Simulation of a hybrid optical-radio-acoustic neutrino detector at South Pole

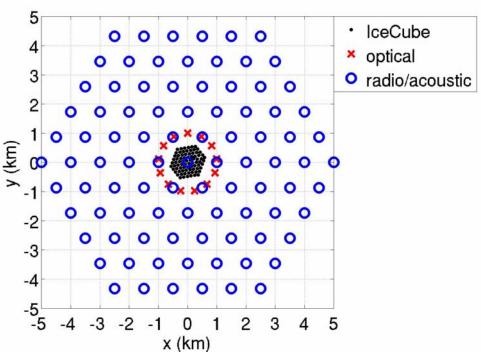
D. Besson^[1], R. Nahnhauer^[2], P. B. Price^[3],
D. Tosi^[2], J. Vandenbroucke^[3], B. Voigt^[2]
[1]: University of Kansas, KS; [2]: DESY - Zeuthen, Germany; [3]: UC Berkeley, CA

June 26, 2008 ARENA Rome, Italy

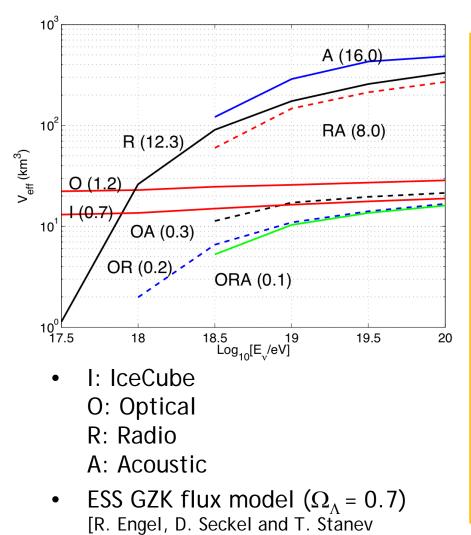
Outline

- Why a hybrid detector?
- The big picture: simulation of a 100 km³ hybrid detector (2005)
- Past/present experiments: AMANDA/IceCube, RICE, SPATS
- A possible intermediate step: a high energy optimization for the IceCube outer strings
- Results & prospects

Why a hybrid detector?


- UHE physics requires large volumes due to the low flux
- To instrument these volumes with optical detectors impossible
- Optical sensors + ice properties best at 10 TeV 10 PeV; calibration in this range possible with atmospheric muons and neutrinos
- Radio and acoustic detectors have high energy thresholds (~100 PeV), no real calibration source is available
- Hybrid events detected by more then one technique would:
 - allow calibration of radio and acoustic with the optical method
 - make possible cross-calibration between radio and acoustic
 - improve energy and direction reconstruction
 - enhance background rejection

A large scale detector design


- Optical-Radio-Acoustic detector surrounding IceCube instrumented volume: ~(110 +3)km³
 [D. Besson et al., astro-ph/0512604]
- Optical devices:
 80 IceCube + 13 IceCube-Plus strings at a 1 km radius, each with:
 60 DOMs, spaced every 17 m from 1.45 km to 2.45 km depth
- Radio/Acoustic devices:

91 holes, 1 km spacing, each with:

5 radio receivers spaced every 100 m from 200 m to 600 m depth 300 acoustic receivers spaced every 5 m from 5 m to 1500 m depth

Effective volumes & event rates

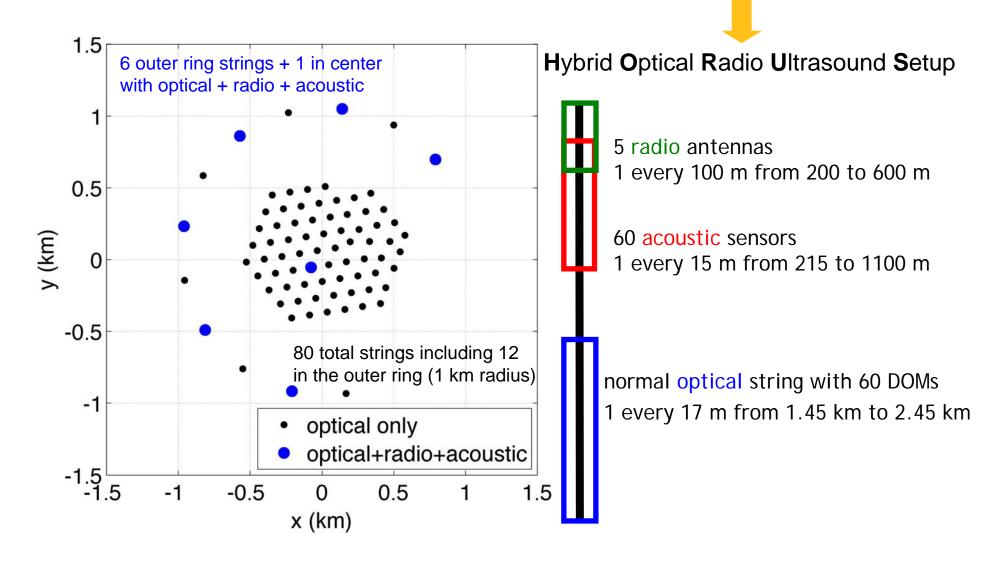
Phys. Rev. D 64, 093010 (2001)]

Detection option	GZK events/year ^{*)}		
IceCube	0.7		
Optical	1.2		
Radio	12.3		
Acoustic	16.0		
Optical+Radio	0.2		
Optical+Acoustic	0.3		
Radio+Acoustic	8.0 !!!		
Opt.+Rad.+Acou.	0.1		
TOTAL	21.1		

Present experiences

- AMANDA/IceCube (1997 present): demonstration of excellent optical detection in ice many physics results available [e.g. J. Kyriluk et al. astro-ph/0806.1717]
- RICE (1999 present):

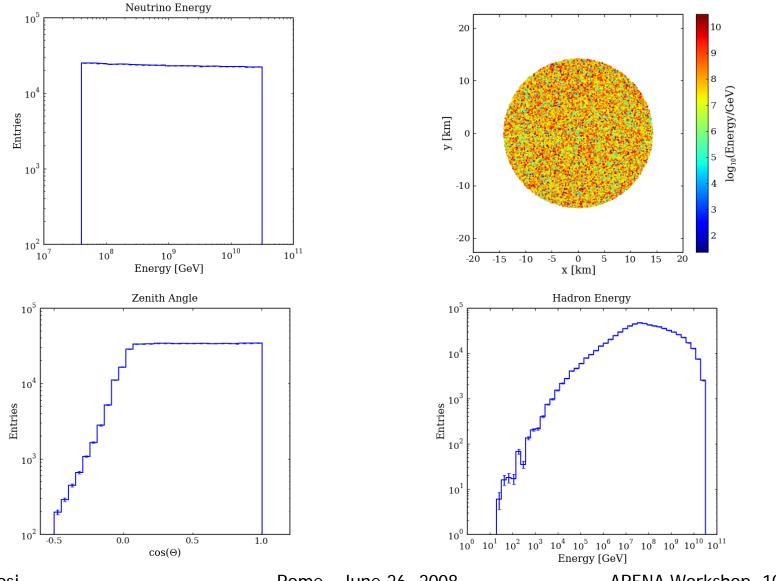
test bed for radio detection and background identification best radio flux limits in the range 100 PeV -100 EeV until 2008 [e.g. D. Besson, J. Phys. Conf.Ser.81:012008,2007]


• SPATS (2007 - present):

in-situ measurement of acoustic properties (speed of sound and noise profiles, attenuation length) [e.g. S. Böser et al. astro-ph/0708.2089v1]

An intermediate step

- High energy outer ring could optimize IceCube sensitivity at ≥ PeV
- Intermediate between current efforts and possible large-scale hybrid GZK observatory
- Goal: apply the same strategy as presented in astro-ph/0512604
- Determine V_{eff} of Optical, Radio, and Acoustic methods: each, total, and overlap


Simulated array geometry: HORUS

Simulated neutrino events

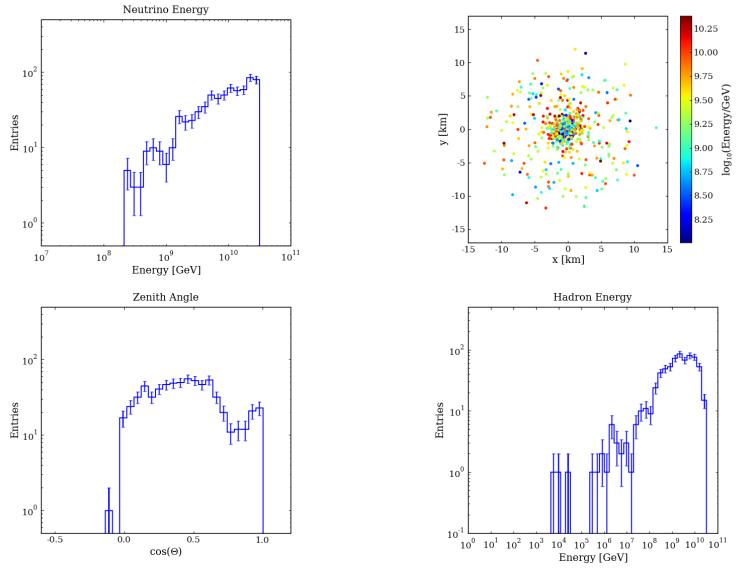
- Generation cylinder: 10 km radius, 20 km length
- E⁻¹ from 10^{16.5} eV to 10^{19.5} eV
- 2 flavors simulated: $v_e + v_e$, $v_\mu + v_\mu$ problems with the generator for $v_\tau + \overline{v_\tau}$
- Angular distribution around zenith, from 0° to 120°
- 10⁶ events for each flavor

Neutrino events before detection

Optical simulation

- IceCube 80 strings including 12 in the outer ring
- Particle propagation for muons and electrons
- LPM effect taken into account
- Light propagation using the ice model with dust layers
- DOMs simulated as they are in IceCube [A. Achterberg et al., astro-ph/0604450]
- Trigger conditions:
 - global coincidence: 8 modules in 5 µs
 - local coincidence: 2 nearby modules in one string hit in 1 μs

Neutrino events detected by optical

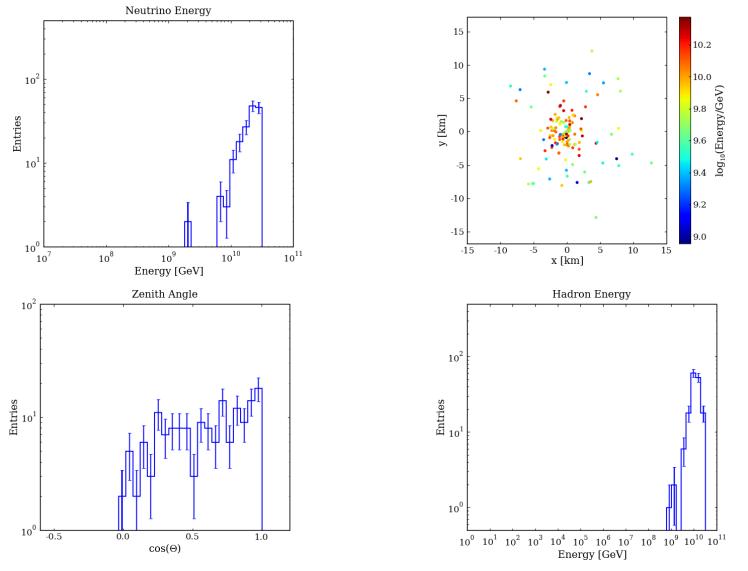

Rome - June 26, 2008

ARENA Workshop 12/19

Radio simulation

- Radio signal from shower modeled as in: [J. Alvares-Műniz, R.A.Vásquez and E. Zas, astroph/0003315 (2000)]
- LPM effect modeled as in: [J. Alvares-Mũniz and E. Zas, astroph/9706064 (1997)]
- Assume max field attenuation length of 1.2 km
- Assume antenna with:
 - peak effective height = 0.27 m @ 200 MHz
 - Gaussian bandwidth, sigma ~ 60 MHz
 - sharp high pass filter at 110 MHz
- Trigger: \geq 4 antennas above 4 sigma

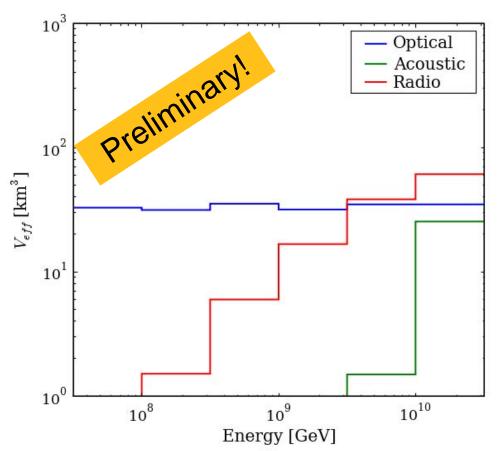
Neutrino events detected by radio


Rome - June 26, 2008

ARENA Workshop 14/19

Acoustic simulation

- Ignore electromagnetic showers from charged current electrons (signal negligible due to LPM)
- Modified NKG (Nishimura-Kamata-Greisen) parameterization for hadronic showers (lengthened by LPM) [http://icecube.berkeley.edu/~justin/showers.pdf]
 [J. Alvares-Mũniz and E. Zas, Phys. Lett. B 434, 396 (1998)]
- Ice properties and attenuation from P. B. Price's model [P. B. Price, J. Geophys. Res. 111, B02201 (2006)]
- Integrate over depth-dependent attenuation model
- Signal simulation similar to that used for SAUND [J. Vandenbroucke, G. Gratta and N. Lehtinen, ApJ. 621, 301 (2005)]
- Assume uniform frequency and angular sensor response
- Trigger: \geq 3 sensors above 9 mPa

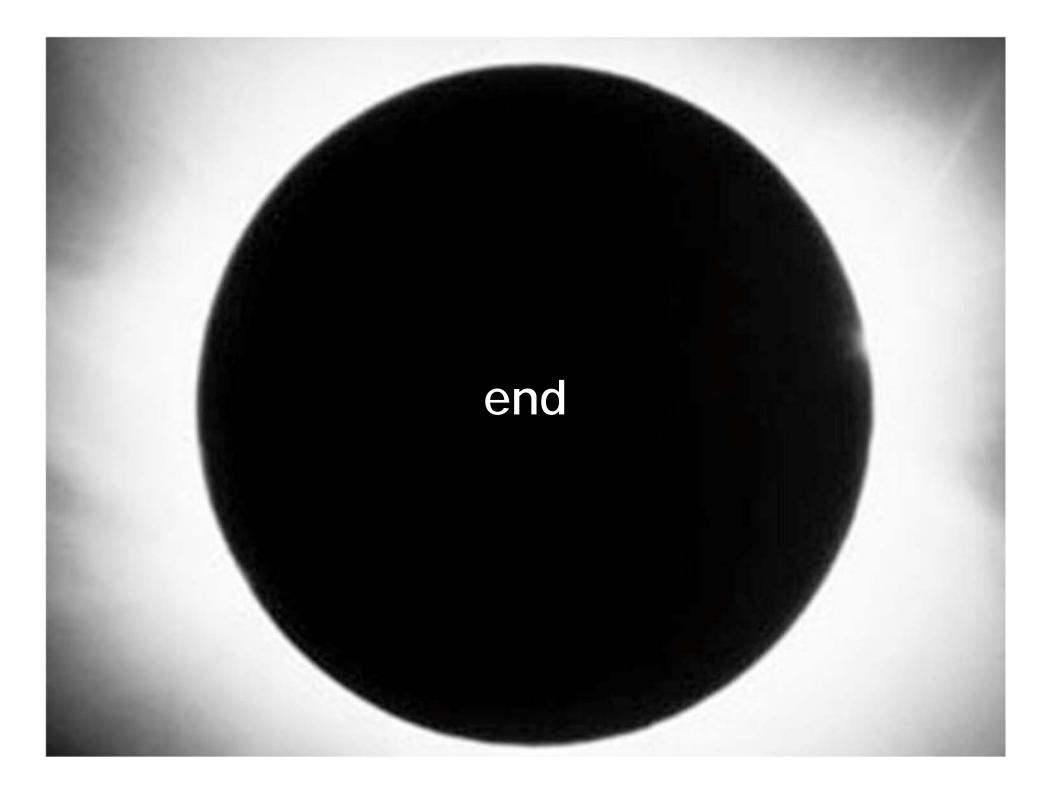

Neutrino events detected by acoustic

Rome - June 26, 2008

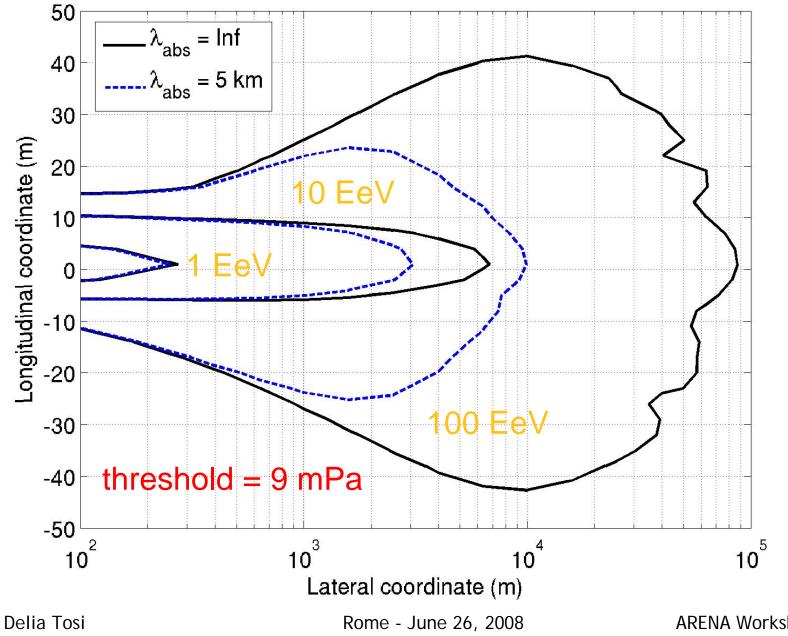
ARENA Workshop 16/19

Effective volumes

- Effective volume does not include v_{τ} events
- Expected increase:
 - 1.2 for the optical channel
 - 1.3 for the radio and the acoustic channels


Event rates

- Event rates assuming the ESS GZK flux model (Ω_Λ = 0.7) [R. Engel, D. Seckel and T. Stanev Phys. Rev. D 64, 093010 (2001)]
- v_{τ} contribution not included
- IceCube results higher than in the previous simulation, but:
 - Geometry of the ring is different
 - New software
 - One additional channel: $v_e + v_u$ (+ showers) vs v_u only
 - Trigger level is weaker:
 8 hits in 5 µs vs 5 in 2.5 µs


Detection option	GZK events/year*)		
IceCube	2.39		
Optical	N ¹ 3.99		
Optical Radio Prelimina	1.68		
Acoustic	0.43		
Optical+Radio	0.098		
Optical+Acoustic	0.043		
Radio+Acoustic	0.089		
Opt.+Rad.+Acou.	0.012		
TOTAL	5.568		

Results & Prospects

- Outer ring gives IceCube the chance of detecting twice as many GZK neutrinos as IceCube alone
- Detection would be strengthened by the radio method
- Not the optimal geometry for taking advantage from the acoustic method; other geometries will be investigated
- However number of radio + acoustic hybrid events similar to radio + optical one
- Still interesting to include acoustic sensors for R&D and as first step toward the bigger detector
- Triggering threshold for acoustic could be lowered to get as many coincident event as possible offline
- 1 or 2 acoustic hits in coincidence with optical or radio trigger could be statistically significant and strong evidence for neutrino event

Calculated acoustic radiation pattern in ice

ARENA Workshop 21/19

Events by flavor (no τ)

	$v_e / \overline{v_e}$	$v_{\mu}/\overline{v_{\mu}}$	Sum
IceCube only	0.473431	1.920142	2.393573
Optical	0.851801	3.136241	3.988042
Radio	0.722941	0.952983	1.675924
Acoustic	0.121672	0.313611	0.435283
Optical + Radio	0.048182	0.049562	0.097744
Optical + Acoustic	0.013345	0.029216	0.042561
Radio + Acoustic	0.021449	0.067317	0.088766
Optical + Radio + Acoustic	0.002689	0.009241	0.01193