reduce the tensor structure of the sunsets as

Hµ = pµH1 (31)

Hµν = pµpνH21 + gµνH22 + tµνH27 .

9

As in [], we renormalize the FV sunsets by not only subtracting the infinite part but also
an additional finite part containing O(ϵ) contributions of one-loop integrals. In this way,
the latter integrals will cancel out of the final result, and thus do not need to be computed.
The splitting for n = 1

H̃V =
λ0

16π2

(

AV (m2
1) + AV (m2

2) + AV (m2
3)
)

+
1

16π2

(

AV ϵ(m2
1) + AV ϵ(m2

2) + AV ϵ(m2
3)
)

+HV ,

H̃V
1 =

λ0

16π2

1

2

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

2

(

AV ϵ(m2
2) + AV ϵ(m2

3)
)

+HV
1 ,

H̃V
21 =

λ0

16π2

1

3

(

AV (m2
2) + AV (m2

3)
)

+
1

16π2

1

3

(

AV ϵ(m2
2) + AV ϵ(m2

3)
)

+HV
21 ,

H̃V
27 =

λ0

16π2

(

AV
23(m

2
1) +

1

3
A23(m

2
2) +

1

3
AV

23(m
2
3)
)

+
1

16π2

(

AV ϵ
23 (m

2
1) +

1

3
AV ϵ

23 (m
2
2) +

1

3
AV ϵ

23 (m
2
3)
)

+HV
27 , (32)

has to be generalized accordingly for the other pole configurations.

Table 2: Overview of the notation for the possible configurations of powers of propagators
in the H functions in PQChPT. Redundant configurations are given in parentheses.

n1 n2 n3

n = 1 1 1 1

n = 2 2 1 1
n = 3 1 2 1
(n = 4) 1 1 2

n = 5 2 2 1
(n = 6) 2 1 2
n = 7 1 2 2

n = 8 2 2 2

10
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• Two independent calculations

• Quarkloop calculation with different anatomy: „open indices“

• Other checks: FV unquenched results, partially quenched IV result

Quarkloop vs Ghost

kazimierzquenched06 printed on August 20, 2013 5

4. Partially Quenched ChPT at Two Loops

The central problem in PQChPT is thus to mimic, within ChPT, the ef-
fect of treating closed quark loops and quark lines differently. This problem
is depicted schematically in Fig. 2. In some of the early calculations, the
quark flow was inferred directly from the flavour flow in the ChPT vertices.
An alternative approach, often referred to as the supersymmetric method, is
more systematic. A series of bosonic ghost quarks with spin 1/2 is added to
QCD. Due to the different statistics, these may cancel the effects of closed
loops of valence quarks. This method is illustrated in Fig. 3.

Mesons

=

Quark Flow
Valence

+

Quark Flow
Sea

+ · · ·

Fig. 2. The meson loop diagram on the left has different types of quark flow, both
valence and sea quark as indicated on the right.

The supersymmetric method was originally introduced for the quenched
case in Refs. [12, 13, 14] and later extended to the partially quenched case,
see Refs. [15, 16, 17] and references therein. Also, an instructive discussion
about ChPT in the partially quenched sector is given in Ref. [16]. For
practical purposes, the QCD chiral symmetry may be replaced by a graded
symmetry which is (assumed to be) spontaneously broken to its diagonal
subgroup:

SU(nv + ns|nv)L × SU(nv + ns|nv)R → SU(nv + ns|nv)V , (5)

where nv, ns denote the number of valence and sea quark flavours. The
“Goldstone bosons” now have both fermionic and bosonic character. A
large amount of work exists at one-loop order, see the references in [11]. One

Mesons

=

Quark Flow
Valence

+

Quark Flow
Valence

+

Quark Flow
Sea

+

Quark Flow
Ghost

Fig. 3. The effect of adding ghost quarks to the different quark loops in the mesonic
one loop diagram shown on the right.
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• Notation             = 1,2                = 1,2,3
• if two masses degenerate, use „lowest two“, i.e. for           = 2:

• (12), (22), (13), (23) as pions
• (22), (23) as kaons
• The up/down average mass is varied

• Input:  
BE14 (Bijnens, Ecker) with  
L0 set to zero

• ML=2 for M=0.13 GeV

Degeneracy cases/Numerical study

and sea sector, another set of so-called ghost quarks is added. These are “bosonic” in the
sense that they are treated as commuting variables. With their masses fixed to the same
numerical values as present in the valence sector, they will cancel exactly the contribution
coming from closed valence quark loops.

The corresponding Goldstone degrees of freedom are written as

Φ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[

qV q̄V
] [

qV q̄S
] [

qV q̄B
]

[

qS q̄V
] [

qS q̄S
] [

qS q̄B
]

[

qB q̄V
] [

qB q̄S
] [

qB q̄B
]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3)

since the chiral symmetry group is formally extended to the graded

G = SU(nval + nsea|nval)L × SU(nval + nsea|nval)R .2 (4)

Note that the meson fields containing one single ghost quark only will themselves obey
fermionic, i. e. anticommuting, statistics.

The structure of the Lagrangian is the same as in standard ChPT for a generic number
of flavours. At one-loop, it is thus given by

L4 =
12
∑

i=0

L̂iXi + contact terms

= L̂0 ⟨uµuνuµuν⟩+ L̂1 ⟨uµuµ⟩2 + L̂2 ⟨uµuν⟩⟨uµuν⟩
+ L̂3 ⟨(uµuµ)

2⟩+ L̂4 ⟨uµuµ⟩⟨χ+⟩+ L̂5 ⟨uµuµχ+⟩

+ L̂6 ⟨χ+⟩2 + L̂7 ⟨χ−⟩2 +
L̂8

2
⟨χ2

+ + χ2
−⟩

− iL̂9 ⟨fµν
+ uµuν⟩+

L̂10

4
⟨f 2

+ − f 2
−⟩

+ iL̂11

〈

χ̂−

(

∇µuµ −
i

2
χ̂−

)〉

+ L̂12

〈

(

∇µuµ −
i

2
χ̂−

)2
〉

+ Ĥ1 ⟨F 2
L + F 2

R⟩+ Ĥ2 ⟨χχ†⟩, (5)

where the generalized Goldstone manifold is parametrized as

u ≡ exp
(

iΦ/(
√
2F̂ )

)

(6)

2The precise structure of the symmetry group is somewhat different, but the one given here is sufficient
for both the present discussion as well as for practical calculations. The “approximate” symmetry group
reproduces the right Ward identities. [10, 45]
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Figure 2: The finite volume corrections relative to the lowest order value as defined in
(33) for the case with all valence masses equal and all sea masses equal. Left: ∆V

M the
correction to the mass-squared, contour lines are drawn at 0.03, 0.01, 0.003, 0,−0.03,−0.01
starting from the bottom left and going counterclockwise. Right: The correction to the
decay constant, contour lines are drawn at −0.001,−0.002,−0.005,−0.01,−0.02,−0.05
going from top-right to bottom-left.

The first case we look at is dval = 1, dsea = 2. This corresponds to taking the up and
down quark masses equal in both the valence and sea quark sector and a different strange
quark mass. This is the isospin limit. The result is shown in Fig. 3(a). There is a rather
large cancellation between the p4 and p6 correction while the p6 contribution coming from
the Lr

i is fairly small.
We now include isospin breaking in the valence sector. We thus look at the case with

dval = 2, dsea = 2. We fix the valence quark masses such that χ1 + χ2 = 2χ12 and
χ1/χ2 = 1/2. There is a sizable isospin breaking visible in the finite volume corrections,
as shown in Fig. 3(b).

The opposite case, isospin breaking in the sea sector but not in the valence sector leads
to numerically similar but opposite corrections. Here we used χ1 = χ2, χ4 = χ5/2 and
χ4 + χ5 = 2χav. The results are shown in Fig. 3(c).

Finally, we introduce isospin breaking in both the valence and sea quark sector with
χ1/χ2 = 1/2, χ4 = χ5/2 and χ4 + χ5 = 2χav. The results are shown in Fig. 3(d). The
total isospin corrections are rather small.

The numerical cancellation between the isospin breaking in the valence and sea quark
case is accidental. The corrections due to valence and sea quark masses are all second order
in isopin breaking. The same argument as in the unquenched case goes through both for
the valence and sea quark masses. We have compared the four cases in Fig. 4(a) where
we show the no isospin breaking, only in the valence, only in the sea and in both sectors
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Figure 2: The finite volume corrections relative to the lowest order value as defined in
(33) for the case with all valence masses equal and all sea masses equal. Left: ∆V
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starting from the bottom left and going counterclockwise. Right: The correction to the
decay constant, contour lines are drawn at −0.001,−0.002,−0.005,−0.01,−0.02,−0.05
going from top-right to bottom-left.

The first case we look at is dval = 1, dsea = 2. This corresponds to taking the up and
down quark masses equal in both the valence and sea quark sector and a different strange
quark mass. This is the isospin limit. The result is shown in Fig. 3(a). There is a rather
large cancellation between the p4 and p6 correction while the p6 contribution coming from
the Lr

i is fairly small.
We now include isospin breaking in the valence sector. We thus look at the case with

dval = 2, dsea = 2. We fix the valence quark masses such that χ1 + χ2 = 2χ12 and
χ1/χ2 = 1/2. There is a sizable isospin breaking visible in the finite volume corrections,
as shown in Fig. 3(b).

The opposite case, isospin breaking in the sea sector but not in the valence sector leads
to numerically similar but opposite corrections. Here we used χ1 = χ2, χ4 = χ5/2 and
χ4 + χ5 = 2χav. The results are shown in Fig. 3(c).

Finally, we introduce isospin breaking in both the valence and sea quark sector with
χ1/χ2 = 1/2, χ4 = χ5/2 and χ4 + χ5 = 2χav. The results are shown in Fig. 3(d). The
total isospin corrections are rather small.

The numerical cancellation between the isospin breaking in the valence and sea quark
case is accidental. The corrections due to valence and sea quark masses are all second order
in isopin breaking. The same argument as in the unquenched case goes through both for
the valence and sea quark masses. We have compared the four cases in Fig. 4(a) where
we show the no isospin breaking, only in the valence, only in the sea and in both sectors
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represented by the mass scale with the lowest index, e.g. in the case dsea = 2 we have
χ4 = χ5 ̸= χ6 and expressions will be explicitly dependent on χ4 and χ6 only.

The flvour-charged propagator is fully given by

−i Gc
ij(k) =

ϵj
k2 − χij + iε

(i ̸= j) . (15)

with χij ≡ (χi + χj)/2 corresponding to the lowest order meson masses, and the signature
vector ϵj defined as +1 for the flavor indices of the nval + nsea fermionic quarks, and as −1
for the flavor indices of the nval bosonic ghost quarks. In the present calculation, with the
number of valence and sea quarks as given above, ϵj thus takes the values

ϵj =

{

+1 for j = 1, . . . , 6
−1 for j = 7, 8, 9 .

(16)

The flavour-neutral propagator on the other hand suffers from additional contributions
emerging from the elimination of the Φ0. We write it as

Gn
ij(k) = Gc

ij(k) δij −Gq
ij(k)/nsea. (17)

The additional terms are either

−i Gq
ij(k) =

Ri
jπη

k2 − χi + iε
+

Rj
iπη

k2 − χj + iε

+
Rπ

ηij

k2 − χπ + iε
+

Rη
πij

k2 − χη + iε
, (18)

if i = j or χi = χj , or

−i Gq
ij(k) =

Rd
i

(k2 − χi + iε)2
+

Rc
i

k2 − χi + iε

+
Rπ

ηii

k2 − χπ + iε
+

Rη
πii

k2 − χη + iε
, (19)

i ̸= j and χi ̸= χj . In the latter case, the sum of single poles is supplemented with an
unphysical double pole. Since double poles emerge due to the partial quenching in the
valence sector, they disappear by taking the appropriate unquenched limit.

The propagators above depend also on the neutral pion and eta masses in the sea quark
sector, denoted by χπ and χη. Defined as solution to the equations

χπ + χη =
2

3
(χ4 + χ5 + χ6) ,

χπχη =
1

3
(χ4χ5 + χ5χ6 + χ4χ6) , (20)

they are non-polynomial in the sea quark masses for three non-degenerate quark masses,
i. e. dsea = 3. For dsea = 2 one has instead χπ = χ4 and χη = 1/3χ4 + 2/3χ6.
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Numerical examples: „Pion“ mass
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Figure 3: The corrections for the pion mass relative to the lowest order mass as a function
of the average up and down sea quark mass via χav. (a) The isospin limit, χ1 = χ2,
χ4 = χ5 = χav. (b) Isospin breaking in the valence sector, χ1 = χ3/2 and χ4 = χ5 = χav.
(c) Isospin breaking in the sea sector, χ1 = χ2 and χ4 = χ5/2. (d) Isospin breaking in both
sectors, χ1 = χ3/2 and χ4 = χ5/2.
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„Pion“ mass: A closer look
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Figure 4: Comparing the finite volume correction for the meson masses for the cases with
no isospin breaking (none), only in the valence sector (val), only in the sea sector (sea)
and in both (full) for the meson mass squared.

together for the p4 and the full p4 + p6 result. The curves are those shown in Fig. 3(a-d).
We have checked numerically by using a different ratio for the isospin breaking that the
corrections are indeed second order in isospin breaking.

6.3 The pion decay constant

In this subsection we look at the same cases as before. The lowest order mass is around the
pion mass. We plot∆V

F with
√
χ12 = 0.13 GeV. and as before

√
χ6 =

√

2(0.45)2 − (0.13)2 GeV
≈ 623 GeV. The other input parameters are again chosen as given in introduction of this
section. We have restricted the sea up and down quark masses corresponding to a lowest
order sea quark pion of 100 to 300 MeV.

The first case we look at is dval = 1, dsea = 2. This corresponds to taking the up and
down quark masses equal in both the valence and sea quark sector and a different strange
quark mass, i.e. the isospin limit. The result is shown in Fig. 5(a). The total p6 correction
is fairly small.

We now include isospin breaking in the valence sector. We thus look at the case with
dval = 2, dsea = 2. We fix the valence quark masses such that χ1 + χ2 = 2χ12 and
χ1/χ2 = 1/2. There is a sizable isospin breaking visible in the finite volume corrections,
as shown in Fig. 3(b).

The opposite case, isospin breaking in the sea sector but not in the valence sector leads
to numerically much smaller effects. Here we used χ1 = χ2, χ4 = χ5/2 and χ4+χ5 = 2χav.
The results are shown in Fig. 3(c).
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Numerical examples: „Pion“ decay constant
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Figure 5: The corrections for the pion decay constant relative to its lowest order value
as a function of the average up and down sea quark mass via χav. (a) The isospin limit,
χ1 = χ2, χ4 = χ5 = χav. (b) Isospin breaking in the valence sector, χ1 = χ3/2 and
χ4 = χ5 = χav. (c) Isospin breaking in the sea sector, χ1 = χ2 and χ4 = χ5/2. (d) Isospin
breaking in both sectors, χ1 = χ3/2 and χ4 = χ5/2.
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Numerical examples: „Kaon“

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

∆
V F

χav [GeV2]

p4 none
p4 val

p4 sea
p4 full

(a)

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

∆
V F

χav [GeV2]

p4+p6 none
p4+p6 val

p4+p6 sea
p4+p6 full

(b)

Figure 6: Comparing the finite volume correction for the meson decay constant and masses
for the cases with no isospin breaking (none), only in the valence sector (val), only in the
sea sector (sea) and in both (full) for the meson mass squared. (a) p4 (b) p4 + p6.
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Figure 7: The finite volume corrections for a valence mass close to the kaon mass relative
to the lowest order value. (a) the kaon mass squared. (b) the kaon decay constant.
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• We have calculated FV corrections up to two-loop order in two- and 
three-flavour ChPT. In three-flavor PQChPT, we have computed flavour-
charged meson masses and decay constants with two different techniques, 
and also calculated the (simplified) cases of degenerate masses

• Analytical expressions, see papers and/or 
http://home.thep.lu.se/~bijnens/chpt/

• Examples of numerical evaluations

• CHIRON http://home.thep.lu.se/~bijnens/chiron/ 
Calculate quantum corrections in ChPT with your own input parameters!  
All FV corrections from this talk (both ChPT and PQChPT) already 
implemented!

Summary

http://home.thep.lu.se/~bijnens/chiron/
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On the origin of „Chiral“
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                                 Now EFT:

Chiral fields, QCD, Chiral symmetry

mesons will replace the quarks1 and gluons of QCD (in meson ChPT). At every perturbative
order in the EFT, we will introduce new higher-dimensional operators (i.e. all which are
consistent with the symmetry) - operators that spoil the all-order renormalizability of the
theory - that embody the unknown effects from higher scales and bring them into the theory.
The coefficients of these new operators, called Low Energy Constants (LECs), renormalize
the theory and will have to be determined (usually by experiment) in order to evaluate
predictions numerically. As I will elaborate upon further below, the relation between
Lattice QCD and ChPT is highly symbiotic rather than purely competitive. For example,
Lattice QCD can help ChPT in the determination of the LECs whereas ChPT plays an
important role as a validity check for and to extrapolate lattice results, being able to correct
e. g. for unphysical lattice effects such as unphysical quark masses, finite volume effects
and lattice spacings. The calculations in this thesis have been performed to strengthen the
synergy between the two fields by systematically adressing some of these unphysical lattice
effects in the ChPT framework so that the possibilities given by a matching between lattice
and ChPT results will be improved in the future.

3 Foundations of ChPT and lowest order

The Lagrangian of QCD with N massless flavours

LQCD =
6
∑

i=1
(u,d,s,c,b,t)

ψ̄i(iD/−mi)ψi −
1

4
Gµν,aGµν

a mi = 0 ∀i ≤ N (1)

is symmetric under a chiral SU(N)L × SU(N)R × U(1)L × U(1)R, or equivalently under
SU(N)L×SU(N)R×U(1)V ×U(1)A. The U(1)V is the conservation of the baryon number,
thus leading to a classification of hadrons into baryons and mesons2, whereas the U(1)A is
anomalous. The cases of interest in meson ChPT are N = 2 and N = 3. Specifying to the
latter case, it is strongly believed3 that a spontaneous breakdown of the SU(3)L × SU(3)R
down to the diagonal subgroup SU(3)V occurs via a scalar quark condensate of type

0 ̸= ⟨q̄q⟩ , (2)

thus producing an octet of pseudoscalar Goldstone bosons that can be identified with the
eight lowest-mass mesons in the hadron spectrum. The matrix φ which is Hermitian and

1The background-interested reader might find the side remark exciting that George Zweig, who postu-
lated the ”quarks” of QCD independently, called them ”aces”, but Murray Gell-Mann and his ”quarks”
were more influential and his term prevailed.

2To be precise, note that U(1)V is also a symmetry in the massive case and SU(N)V also in the case
of degenerate masses, whereas the conservation of the axial-vector currents necessarily relies on the chiral
limit.

3One argument is the absense of degenerate ”parity partners” in the hadron spectrum. It should be
noted that a scalar quark condensate provides a sufficient, but not a necessary condition for the spontaneous
breakdown.
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traceless parametrizes the broken part of the group by using the exponential representation
as 4

U(x) = exp

(

i

√
2φ(x)

F0

)

(3)

where φ itself transforms under SU(3)V as an octet and contains the physical particles
(without isospin breaking) as

φ(x) =

⎛

⎜
⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 1√
3
η

⎞

⎟
⎠ . (4)

By adding terms breaking the chiral symmetry of equation (1) explicitly, we can make
the symmetry an approximate one, thus giving the mesons masses. The lowest order
chiral SU(3) Lagrangian, i. e. the most general chiral Lagrangian consistent with parity,
time-reversal, Lorentz symmetry of QCD, is given by

L2 =
F 2
0

4
Tr[DµU(DµU)†] +

F 2
0

4
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suppressed by higher powers of the pion decay constant F0. The Lagrangian in equation
(5) is constructed so that it would be chirally invariant if also χ would transform in the
same way as U. The lowest order masses for the pseudoscalar Pseudo-Goldstone bosons
can be obtained by expansion of the exponential and are (in the isospin limit) given by

M2
π,2 = 2B0m̂,

M2
K,2 = B0(m̂+ms), (8)

M2
η,2 =

2

3
B0 (m̂+ 2ms) .

They trivially fulfil the Gell-Mann Okubo relation

4M2
K = 3M2

η +M2
π . (9)

The ChPT perturbative series is now a systematic expansion in momenta and masses,
rather than one in a small dimensionless coupling.

4 Higher orders: Power counting in ChPT

At higher orders in ChPT, new contributions originate from two different sources: On the
one hand, diagrams containing loops are going to contribute, thus making it necessary to
expand the exponential in equation (3) to higher order in φ. At the same time, we can
write down more new operators consistent with the exact symmetries of QCD - both ones
which are consistent with chiral symmetry and others which break it explicitly. We thus
have an expansion of our general Lagrangian

L = L2 + L4 + L6 + ... (10)

where the higher-order operators may contain more derivatives and/or higher powers of
χ (cf. equation (7)). The new unknown constants multiplying the new operators that we
have introduced in this scheme will have to be fixed primarily by experiment. The most
general Lagrangian for a chiral SU(3) at order p4, for example, can be written as (using
the original choice of Gasser and Leutwyler)

L4 = L1

{

Tr[DµU(DµU)†]
}2

+ L2Tr
[

DµU(DνU)†
]

Tr
[

DµU(DνU)†
]

+L3Tr
[

DµU(DµU)†DνU(DνU)†
]

+ L4Tr
[

DµU(DµU)†
]

Tr
(

χU † + Uχ†)

+L5Tr
[

DµU(DµU)†(χU † + Uχ†)
]

+ L6

[

Tr
(

χU † + Uχ†)]2

+L7

[

Tr
(

χU † − Uχ†)]2 + L8Tr
(

Uχ†Uχ† + χU †χU †)

−iL9Tr
[

fR
µνD

µU(DνU)† + fL
µν(D

µU)†DνU
]

+ L10Tr
(

UfL
µνU

†fµν
R

)

+H1Tr
(

fR
µνf

µν
R + fL

µνf
µν
L

)

+H2Tr
(

χχ†) (11)
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general structure:  
                                           
                                                        e. g. SU(3)

                                                            Gasser, Leutwyler 1984/85

Most general Lagrangian consistent with symmetry,
reduction operators to minimal set via EOM, Cayley-Hamilton

Low Energy Constants (LECs): to be determined via experiment/lattice

Higher orders
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Chiral dimension of a diagram

# loops clearly bounded

Powercounting:  Weinberg

where we have introduced LECs called Li (apart from the so-called contact terms Hi
7).

The fµν are field-strength tensors related to the vector fields in the external field formalism
of ChPT. In the SU(2) case, the Lagrangian instead reads

L4 =
l1
4

{

Tr[DµU(DµU)†]
}2

+
l2
4
Tr[DµU(DνU)†]Tr[DµU(DνU)†]

+
l3
16

[

Tr(χU † + Uχ†)
]2

+
l4
4
Tr[DµU(Dµχ)† +Dµχ(D

µU)†]

+l5

[

Tr(fR
µνUfµν

L U †)−
1

2
Tr(fL

µνf
µν
L + fR

µνf
µν
R )

]

+i
l6
2
Tr[fR

µνD
µU(DνU)† + fL

µν(D
µU)†DνU ]

−
l7
16

[

Tr(χU † − Uχ†)
]2

+
h1 + h3

4
Tr(χχ†) +

h1 − h3

16

{
[

Tr(χU † + Uχ†)
]2

+
[

Tr(χU † − Uχ†)
]2 − 2Tr(χU †χU † + Uχ†Uχ†)

}

−2h2Tr(f
L
µνf

µν
L + fR

µνf
µν
R ) (12)

with constants denoted by li (hi). At order p6, also called next-to-next-to-leading order
(NNLO), new constants Ci respective ci are introduced into the SU(3) respective SU(2)
theory.

The ChPT expansion in masses and momenta necessitates a well-defined ordering cri-
terion for the different contributions to an observable of interest. To close this section, I
would like to shortly introduce to the so-called Weinberg power counting scheme [1] and
how it works in practice. We follow closely the discussion in [4]. As can be best seen
from the expressions for the lowest order meson masses (equation (8)), a quark mass will
contribute as a meson mass squared, thus corresponding to a momentum squared or two
derivatives in the Lagrangian. Generally speaking, a single vertex out of a Lagrangian L2n

will contribute with 2n in this power counting scheme. We introduce the chiral dimension
D of a diagrammatic contribution as

D = 4NL − 2NI +
∞∑

n=1

2nN2n, (13)

where NL denotes the number of loops, NI the number of internal lines and N2n denotes
the number of vertices that originate from the Lagrangian L2n (since besides the powers
coming from the vertices, a Lorentz invariant integration measure provides four powers of
momentum whereas a propagator provides two inverse powers).8 Using the identity

NL = NI − (NV − 1) NV =
∑

n

N2n (14)

7The contact term coefficients cannot be measured directly in physical quantities involving mesons and
are thus irrelevant for the calculations in this thesis.

8Note that the authors of [4] missed a factor of 4 in front of NL.

10Figure 1: Illustration of the Weinberg power counting scheme according to equation (13).
Upper row: (1) vertex of order p2, (2) propagator, (3) p4 contribution resulting from a loop
integration. Lower row: Different one-loop contributions to ππ scattering. All vertices are
of lowest order.

one can also eliminate either NL or NI . In the latter case, we find

D = 2 +
∞
∑

n=1

2(n− 1)N2n + 2NL, (15)

We can also see from this formula that the maximal number of loops contributing to a
fixed chiral dimension is given by

NL =
D − 2

2
. (16)

The practical estimation of the chiral dimension of a diagram can still best be done ac-
cording to formula (13). Some examples are given in figure 1.

5 Quantum correction for masses: A simple p4 exam-

ple

In this section, we rederive for instructive reasons the NLO corrections to the meson masses
in chiral SU(3). We conventionally denote the sum of irreducible self-energy diagrams by
−iΣ(p2). The physical mass M can then be obtained from it by solving for the position of
the propagator pole

M2 −M2
0 − Σ(M2) = 0 (17)

with M0 denoting the mass to lowest order. At order p4, this step is trivial, once Σ4(p2) is
known, since

M2 = M2
0 + Σ(M2) = M2

0 + Σ(M2
0 ) +O(p6). (18)
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Figure 1: Illustration of the Weinberg power counting scheme according to equation (13).
Upper row: (1) vertex of order p2, (2) propagator, (3) p4 contribution resulting from a loop
integration. Lower row: Different one-loop contributions to ππ scattering. All vertices are
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where we have introduced LECs called Li (apart from the so-called contact terms Hi
7).

The fµν are field-strength tensors related to the vector fields in the external field formalism
of ChPT. In the SU(2) case, the Lagrangian instead reads

L4 =
l1
4

{

Tr[DµU(DµU)†]
}2

+
l2
4
Tr[DµU(DνU)†]Tr[DµU(DνU)†]

+
l3
16

[

Tr(χU † + Uχ†)
]2

+
l4
4
Tr[DµU(Dµχ)† +Dµχ(D

µU)†]

+l5

[

Tr(fR
µνUfµν

L U †)−
1

2
Tr(fL

µνf
µν
L + fR

µνf
µν
R )

]

+i
l6
2
Tr[fR

µνD
µU(DνU)† + fL

µν(D
µU)†DνU ]

−
l7
16

[

Tr(χU † − Uχ†)
]2

+
h1 + h3

4
Tr(χχ†) +

h1 − h3

16

{
[

Tr(χU † + Uχ†)
]2

+
[

Tr(χU † − Uχ†)
]2 − 2Tr(χU †χU † + Uχ†Uχ†)

}

−2h2Tr(f
L
µνf

µν
L + fR

µνf
µν
R ) (12)

with constants denoted by li (hi). At order p6, also called next-to-next-to-leading order
(NNLO), new constants Ci respective ci are introduced into the SU(3) respective SU(2)
theory.

The ChPT expansion in masses and momenta necessitates a well-defined ordering cri-
terion for the different contributions to an observable of interest. To close this section, I
would like to shortly introduce to the so-called Weinberg power counting scheme [1] and
how it works in practice. We follow closely the discussion in [4]. As can be best seen
from the expressions for the lowest order meson masses (equation (8)), a quark mass will
contribute as a meson mass squared, thus corresponding to a momentum squared or two
derivatives in the Lagrangian. Generally speaking, a single vertex out of a Lagrangian L2n

will contribute with 2n in this power counting scheme. We introduce the chiral dimension
D of a diagrammatic contribution as

D = 4NL − 2NI +
∞∑

n=1

2nN2n, (13)

where NL denotes the number of loops, NI the number of internal lines and N2n denotes
the number of vertices that originate from the Lagrangian L2n (since besides the powers
coming from the vertices, a Lorentz invariant integration measure provides four powers of
momentum whereas a propagator provides two inverse powers).8 Using the identity

NL = NI − (NV − 1) NV =
∑

n

N2n (14)

7The contact term coefficients cannot be measured directly in physical quantities involving mesons and
are thus irrelevant for the calculations in this thesis.

8Note that the authors of [4] missed a factor of 4 in front of NL.
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Figure 2: Diagrammatic contributions to the pseudoscalar self-energy, up to O(p4). The
circles in a) and c) are of O(p2), the filled box in b) is of O(p4).

B(m2) =
1

i

∫
ddq

(2π)d
q2

q2 −m2
= m2A(m2) (24)

which leaves only one integral to be solved:

A(m2) =
m2

16π2

{

λ0 − ln(m2) +O(ϵ)

}

(25)

We choose a renormalization scheme which is a ChPT-specific variant of MSbar

λ0 =
1

ϵ̄
=

1

ϵ
+ ln(4π) + 1− γE (26)

The renormalization scale µ2 will cancel out of all physical results since the LECs cancel
by construction the µ2 dependence of the loop part.

As example, I show the loops contributions to the pion and the kaon self-energy.

φ4 term derivative term sum of both
Pion loop B0m̂
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Table 1: Coefficients of the one-loop diagram contribution to the self-energy Σ4(p2) for the
pion, split up according to which operator of L4φ

2 contributes and which virtual particle
occupies the loop, given in units of the divergent integral A(m2). Note that derivatives
can come with the loop particles, thus introducing their masses into the result, as well as
with the external particles, introducing their own squared momenta. Lowest order mass
relations were applied to the symmetry-breaking terms. Observe also the cancellation of
the kaon mass dependence: In an unbroken SU(2), the pion has to remain massless.
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Figure 1: Illustration of the Weinberg power counting scheme according to equation (13).
Upper row: (1) vertex of order p2, (2) propagator, (3) p4 contribution resulting from a loop
integration. Lower row: Different one-loop contributions to ππ scattering. All vertices are
of lowest order.

one can also eliminate either NL or NI . In the latter case, we find

D = 2 +
∞
∑

n=1

2(n− 1)N2n + 2NL, (15)

We can also see from this formula that the maximal number of loops contributing to a
fixed chiral dimension is given by

NL =
D − 2

2
. (16)

The practical estimation of the chiral dimension of a diagram can still best be done ac-
cording to formula (13). Some examples are given in figure 1.

5 Quantum correction for masses: A simple p4 exam-

ple

In this section, we rederive for instructive reasons the NLO corrections to the meson masses
in chiral SU(3). We conventionally denote the sum of irreducible self-energy diagrams by
−iΣ(p2). The physical mass M can then be obtained from it by solving for the position of
the propagator pole

M2 −M2
0 − Σ(M2) = 0 (17)

with M0 denoting the mass to lowest order. At order p4, this step is trivial, once Σ4(p2) is
known, since

M2 = M2
0 + Σ(M2) = M2

0 + Σ(M2
0 ) +O(p6). (18)
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All self-energies at this order will have the form

Σφ
4(p

2) = Aφ +Bφp
2, (19)

so the masses can be obtained via

M2 = M2
0 + Aφ +BφM

2
0 +O(p6). (20)

To calculate Σ4(p2), we need - as a first step - the expansion of the general Lagrangian
(11) in terms of physical fields. Specifically, we need (cf. also discussion in section 4)

• the Lagrangian L2 with two meson fields, giving the lowest order masses,
(equations(8))

• the Lagrangian L2 with four meson fields, for the loop contribution

• the Lagrangian L4 with two meson fields, for the contact contribution

Due to space restrictions, we only show the expansions (of the latter two) in terms of
the matrix φ (and its derivative) with M denoting the mass matrix in equation (7).

L4φ
2 =

1

24F 2
0

{

Tr([φ, ∂µφ]φ∂
µφ) +B0Tr(Mφ4)

}

. (21)

L2φ
4 =

1

F 2
0

{

L4 8 B0Tr(∂µφ∂
µφ)Tr(M)

+L5 8 B0Tr(∂µφ∂
µφM)

+L6 (−32) B2
0Tr(M)Tr(Mφ2)

+L7 (−32) B2
0 [Tr(Mφ)]2

+L8 (−16) B2
0(Tr(φMφM) + Tr(φ2M2))

}

(22)

The expansion in terms of the eight pseudoscalars is similarly trivial. As a next step,
we need to calculate how these operators contribute to the self-energy, thereby taking into
account the different possibilities and combinatorics properly.9 Figure 2 shows the three
different types of diagrams that contribute to the two-point function to the desired order.

For the loop diagram, only two integrals are non-vanishing at this level, i. e.

A(m2) =
1

i

∫
ddq

(2π)d
1

q2 −m2
(23)

9Using a computer-algebra system, this step can equally well be achieved by ”brute-forcing“ and sum-
ming over all possible combinatorical cases - even if they lead to the same contraction - and then multiplying
by the proper symmetry factor of the diagram.
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Figure 2: Diagrammatic contributions to the pseudoscalar self-energy, up to O(p4). The
circles in a) and c) are of O(p2), the filled box in b) is of O(p4).

B(m2) =
1

i

∫
ddq

(2π)d
q2

q2 −m2
= m2A(m2) (24)

which leaves only one integral to be solved:

A(m2) =
m2

16π2

{

λ0 − ln(m2) +O(ϵ)

}

(25)

We choose a renormalization scheme which is a ChPT-specific variant of MSbar

λ0 =
1

ϵ̄
=

1

ϵ
+ ln(4π) + 1− γE (26)

The renormalization scale µ2 will cancel out of all physical results since the LECs cancel
by construction the µ2 dependence of the loop part.

As example, I show the loops contributions to the pion and the kaon self-energy.

φ4 term derivative term sum of both
Pion loop B0m̂

6F 2
0
10 = 1
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Table 1: Coefficients of the one-loop diagram contribution to the self-energy Σ4(p2) for the
pion, split up according to which operator of L4φ

2 contributes and which virtual particle
occupies the loop, given in units of the divergent integral A(m2). Note that derivatives
can come with the loop particles, thus introducing their masses into the result, as well as
with the external particles, introducing their own squared momenta. Lowest order mass
relations were applied to the symmetry-breaking terms. Observe also the cancellation of
the kaon mass dependence: In an unbroken SU(2), the pion has to remain massless.
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The LECs renormalize as

Li ≡ (µc)−2ϵ

(
−1

32π2ϵ
Γi + Lr

i (µ)

)

= (µ)−2ϵ

(
−1
32π2

Γiλ0 + Lr
i (µ) +O(ϵ)

)

(30)

with coefficients Γi, and ln c = −1/2(ln(4π) − γ + 1) specifying the finite part in our
renormalization conventions. The Lr

i thus acquire the already mentioned scale dependence

Lr
i (µ2) = Lr

i (µ1) +
Γi

16π2
ln

(
µ1

µ2

)

. (31)

The li in the SU(2) case renormalize in a similar manner, and authors usually quote the
µ-independent l̄i which are defined as

l̄i =
32π2

γi
lri (µ)− ln

M2
π

µ2
. (32)

For the numerical evaluation of the mass corrections ∆m4, one can promote the lowest
order masses in the p4 terms on the right hand side of equation (27) to physical masses.
Since the induced difference is of higher order, the formal accuracy is maintained. It should
be noted that the elimination of the lowest order parameters in favour of the physical ones
is not unique due to the Gell-Mann Okubo degeneracy. This plays a particular importance
if the complete mass expansion is done to higher order since a part of the higher order
terms will evidently acquire an explicit dependence on the specific choice for the elimination
procedure in the lower orders. The inverse pion decay constant can be promoted to its
physical value due to a similar argument.

6 Anatomy of the p6 calculation

The NNLO corrections to the pseudoscalar self-energy are, according to the power counting
scheme established in section 4, given by diagram contributions with up to two loops [5].
All relevant diagrams can be seen in figure 3. These are all tadpole10 integrals except for
the sunset diagram.

For the evaluation of the two-loop integrals, mainly two complications arise compared
to the NLO case. By considering figure 3, note that a new one-loop integral with a squared
propagator arises. Two of the three two-loop diagrams, i. e. diagrams f) and g), yield
simple products of one-loop integrals. This is very convenient, but note that expansions
as in equation (25) are no longer sufficient, and the terms linear in ϵ play a crucial role in
order to calculate the NNLO mass correction up to O(1) in the ϵ expansion.11 The other

10The term “tadpole” was introduced by Sidney Coleman. The background-interested reader might find
it amusing that the editor of the respective publication did not appreciate the terminology at first, but
caved in, once Sidney proposed “lollypop” and “spermion” as alternatives.

11In the infinite volume case of the mass correction, only A(m2) has to be known up to O(ϵ), known
from e. g. [6].
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circles in a) and c) are of O(p2), the filled box in b) is of O(p4).
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Table 2: Coefficients of the one-loop diagram contribution to the self-energy Σ4(p2) for the
kaon, split up according to which operator of L4φ

2 contributes and which virtual particle
occupies the loop, given in units of the divergent integral A(m2). Note that derivatives
can come with the loop particles, thus introducing their masses into the result, as well as
with the external particles, introducing their own squared momenta. Lowest order mass
relations were applied to the symmetry-breaking terms.

The operators of L2φ
4 contribute similarly. The renormalization of the LECs cancels the

loop infinities by construction, thus producing finite quantum corrections to the masses.
It was checked that the results agree with [3, 4] who obtained

M2
π,4 = M2

π,2

{

1 +
M2

π,2

32π2F 2
0

ln

(
M2

π,2

µ2

)

−
M2

η,2

96π2F 2
0

ln

(
M2

η,2

µ2

)

+
16

F 2
0

[(2m+ms)B0(2L
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Equation 38 has to be understood in the way that Σ4(M2
4 ) will be obtained by insertion

of the analytical expression for the NLO mass expansion. After cancellations, the differ-
ence to Σ4(M2

0 ) will then be of O(p6). We only implicitly require a consistent choice for
the elimination in terms of the pseudoscalar masses in Σ4 in order to have a consistent
perturbative series up to O(p6).

The very instructive equation (38) oversimplifies the actual procedure. If we want to
evaluate the mass correction by using physical meson masses as input, additional terms in
the higher orders will of course be generated. One generally finds for the mass correction
fulfilling all necessary features
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O(p6)

Here the first argument represents the lowest order parameters m̂ and ms that naturally
emerge in the calculation, together with a choice of their elimination in favour of the lowest
order meson masses, whereas the second argument represents the genuine p2 dependence.

By following this recipe, apart from the “infinite renormalization” that makes the O(p6)
finite, an additional “finite renormalization” occurs that depends on the (different kinds
of) specific choices at O(p4). Obviously, the new p6 terms coming from the self-energy
itself can - if overall p6 accuracy is sought - easily be expressed in terms of (any convenient
choice of) physical masses. These are again all formally equivalent.

Via diagrams i) from figure 3, the new LECs Ci enter the calculation. They renormalize
via

Ci ≡ (µc)−4ϵ
(γ2i
ϵ2

+
γ1i
ϵ

+ Cr
i (µ)

)

= µ−4ϵ (γ2iλ2 + γ1iλ1 + Cr
i (µ) +O(ϵ)) . (40)

Just to give one explicit example, I show the NLO and NNLO kaon mass correction in
infinite volume coming out of our calculation as a byproduct. All our results in infinite
volume for the masses and decay constants have been checked against the known results
[6].
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(42)

We have used the notation A(m2) to denote the O(1) term in the ϵ expansion of the
integral A(m2).

7 Finite volume effects

It is inevitably the nature of any lattice calculation that it is performed in a finite volume.
In order to perform a proper matching between a Lattice QCD calculation and ChPT, a
good control over the additional quantum corrections to physical quantities which emerge
due to the finiteness of the volume is required. Only then, ChPT can serve as a reliable
validity check for the lattice calculation, or LECs can be properly extracted from the lattice
result.

ChPT in a finite volume [9, 10, 11] was introduced already shortly after the introduction
of the theory itself. Conceptually, a finite volume is introduced that restricts the size
of the Euclidean 3-dimensional space. The “time“ dimension is assumed to be much
larger. This treatment self-evidently breaks Lorentz invariance. A Passarino-Veltman type
integral reduction can still be performed, provided that additional projections obeying the
remaining symmetry are allowed and explicitly taken into account.

The introduction of a finite volume with periodic boundary conditions naturally re-
stricts and discretizes the set of allowed momenta to propagate, thus promoting momentum
integrals to sums. Our calculations are done in the ”p–regime” defined by MπL≫ 1, i. e.
where the system is distorted mildly and the only change with respect to the continuous
case is the modification of the propagators of the meson fields due to the periodic boundary
conditions.

∫
dp

2π
F (p)→

1

L

∑

n∈Z

F (pn) ≡
∫

V

dp

2π
F (p), (43)

With the help of a Poisson summation formula, these can be moved back to a sum of
integrals

1

L

∑

n∈Z

F (pn) =
∑

lp

∫
dp

2π
eilpp F (p), (44)

where the summation over lp runs over the set of vectors of length nL and separation of
the lp = 0 term allows to elegantly perform a well-defined decomposition of an arbitrary
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Example: Kaon mass correction :-)

Equation 38 has to be understood in the way that Σ4(M2
4 ) will be obtained by insertion

of the analytical expression for the NLO mass expansion. After cancellations, the differ-
ence to Σ4(M2

0 ) will then be of O(p6). We only implicitly require a consistent choice for
the elimination in terms of the pseudoscalar masses in Σ4 in order to have a consistent
perturbative series up to O(p6).

The very instructive equation (38) oversimplifies the actual procedure. If we want to
evaluate the mass correction by using physical meson masses as input, additional terms in
the higher orders will of course be generated. One generally finds for the mass correction
fulfilling all necessary features
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Here the first argument represents the lowest order parameters m̂ and ms that naturally
emerge in the calculation, together with a choice of their elimination in favour of the lowest
order meson masses, whereas the second argument represents the genuine p2 dependence.

By following this recipe, apart from the “infinite renormalization” that makes the O(p6)
finite, an additional “finite renormalization” occurs that depends on the (different kinds
of) specific choices at O(p4). Obviously, the new p6 terms coming from the self-energy
itself can - if overall p6 accuracy is sought - easily be expressed in terms of (any convenient
choice of) physical masses. These are again all formally equivalent.

Via diagrams i) from figure 3, the new LECs Ci enter the calculation. They renormalize
via

Ci ≡ (µc)−4ϵ
(γ2i
ϵ2

+
γ1i
ϵ

+ Cr
i (µ)

)

= µ−4ϵ (γ2iλ2 + γ1iλ1 + Cr
i (µ) +O(ϵ)) . (40)

Just to give one explicit example, I show the NLO and NNLO kaon mass correction in
infinite volume coming out of our calculation as a byproduct. All our results in infinite
volume for the masses and decay constants have been checked against the known results
[6].
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with implicit one-loop choice
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• Pole eqn

• „renormalization part“ is infinite, so is the new diagrammatic part
• dependence on choice at NLO
• can safely put physical masses (since „we subtract what we add“)

ChPT at NNLO: Two loop mass

will be sufficient, where we have used the notation of [7]

⟨⟨X⟩⟩ =
1

i2

∫
ddq

(2π)d
ddr

(2π)d
X

(q2 −m2
1) (r

2 −m2
2) ((q + r − p)2 −m2

3)
. (34)

With the exception of the simple one-loop calculation in section 5, all computations
have been carried out with the help of FORM [8]. This includes the generation of all
contributions to a diagram of given topology as well as all successive manipulations in
order to simplify the expressions.

We apply Passarino-Veltman type identities to reduce the occuring integrals to a mini-
mal set. For the one-loop integrals, only the two scalar integrals (with one and two powers
of the propagator) serve as a basis set, i. e. in addition to A(m2) (see equation (23)) we
need the two-propagator integral with zero momentum flow

B0(m
2) =

1

i

∫
ddq

(2π)d
1

(q2 −m2)2
. (35)

For the sunsets, we can apply different kinds of symmetry identities to make further
cancellations work out. Whereas H is symmetric in all three mass arguments, only the
second and third argument can be interchanged in the other two integrals. The relation
between H1 and H
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2) (36)

can be applied and trivially implies also

H1(m
2, m2, m2; p2) = 1/3 H(m2, m2, m2; p2). (37)

The evaluation of the NNLO mass correction requires, apart from the NNLO corrections
to the self-energy, again a self-consistent solution to the pole equation (cf. equation (17)).
In addition to the new diagrammatic contributions, new NNLO terms also arise from the
NLO self-energy since the latter is now supposed to be evaluated at the NLO mass and
inverse decay constant in order to maintain formal p6 accuracy.14 In this way, also the
specific choice of meson masses in the NLO terms of the self-energy enters explicitly at
O(p6): Mass expressions that were degenerate at O(p4) due to the lowest order relations
will generate different terms in the higher orders.15 In a rather sketchy way, we thus
generally evaluate

M2 −M2
0 −Σ4(M

2
0 )

︸ ︷︷ ︸

O(p4)

−Σ4(M
2
4 ) + Σ4(M

2
0 )
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O(p6)

−Σ6(M
2
0 )

︸ ︷︷ ︸

O(p6)

= O(p8). (38)

14It is worth to note that neither the new diagrammatic pieces nor the “renormalization” terms from
the NLO self-energy are finite in four dimensions when taken alone, but only their sum.

15Both effects, on the one hand the effect of the evaluation of the self-energy at NLO corrected masses
and inverse decay constant and on the other hand the choice regarding degenerate expressions, are evidently
entangled and can - in a practical calculation - be taken into account in one go.
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Equation 38 has to be understood in the way that Σ4(M2
4 ) will be obtained by insertion

of the analytical expression for the NLO mass expansion. After cancellations, the differ-
ence to Σ4(M2

0 ) will then be of O(p6). We only implicitly require a consistent choice for
the elimination in terms of the pseudoscalar masses in Σ4 in order to have a consistent
perturbative series up to O(p6).

The very instructive equation (38) oversimplifies the actual procedure. If we want to
evaluate the mass correction by using physical meson masses as input, additional terms in
the higher orders will of course be generated. One generally finds for the mass correction
fulfilling all necessary features
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Here the first argument represents the lowest order parameters m̂ and ms that naturally
emerge in the calculation, together with a choice of their elimination in favour of the lowest
order meson masses, whereas the second argument represents the genuine p2 dependence.

By following this recipe, apart from the “infinite renormalization” that makes the O(p6)
finite, an additional “finite renormalization” occurs that depends on the (different kinds
of) specific choices at O(p4). Obviously, the new p6 terms coming from the self-energy
itself can - if overall p6 accuracy is sought - easily be expressed in terms of (any convenient
choice of) physical masses. These are again all formally equivalent.

Via diagrams i) from figure 3, the new LECs Ci enter the calculation. They renormalize
via

Ci ≡ (µc)−4ϵ
(γ2i
ϵ2

+
γ1i
ϵ

+ Cr
i (µ)

)

= µ−4ϵ (γ2iλ2 + γ1iλ1 + Cr
i (µ) +O(ϵ)) . (40)

Just to give one explicit example, I show the NLO and NNLO kaon mass correction in
infinite volume coming out of our calculation as a byproduct. All our results in infinite
volume for the masses and decay constants have been checked against the known results
[6].
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Def.

Decay constant

u
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Figure 3.1: Pion decay π+ → µ+νµ.
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3.7 Application at Lowest Order: Pion De-
cay

As an example of a tree-level calculation we discuss the weak decay π+ →
µ+νµ which will allow us to relate the free parameter F0 of L2 to the pion-
decay constant. According to Eq. (3.52) we only need to consider tree-level
diagrams with vertices of L2.

At the level of the degrees of freedom of the Standard Model, pion decay
is described by the annihilation of a u quark and a d̄ antiquark, forming the
π+, into a W+ boson, propagation of the intermediate W+, and creation of
the leptons µ+ and νµ in the final state (see Figure 3.1). The coupling of
the W bosons to the leptons is given by

L = − g

2
√

2

[
W+

α ν̄µγ
α(1 − γ5)µ + W−

α µ̄γα(1 − γ5)νµ

]
, (3.70)

whereas their interaction with the quarks forming the Goldstone bosons is
effectively taken into account by inserting Eq. (1.152) into the Lagrangian
of Eq. (3.69). Let us consider the first term of Eq. (3.69) and set rµ = 0
with, at this point, still arbitrary lµ.

Exercise 3.7.1 Using DµU = ∂µU + iUlµ derive

F 2
0

4
Tr[DµU(DµU)†] = i

F 2
0

2
Tr(lµ∂

µU †U) + · · · ,

where only the term linear in lµ is shown.

If we parameterize

lµ =
8∑

a=1

λa

2
laµ,
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8 Corrections to the decay constants

The (physical) pion decay constant is defined by the coupling of the axial-vector current
to the pion,

⟨0|Aµ(0)|π−(p)⟩ = i
√
2pµFπ ; Aµ = ūγµγ5d . (59)

Amongst other things, it dictates the rate of leptonic charged pion decays as

Γ(0)(π → ℓν) =
G2

F |Vud|2F 2
π

4π
mπm

2
ℓ

(

1−
m2

ℓ

m2
π

)2

(60)

Its physical value in this convention is Fπ = 92.2 MeV.21 We also encounter its inverse
powers in the chiral expansions, e. g. of the pseudoscalar masses.22

The remaining two decay constants can be defined in a way similar to equation (59),
but for definiteness we will keep the example of the pion in the remainder of this section.

One way to calculate the chiral expansion of Fπ is via the axial-vector pseudoscalar
two-point function. The diagrams up to order p6 can be seen in figure 4. Their structural
similarity to the mass diagrams (cf. figure 3) facilitates their calculation. In addition to
these, the wavefunction renormalization of the external pion state has to be taken into
account. In its most general way, this can be seen from the LSZ theorem. Originally used
for scattering amplitudes, the argument holds for any kind of physical quantity. There are
different equivalent formulations (e. g. that differ if they use truncated Green’s functions
or not), so we only consider the easiest for our purpose. According to

out⟨φ1...φi|φi...φn⟩in = ⟨φ1...φn⟩ = Z−n
2Gtrunc(φ1, ...,φn) , (61)

an S-matrix element (or any other amplitude) can be calculated given the correspond-
ing truncated Green’s function and the wavefunction renormalization factors

√
Z of the

external fields. Each field thereby contributes with its own 1/
√
Z.

21There are several conventions that differ by different powers of
√
2.

22It formally enters as the lowest order parameter and will then be substituted for the physical one in
our calculations, cf. section 6.
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(f) (g) (h) (i)

Figure 4: Diagrammatic contributions to the pseudoscalar decay constants, up to O(p6).
Circular vertices are of O(p2), the filled boxes are of O(p4), the open box is of O(p6). The
wiggly lines denote the external source field that is coupled to the desired current. Note
the necessity for the wavefunction renormalization of the external pseudoscalar to obtain
the physical decay constants, as discussed in the text.

A Construction of the chiral Lagrangian

The construction of the chiral NLO Lagrangian can be systematically achieved by a careful
consideration of the transformation behaviour of the single elements under the symmetries
of QCD and their successive combination into larger building blocks and finally invariants.
Table 3 lists the transformation properties of the elements which lead to the general chiral
Lagrangian (in the notation used throughout section 3).

The enumeration of the possible terms can also be done very elegantly in a slightly
different notation. We introduce this new formalism first in order to then construct the
chiral Lagrangian in the general flavour case, later specifying to nf = 2 and nf = 3.
Starting from ChPT in the external field formulation with the canocial transformation
behaviour
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The underlying reason is that the propagator pole of the bare two-point function ac-
quires under resummation a residue Z−1 with Z = 1+ dΣ

dp2
|p2=M2

phys
. This residue is absorbed

into a rescaling of the respective field φ → φ′ =
√
Zφ.23 The effect of the rescaling then

enters explicitly for all n-point functions (with n ̸= 2). In the case of our two-point func-
tion which involves one external pion field, one power of the wavefunction renormalization
has to be divided out.24 Schematically, since

⟨φφ⟩ ≃
i

Z(p2 −Mphys)2
+ non-pole terms

⟨φ′φ′⟩ ≃
i

(p2 −Mphys)2
+ non-pole terms, (62)

we find for the amplitudes that involve only one scalar field

⟨φaµ⟩ ≃
i

Z(p2 −Mphys)2
iΠ+ non-pole terms

⟨φ′aµ⟩ ≃
i√

Z(p2 −M2
phys)

iΠ+ non-pole terms (63)

with iΠ being the diagrammatic contribution. The fields φ′ are then normalized to single
particle states and the physical amplitudes resulting from the calculation are finite.

As formal input for an expression for Fπ to O(p6), apart from the axial-vector pseu-
doscalar two-point function, we need again the pseudoscalar two-point function Σ(p2), all
to the same order.25

9 Conclusions

Starting from the symmetries of QCD, Chiral Perturbation Theory for mesons has been
introduced up to O(p6). Simple one- and two-loop examples have been given for computa-
tions in infinite volume, the canonical scheme for powercounting of masses and momenta
has been revisited. The reader has been introduced to finite volume computations, the in-
tegrals emerging in the calculation have been classified. For the decay constants, remarks
about wavefunction renormalization have been made. The appendices provide further de-
tails and deeper background information about selected topics.

23Note that Z as defined here is sometimes denoted by Z−1, in particular in the traditional renormal-
ization literature, i. e. φbare =

√
Zφr with φr being the renormalized field. The bare propagator residue

is correspondingly Z.
24In an n-point function, these would be n powers of

√
Z to be divided out. Each external leg gets a

resummation factor 1/Z (when expressed in terms of the truncated Green’s function) that is only partially
cancelled by the wavefunction renormalization

√
Z.

25Formally, Σ(p2) up to O(p6) will yield dΣ
dp2 up to O(p4), to be multiplied by the lowest order expression

for the axial-vector pseudoscalar two-point function that starts at O(p2). (The order counting here is
done in terms of masses and momenta in the numerators, not in terms of the suppression via pion decay
constants.)
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Numerics: Two flavour
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Figure 2: The relative finite volume corrections for the mass squared and decay constant
of the pion in two-flavour ChPT at a fixed infinite volume pion mass mπ = mπ0 . Shown
are the one-loop or p4 corrections, the full p6 result and the part only dependent on the
lri , p

6lri and the sum of the p4 and p6 result. mπL = 2, 4 correspond to L ≈ 2.9, 5.8 fm.
(a) The pion mass, plotted is (mV 2

π − m2
π)/m

2
π. (b) The pion decay constant. Plotted is

−(F V
π − Fπ)/Fπ.

changing the scale to µ = 500 MeV does not change the result, but it does increase the lri
part. The equivalent plot for the relative correction to Fπ is shown in Fig. 2(b).

We can also perform a study of the corrections at other values of mπ or as a function
of mπ. One of the problems here is what to with the value of Fπ that should be used.
If we use the infinite volume formulas to two-loop order of [24] which are expressed in
the form Fπ/F = f(Fπ, mπ) for another pion mass m̃π we determine the associated value
of the decay constant, F̃π by solving F̃π/Fπ = f(F̃π, m̃π)/f(Fπ, mπ) numerically. The
contribution from the p6 LECs cri we have put to zero. This procedure might differ from
the the values of F̃π used in [12]. To compare with their numerical results we have plotted
in Fig. 3 the equivalent of their Fig. 5. Namely Rmπ

= mV
π /mπ − 1 where we have

numerically calculated Rmπ
=
√

(m2
π +∆Vm2

π)/m
2
π − 1. The calculated values of Fπ are

90.1, 103.2, 113.8 for mπ = 100, 300, 500 MeV. The resulting values of Rmπ
as shown in

Fig. 3(a) are in reasonable agreement with Fig. 5 in [12]. There is already a difference at
order p4, so we suspect it is simply due to somewhat different values of Fπ. The one-loop
result for RFπ

agrees with Fig. 2 in [26] with small differences probably due to the difference
in Fπ and the difference in the lri -dependent part. Our result for the p6 result is somewhat
larger.
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Numerics: Two flavour unphysical
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Figure 3: The relative finite volume corrections for the mass and decay constant of the
pion in two-flavour ChPT at three values of the infinite volume pion mass. (a) Rmπ

=
mV

π /mπ − 1. (b) RFπ
= F V

π /Fπ − 1, plotted is −RFπ
.

6.2 Three-flavour results: masses

The values of the low-energy constants, Lr
i and Cr

i , we take from the review [31], in
particular the set labeled BE14 there. In addition, the formulas require the infinite volume
physical masses for the pion, kaon and eta mass as well as the pion decay constant. The
masses and Fπ we use for the physical isospin averaged case are listed at the start of this
section. For changed values of the infinite volume pion and kaon mass, m̃π, m̃K , we proceed
similarly to Fπ for the two-flavour case. We solve self-consistently the set of equations for
m̃η, F̃π, F̃K/F̃π and F̃η/F̃π. For the latter ratios we use the expanded version, similar
to what was done in [31], see Eq. (45) in there. The results for a number of input cases
is shown in Tab. 1. The top line is the physical case The resulting output is within the
expected quality of the fit in [31]. The next two lines have the kaon mass tuned to keep
the same value of ms. The value of Fπ can be compared with the result for the two-flavour
case given above.

Let us have a look at the pion mass finite volume corrections for the physical case. The
comparison of the two- and three-flavour results are plotted in Fig. 4(a). The one-loop
result differs only by a very small kaon and eta loop. The difference is not visible in the
figure. The two-loop results are also in very good agreement. The convergence is quite
reasonable.

The equivalent results for the kaon and eta are plotted in Fig. 5. The one-loop result
for the kaon mass has only an eta loop as can be seen from (16). As a result, that part
is very small. The total result is thus essentially coming only from two-loop order. The
eta mass has a negative one-loop finite volume contribution. The pure loop part and the
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Numerics: Three flavour

mπ mK mη Fπ FK/Fπ Fη/Fπ m̂/m̂phys ms/msphys ms/m̂
134.9764∗ 494.53∗ 545.9 92.2∗ 1.199 1.306 1∗ 1∗ 27.3

100 487.14 540.46 90.4 1.219 1.337 0.547 1.000 49.9
300 549.6 593.73 101.4 1.099 1.154 5.025 1.000 5.43
100 400 446.53 87.3 1.199 1.293 0.518 0.644 33.9
100 495 549.07 90.7 1.219 1.340 0.550 1.037 51.4
300 495 533.00 100.3 1.094 1.138 4.867 0.778 4.36
495 495 495.00 108.0 1 1 12.70 0.465 1

Table 1: The self consistent solution for the infinite volume values of mη, Fπ, FK , Fη

and the output quark mass ratios compared with the physical one. Units for dimensional
quantities are in MeV . The input values for the physical case are starred.
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Figure 4: The finite volume corrections to the pion mass squared at mπ = mπ0 . All other
inputs are given in the text. Plotted is the quantity (mV 2

π −m2
π)/m

2
π. (a) Comparison of

the two- and three-flavour ChPT results. (b) The corrections for the three-flavour case
also showing the Lr

i dependent part.

Lr
i -dependent part of the p

6 contribution are of the expected size. However, there is a very
strong cancellation between the two parts leaving a very small positive correction. The
total finite volume correction for the eta mass in negative.

We can also check how the finite volume correction depends on the different masses. In
Fig. 6 we have plotted the corrections to the pion mass squared for a number of different
scenarios. In Fig. 6(a) we look at three cases. The bottom two line are the the physical
case labeled with mπ = mπ0 while the top four lines are with mπ = 100 MeV. There we
have plotted two cases, mK = 400 and 495 MeV. The effect of the change in the pion
mass is quite large while the effect due to the kaon mass change is smaller. The effect of
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Kaon:
Eta: note cancellation at two-loops; note negative

Numerics: Kaon and eta mass
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Figure 5: The corrections to the kaon and eta mass squared for the physical case. Plotted
is the quantity (mV 2

i − m2
i )/m

2
i for i = K, η. Shown are the one-loop, the two-loop, the

sum and the two-loop Lr
i dependent part. (a) Kaon, the p4 is so small that p6 and p4 + p6

are indistinguishable. (b) Eta, note the signs, some parts are negative.

changing the pion mass can be better seen in Fig. 6(b) where we kept the kaon mass at
405 MeV while varying the pion mass. The L dependence is given as a function of mπ0L
with the physical π0 mass.

We have plotted the same cases for the finite volume corrections to the kaon mass
squared in Fig. 7. The one-loop correction for the physical case andmπ, mK = 100, 495MeV
is virtually identical. The p4 + p6 is a bit more different for the three cases as can be seen
in Fig. 7(a). In Fig. 7(b) we have shown the corrections for a fixed kaon mass but three
different pion masses. The bottom three lines are the one-loop result while the top three
lines are the full result. Note that, as it should be, the case where the pion mass and kaon
mass are the finite volume corrections to the kaon are the same as for the pion in Fig. 6(b).
This is another small check on our result.

We have plotted the same cases once more for the finite volume corrections to the eta
mass squared in Fig. 8. Here the result is rather variable due to cancellations. In Fig. 8(a)
the one-loop corrections increase going from the physical case via mπ, mK = 100, 495 MeV
to mπ, mK = 100, 400 MeV. The two-loop corrections are rather small in the first two
cases, due to the cancellations between the pure two-loop and the Lr

i dependent part. The
one-loop correction for the physical case and mπ, mK = 100, 495 MeV is virtually identical.
The p4+p6 is a bit more different for the three cases as can be seen in In Fig. 8(b) we have
shown the corrections for a fixed kaon mass but three different pion masses. The bottom
lines are the case with mπ, mK = 495 MeV. It agrees with the pion and kaon corrections
for this case. For mπ = 300 MeV the correction is negative but goes through zero for
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∆VF (4)
π agrees with the results of [5]. Here there exists no full two-loop calculation but an

evaluation for the case with at most one propagator at finite volume [26]. We agree with
their result for the terms containing lri if the term multiplying B2 in (54) in that paper is
divided by 2. Comparing with the remainder is difficult due to the very different treatment
of the loop integrals.

5 Three-flavour results

The principle of the calculation is exactly the same as before. The diagrams needed for
the mass are shown in Fig. 1. However, we now need to use the three-flavour Lagrangians
and include the kaons and eta as well. As a result the expressions become much more
cumbersome. Here we use as symbols, mπ, mK and mη as the physical volume pion, kaon
and eta mass at infinite volume. We have rewritten all expressions as an expansion in these
masses and in the physical pion decay constant at infinite volume. Given that the eta mass
to lowest order is given by the Gell-Mann–Okubo relation, there is an inherent ambiguity
in precisely how one writes the result in the combination of kaon and eta masses. The
form of the p6 result given here is to be used together with the form for the p4 expressions
given here as well.

The pion, kaon and eta masses at two-loop order in infinite volume are known, [21], we
have reproduced that result. The finite volume corrections for the masses are given by

mV 2
i = m2

i +∆Vm2
i , ∆Vm2

i = ∆Vm2(4)
i +∆Vm2(6)

i , (15)

for i = π, K, η. The p4 result are:

F 2
π∆

Vm2(4)
π = AV (m2

π)
(

− 1/2m2
π

)

+ AV (m2
η)
(

1/6m2
π

)

,

F 2
π∆

Vm2(4)
K = AV (m2

η)
(

− 1/4m2
η − 1/12m2

π

)

,

F 2
π∆

Vm2(4)
η = AV (m2

π)
(

1/2m2
π

)

+ AV (m2
K)
(

−m2
η − 1/3m2

π

)

+AV (m2
η)
(

8/9m2
K − 7/18m2

π

)

. (16)

These agree with the expressions in [9, 10, 27]. The way in which the corrections are
written is to be in agreement with the way the infinite volume result was written in [21].
The order p6 expressions are rather large, they can be found in App. A. The contributions
with at most one pion propagator at finite volume were calculated in [27] for the kaon and
eta in three flavour ChPT, the expression for the pion was done in two-flavour ChPT and
discussed above. We agree with the Lr

i times finite volume part there. The remainder is
difficult to compare due to the different treatment of the integrals.
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Pion mass dominance

Numerics: Three flavour unphysical
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Figure 6: The finite volume corrections to the pion mass squared for a number of cases
listed in Tab. 1. Plotted is the quantity (mV 2

π − m2
π)/m

2
π. (a) Physical case, bottom

two lines, (mπ, mK) = (100, 495) and (100, 400) MeV. (b) mK = 495 MeV and mπ =
100, 300, 495 MeV. The size L is given in units of the physical π0 mass.
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Figure 7: The finite volume corrections to the kaon mass squared for a number of cases
listed in Tab. 1.for the physical case. Plotted is the quantity (mV 2

K − m2
K)/m

2
K . (a)

Physical case and (mπ, mK) = (100, 495) and (100, 400) MeV. (b) mK = 495 MeV and
mπ = 100, 300, 495 MeV. The size L is given in units of the physical π0 mass.
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Numerics: Kaon and eta mass unphysical
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Figure 6: The finite volume corrections to the pion mass squared for a number of cases
listed in Tab. 1. Plotted is the quantity (mV 2

π − m2
π)/m

2
π. (a) Physical case, bottom

two lines, (mπ, mK) = (100, 495) and (100, 400) MeV. (b) mK = 495 MeV and mπ =
100, 300, 495 MeV. The size L is given in units of the physical π0 mass.
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Figure 7: The finite volume corrections to the kaon mass squared for a number of cases
listed in Tab. 1.for the physical case. Plotted is the quantity (mV 2

K − m2
K)/m

2
K . (a)

Physical case and (mπ, mK) = (100, 495) and (100, 400) MeV. (b) mK = 495 MeV and
mπ = 100, 300, 495 MeV. The size L is given in units of the physical π0 mass.
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Figure 8: The finite volume corrections to the eta mass squared for a number of cases
listed in Tab. 1.for the physical case. Plotted is the quantity (mV 2

η −m2
η)/m

2
η. (a) Physical

case and (mπ, mK) = (100, 495) and (100, 400) MeV. Lines are for the one-loop result at
the right bottom physical case, middle (mπ, mK) = (100, 495), top (mπ, mK) = (100, 400).
The first two have only a small change due to p6, while for the last case there is a large
cancellation between one and two-loops. (b) mK = 495 MeV and mπ = 100, 300, 495 MeV.
The size L is given in units of the physical π0 mass.

small L due to a cancellation between one-and two-loop results. The p6 correction for
mπ = 100 MeV is very small, we again have a large cancellation between the pure two-loop
and the Lr

i dependent part.
We did not compare with the numerical results in [27], since there was a small mistake

in the relevant figures [32].

6.3 Three-flavour results: decay constants

We will use exactly the same input values as in the previous subsection now but for the
decay constants. Note that here in most cases the finite volume correction is negative.

The comparison of the two- and three-flavour results for the pion decay constant is
plotted in Fig. 9(a). The one-loop result differs only by a very small kaon and eta loop.
The difference is not visible in the figure. The two-loop results are also essentially indis-
tinguishable. The convergence is quite reasonable. The bottom line and top line(s) are
respectively the one-loop and the sum of one- and two-loops. Note that in agreement with
the earlier estimates there is a sizable correction at finite volume even at mπL = 2.

The equivalent results for the kaon and eta are plotted in Fig. 10. The kaon decay con-
stant corrections are somewhat smaller than for the pion, but still important for precision
studies. The one-loop result for the eta decay constant has only a kaon loop as can be

48



FV and PQ for Masses and Decay Constants                   Pisa, 29.07.2015 Thomas Rössler

Numerics: Three flavour Decay constant
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Figure 9: The finite volume corrections to the pion decay constant at mπ = mπ0 . All other
inputs are given in the text. Plotted is the quantity −(F V

π − Fπ)/Fπ. (a) Comparison of
the two- and three-flavour ChPT results. (b) The corrections for the three-flavour case
also showing the Lr

i dependent part.

seen from (16). As a result, that part is very small. The total result comes mainly from
two-loop order. The eta mass has a negative one-loop finite volume contribution. The
pure loop part and the Lr

i -dependent part of the p6 contribution are of the expected size.
However, there is a very strong cancellation between the two parts leaving a very small
positive correction. The total finite volume correction for the eta decay constant is quite
small.

We can also check how the finite volume correction depends on the different masses. In
Fig. 6 we have plotted the corrections to the pion decay constant for a several scenarios. In
Fig. 11(a) we look at three cases. The bottom two lines are the the physical case labeled
with mπ = mπ0 while the top four lines are with mπ = 100 MeV. There we have plotted
two cases, mK = 400 and 495 MeV. The effect of the change in the pion mass is quite large
while the effect due to the kaon mass change is smaller. In Fig. 11(b) we can see the effect
of only varying the pion mass.

We have plotted the same cases for the finite volume corrections to the kaon decay
constant in Fig. 12. In Fig. 12(a), the bottom two-lines are the physical case. The four
top lines are with mπ = 100 MeV, where the smaller kaon mass gives a somewhat larger
correction. In Fig. 12(b) we have shown the corrections for a fixed kaon mass but three
different pion masses. The bottom three lines are the one-loop result while the top three
lines are the full result. Note that, as it should be, the case where the pion mass and
kaon mass are the finite volume corrections to the kaon are the same as for the pion in
Fig. 11(b). This is another small check on our result.
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Kaon & eta

Numerics: Three flavour Decay constant
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Figure 10: The corrections to the kaon and eta decay constant for the physical case. Plotted
is the quantity −(F V

i −Fi)/Fi for i = K, η. Shown are the one-loop, the two-loop, the sum
and the two-loop Lr

i dependent part. (a) Kaon. (b) Eta.
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Figure 11: The finite volume corrections to the pion decay constant for a number of cases
listed in Tab. 1. Plotted is the quantity −(F V

π −Fπ)/Fπ. (a) Physical case and (mπ, mK) =
(100, 495) and (100, 400) MeV. (b) mK = 495 MeV and mπ = 100, 300, 495 MeV. The size
L is given in units of the physical π0 mass.

We have plotted the same cases once more for the finite volume corrections to the
eta decay constant squared in Fig. 13. In Fig. 13(a) the one-loop corrections for the
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The decay constants for the mesons are defined similarly to (12) via

⟨0|ūγµγ5d|π−(p)⟩ =
√
2iFπpµ ,

⟨0|ūγµγ5s|K−(p)⟩ =
√
2iFKpµ ,

⟨0|
1√
6

(

ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s
)

|η(p)⟩ =
√
2iFηpµ . (17)

Note that since we work in the isospin limit, we use the octet axial current to define the
eta decay constant.

We define
F V
i = Fi +∆VFi , ∆VFi = ∆VF (4)

i +∆VF (6)
i , (18)

for i = π, K, η. The pion, kaon and eta decay constants at two-loop order in infinite
volume are known, [21], we have reproduced that result. Note that we give the corrections
to the decay constants here, not divided by the chiral limit decay constant as in [21]. Note
the correction for the expressions for the infinite volume decay constants described in the
erratum of [28]. The correct expressions can be downloaded from [29]

The order p4 results are

Fπ∆
VF (4)

π = AV (m2
π) + AV (m2

K)
(

1/2
)

,

Fπ∆
VF (4)

K = AV (m2
π)
(

3/8
)

+ AV (m2
K)
(

3/4
)

+ AV (m2
η)
(

3/8
)

,

Fπ∆
VF (4)

η = AV (m2
K)
(

3/2
)

. (19)

These agree with [9, 10, 27]. The p6 expressions are again rather long and are given
in App. B. The contributions with at most one-pion propagator at finite volume were
calculated in [27] for the kaon in three flavour ChPT, the expression for the pion was done
in two-flavour ChPT and discussed above. We agree with the Lr

i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
we needed to get agreement for the two-flavour pion decay constant.

6 Numerical results

For numerical input we use Fπ = 92.2 MeV, mπ = mπ0 = 134.9764 MeV, the average mK

with electromagnetic effects removed with the estimate of [30], mK = 494.53 MeV, and
mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
[31]. We always use a subtraction scale µ = 770 MeV.

6.1 Two-flavour results

The lri we use we define via the usual l̄i defined at the scale of the charged pion mass. The
actual value we use are l̄1 = −0.4, l̄2 = 4.3, l̄3 = 3.0, l̄4 = 4.3. The relative finite volume
corrections to m2

π are shown in Fig. 2(a) as a function of mπL. We have checked that
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Unphysical input

Numerics: Three flavour Decay constant
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Figure 10: The corrections to the kaon and eta decay constant for the physical case. Plotted
is the quantity −(F V

i −Fi)/Fi for i = K, η. Shown are the one-loop, the two-loop, the sum
and the two-loop Lr

i dependent part. (a) Kaon. (b) Eta.
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Figure 11: The finite volume corrections to the pion decay constant for a number of cases
listed in Tab. 1. Plotted is the quantity −(F V

π −Fπ)/Fπ. (a) Physical case and (mπ, mK) =
(100, 495) and (100, 400) MeV. (b) mK = 495 MeV and mπ = 100, 300, 495 MeV. The size
L is given in units of the physical π0 mass.

We have plotted the same cases once more for the finite volume corrections to the
eta decay constant squared in Fig. 13. In Fig. 13(a) the one-loop corrections for the
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Figure 12: The finite volume corrections to the kaon decay constant for a number of cases
listed in Tab. 1. Plotted is the quantity −(F V

K−FK)/FK . (a) Physical case and (mπ, mK) =
(100, 495) and (100, 400) MeV. (b) mK = 495 MeV and mπ = 100, 300, 495 MeV. The size
L is given in units of the physical π0 mass.

physical case and mπ, mK = 100, 495 MeV are extremely close, since it only depends on
the kaon mass. The p6 corrections for both cases are quite different though. Finally, for
mπ, mK = 100, 400 MeV both the one- and two-loop corrections are larger but the total
correction remains fairly small. In Fig. 13(b) we have shown the corrections for a fixed
kaon mass but three different pion masses. The p4 correction is thus identical for the three
cases. The correction for mπ, mK = 495 MeV agrees with the pion and kaon corrections
for this case. The total correction remains small for all cases.

We did not compare with the numerical results in [27], since there was a small mistake
in the relevant figures [32].

7 Conclusions

In this paper we calculated the finite volume corrections to two-loop order in ChPT. The
pion mass and decay constant we calculated both in two and three-flavour ChPT. The kaon
and eta mass and decay constant we obtained in three-flavour ChPT. These expressions in
the main text and the appendices are the main result of this work.

We have compared as far as possible with existing work, where we are in agreement
with the known one-loop results and have some disagreements with the existing results at
two-loop order. What we agree on and differ on is discussed in Sects. 4 and 5. Note that a
full comparison at the analytical level was not possible due to the large differences in the
loop integral treatments.
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Appreciating the small things in life…

Numerics: Three flavour Decay constant
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Figure 13: The finite volume corrections to the eta decay constant for a number of cases
listed in Tab. 1. Plotted is the quantity −(F V

η −Fη)/Fη. (a) Physical case and (mπ, mK) =
(100, 495) and (100, 400) MeV. The bottom line is the one-loop result for the physical
case and (mπ, mK) = (100, 495). Others as labeled. (b) mK = 495 MeV and mπ =
100, 300, 495 MeV. The size L is given in units of the physical π0 mass.

We have presented numerical results for a number of representative cases. In all cases
the exponential decay e−mπ/L is clearly visible and as expected the numbers are dominated
by the finite volume pion loops. The corrections at order p6 are sometimes large, especially
when the order p4 result did not contain pion loops. We find that the finite volume
corrections are necessary for the pion mass and decay constant as well as the kaon decay
constant. The kaon mass receives corrections at a somewhat lower level while finite volume
corrections for the eta mass and decay constant are at present negligible.

The numerical work has been done using C++. The programs will be made available
together with the infinite volume results in [33]. The analytical work relied heavily on
FORM [34].
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The decay constants for the mesons are defined similarly to (12) via

⟨0|ūγµγ5d|π−(p)⟩ =
√
2iFπpµ ,

⟨0|ūγµγ5s|K−(p)⟩ =
√
2iFKpµ ,

⟨0|
1√
6

(

ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s
)

|η(p)⟩ =
√
2iFηpµ . (17)

Note that since we work in the isospin limit, we use the octet axial current to define the
eta decay constant.

We define
F V
i = Fi +∆VFi , ∆VFi = ∆VF (4)

i +∆VF (6)
i , (18)

for i = π, K, η. The pion, kaon and eta decay constants at two-loop order in infinite
volume are known, [21], we have reproduced that result. Note that we give the corrections
to the decay constants here, not divided by the chiral limit decay constant as in [21]. Note
the correction for the expressions for the infinite volume decay constants described in the
erratum of [28]. The correct expressions can be downloaded from [29]

The order p4 results are

Fπ∆
VF (4)

π = AV (m2
π) + AV (m2

K)
(

1/2
)

,

Fπ∆
VF (4)

K = AV (m2
π)
(

3/8
)

+ AV (m2
K)
(

3/4
)

+ AV (m2
η)
(

3/8
)

,

Fπ∆
VF (4)

η = AV (m2
K)
(

3/2
)

. (19)

These agree with [9, 10, 27]. The p6 expressions are again rather long and are given
in App. B. The contributions with at most one-pion propagator at finite volume were
calculated in [27] for the kaon in three flavour ChPT, the expression for the pion was done
in two-flavour ChPT and discussed above. We agree with the Lr

i dependent part if we
multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor
we needed to get agreement for the two-flavour pion decay constant.

6 Numerical results

For numerical input we use Fπ = 92.2 MeV, mπ = mπ0 = 134.9764 MeV, the average mK

with electromagnetic effects removed with the estimate of [30], mK = 494.53 MeV, and
mη = 547.30 MeV. The values of the low-energy constants, we take from the last review
[31]. We always use a subtraction scale µ = 770 MeV.

6.1 Two-flavour results

The lri we use we define via the usual l̄i defined at the scale of the charged pion mass. The
actual value we use are l̄1 = −0.4, l̄2 = 4.3, l̄3 = 3.0, l̄4 = 4.3. The relative finite volume
corrections to m2

π are shown in Fig. 2(a) as a function of mπL. We have checked that
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• We have calculated FV corrections up to two-loop order in two- and 
three-flavour ChPT. Analytical expressions, see paper.

• At one-loop, full agreement with literature.
• Comparisons of two-loop terms, wherever possible, with existing work, 

in particular papers by G. Colangelo et al.: one analytical deviation found, 
single pre-factor (details see text)

• FV corrections evaluated numerically. Found to be necessary for pion 
mass and decay constant and kaon decay constant (less relevant for kaon 
mass, negligible for the eta quantities)

• Next: PQChPT. We really see the need to publish longer expressions.

Conclusions and outlook


