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Introduction

@ There has been considerable interest recently in
entanglement entropy.

- ® Sp= —Tr(palog pa).
CFT,, | e @ Holographic Ryu-Takayanagi

(RT) prescription: area of
VA co-dimension two minimal
AdS surface homologous to A

B d+2
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z>a (UV cut off) SA:7
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Key questions

@ Dependence of EE on shape and on field theory.
© First law for EE.

© Dependence of EE on the state in theory e.g. excited
states.

© Other bulk computables e.g. differential entropy and their
roles in field theory.

(Balasubramanian et al, Hartman, Headrick, Hubeny, Liu,
Mezei, Myers et al, Rangamani, Rosenhaus,
Smolkin,Tayakanagi et al, - - )
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Massive flavors

@ Brane systems such as D3/D7 are a natural framework in
which to explore these questions.

@ Well-understood dual field theory and phenomenologically
interesting (Aharony et al, Fayyazuddin et al '98, Karch and
Katz ’02, ...).

Based on:

@ Peter Jones, Kostas Skenderis and Marika Taylor
“Entanglement and differential entropy for massive flavors”
arXiv:1505.xxxx
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@ The D3/D7 system

@ Entanglement entropy

@ Field theory interpretation
@ Differential entropy
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The D3/D7 system

@ Consider N, D3-branes and N; < N, parallel coincident
D7-branes.

@ In the decoupling limit the D7-branes wrap an AdSs x S°
submanifold of AdSs x S°

ds? = 212 (022 + dx - dx ) + d6? + sin? 92 + cos? O

ie. 0 =m/2.

@ Dual to SYM coupled to N' = 2 massless hypermultiplets
transforming in the bifundamental of SU(N;) x SU(N5).
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Massive flavors

@ Separating the D3 and D7 branes causes the hypers to
become massive.

@ From the brane probe perspective, the embedding is
(Karch and Katz, '02)

sin?0 = (1 — m?2?),

i.e. the D7-branes extend to z = 1/m, with m the mass.
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@ The corresponding deformation of the CFT is by a
dimension three operator, the fermion mass,

| = lger +m / d*x\/—gOs

where the holographic normalization of the operator (brane
holographic renormalization (Karch et al, '05)) is

1
<O3(X)O3(0)> = 16T7R ()(6)
with T7 the D7-brane tension.
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IR behaviour

@ Integrating out the massive hypers leads to an effective IR
theory

1
l:/SYM+rr72/d4X\/ng6+"'

where Og is a dimension six SYM operator, which breaks
the R symmetry to SO(4).

@ The finite extent of the probe D7-brane tallies with the field
theory behaviour at energy scales far smaller than m.
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@ The D3/D7 system

@ Entanglement entropy
@ Field theory interpretation
@ Differential entropy
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Entanglement entropy

@ To compute EE for D3/D7 we should find the full
backreacted metric, asymptoting to AdSs x S°, extract the
effective 5d Einstein metric and apply the RT formula.

This looks hard:

@ Backreacted metric depends on (z, 6, ¢) — cohomogeneity
three problem.

@ Smearing over the sphere simplifies problem (Bigazzi et al;
Kontoudi and Policastro) but is obscure in field theory.
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Probe approximation

As usual we work in the quenched approximation Ny < M.

@ Effectively we need to solve

I= Isugra —NfT7/d8X\/—7f7+ -
with v, the induced brane metric perturbatively in N¢T7.

@ EE is sensitive to the 5d Einstein metric so we cannot work
just with D-brane action.
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Shortcuts?

Following (Jensen and O’Bannon; Karch et al):

@ Exploit CHM map for spherical entangling regions.
e Intractable for finite mass, even at zero density.

© Assume induced brane metric is a direct product of
non-compact and compact parts.

e Method is not applicable at finite density or for general
brane embeddings.
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A systematic new method

Kaluza-Klein holography (Skenderis, M.T. '06):

@ For any background which is a perturbation of AdSs x S°,
ie.

ds? = % (022 + dx - dx ) + d23
+5gmn(z7 Xl“ 9,)

the pertubations can be decomposed in terms of spherical
harmonics.

@ Kaluza-Klein holography gives an algorithmic approach to
extract the 5d Einstein metric from the perturbations.
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A systematic new method

@ Given any brane embedding into AdS Schwarzschild x S°,
i.e.

Ipg) = —Tp/dp+1x\/—(fy+8)+ Tp/eBAC

given the worldvolume metric v and gauge field 5 one can
compute the sources for ten dimensional sugra fields.

@ Kaluza-Klein holography expresses the 5d Einstein metric
in terms of specific spherical harmonics of these sources.

@ No problems working at finite density!
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Example: massive flavours

@ The change in the 5d Einstein metric is particularly simple:
forz<1/m

5(ds?) = % (f(z)dz2 + h(z)dx - dx)

with

f(z) = (f(2) + 2N (2)) = %(1 — mPz?)?

where fh = Vg 17 = 2m2Ty.
@ The gauge invariant combination is (z).
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Change in EE

We explored three types of domains:
@ Slabin y, z plane, width / = Ax.
© Half plane x > 0; Ax — oo limit of slab.

© Spherical region, of radius /; Casini-Huerta-Myers (CHM)
case.

Focus on the first two in this talk.
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Entangling surfaces

STAG y) e

Marika Taylor Flavor entanglement



Results for EE

For the slab:
@ AdSs result:

2 r(—1
s £ (1 vy
2Gn \ 2¢¢  6I(§)z*2

with L2 the regulated area of the y, z directions, e the UV
cutoff and z* the turning point of the bulk entangling
surface.

@ The turning point is linearly related to the slab width
I = CoZ*.
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Entangling surfaces

Since the D7-branes extend only to z = 1/m, the entanglement
depends on whether the turning point of the entangling surface
isasz*<1/morz*>1/m.

/

4
N

v

z=0

_~

3=

D7-brane (z < 1)

AdS Region (z > 1) STAG v

Marika Taylor Flavor entanglement



Results for EE

@ For mz* < 1:

2 —
sso B (12 5 VET(18) oV T(1/3)
48Gpn

22 3" 1222 T(7/6) 12 T(11/6)

+§m210g(e3/22*3)> + 0 Sgauge (M, €).

@ For mz* > 1:

48m* z*6

g 48Gy (252 og(me)

4. ) +5Sgauge(m, €)
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Half space limit

@ The half space is obtained as the | — oo limit at fixed m:

. foL2 1 2
0S = m (262 +2m log(me) + (5Sgauge(ma 6)
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Comments

@ The entanglement entropy has a fourth order phase
transition at mz* = 1 (relic of probe approximation).

@ The gauge dependent terms depend on our choice of h(z),
i.e. the gauge choice for the metric.

@ The relation between the slab width / and the turning point
zZ* is corrected perturbatively:

I=(co+ toci(Z2*)+---)Z"
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Scheme dependence and finite quantities

@ EE is UV divergent.
@ One is often interested in "universal" divergent terms....

@ But one may also be interested in IR finite effects: e.g.
finite mass in d = 4 (Hertzberg, Wilczek)

o)

4
Shw =M 5 ey

or finite slab width (Cardy et al)
0S
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Renormalized entanglement entropy

@ One can define a renormalized entanglement entropy via
volume renormalisation (Witten, Graham), i.e.

1 d—1 _ 1 / d-2
4GNLd VI g |, VA

with H the induced boundary metric.

Sren =

Many nice features:

@ The metric gauge dependence cancels in the renormalized
EE.

@ Classification of when logarithmic terms arise (under
relevant deformations).

STAG y) e

Marika Taylor Flavor entanglement



@ The D3/D7 system

@ Entanglement entropy

@ Field theory interpretation
@ Differential entropy
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Deformations of the CFT

@ Recall that for the half space:

bl [ 2
0S8 = m (262 +2m log(me) + 5Sgauge(ma 6)

@ The m — 0 limit follows from conformal invariance and
agrees with the result for free massless hypermultiplets.
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Deformations of the CFT

@ At finite mass the CFT is deformed as
| = lcpr + m/d4x\/ —903.

@ The change in the entanglement entropy under a relevant
perturbation of dimension A = (d + 2)/2 has been argued
to contain universal log divergences (Rosenhaus,
Smolkin):

(d-2) =% euv
4(d—1) (+)A'°9<e,,q>’

with AV the operator normalisation and A the area of the

slab. ‘
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Deformations of the CFT

@ Using the known operator normalisation we indeed obtain

6S = @mzfllog <€UV>
3 €IR

in agreement with our result, setting ;g = 1/m.

@ Moreover, the result agrees with the results for free
massive hypers, i.e. there is a non-renormalisation
theorem (which was not obvious given A/ = 2 susy).

STAG y) e

Marika Taylor Flavor entanglement



Finite slab width

We can also understand the m/ >> 1 limit for the slab:
@ The leading finite contribution is

_ pl? 1
08 = 48Gy <_48m4z*6> '

@ Integrating out the massive flavors results in

1
I'=lsym + 2 / d*xv/=g0g
with Og an R-charged operator.
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Finite slab width

@ Symmetry implies that the leading contribution to the
entanglement entropy is at order 1/m*.

@ By translational invariance along the slab the EE scales as

L2
@ Hence
L2
0S8 ~ ey
on dimensional grounds, since there is no other scale in
the theory.

We may also be able to match the coefficient (?)
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@ The D3/D7 system

@ Entanglement entropy

@ Field theory interpretation
o Differential entropy
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Differential entropy

@ The differential entropy is defined as
E = [S(k) = S(k N k)]
k=1
where {l} is a set of intervals partitioning the boundary.

@ We will take {/x} to be slabs of width Ax, with intersection
of width (Ax — Lx/n), and take n — oc.
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Holes and differential entropy

@ In AdSs the differential entropy computes the area of a
hole of radius z*, the turning point of the entangling
surface associated with each slab.

@ This equivalence can be proved geometrically
(Balasubramanian et al; Myers et al; Headrick et al).
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Differential entropy

Witten diagram showing differential entropy: differential entropy
computes area of red hole.

STAG y) e

Marika Taylor Flavor entanglement



Differential entropy for massive flavor systems
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Differential entropy for massive flavor systems

It still computes the area of a hole in the 5d Einstein metric. J

@ For m/ > 1 the metric is just AdSs, yet the differential
entropy is changed:

.V cs toCS
4Gy \ (Ax)®  384mA(Ax)T

with ¢y the number such that Ax = cgz* + - - -.

@ The metric is unchanged, but the relation between Ax and
the turning points of the entangling surface z* is changed.
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Differential entropy for massive flavor system

@ The change is consistent with the viewpoint of the IR
theory as an irrelevant deformation of SYM.

@ Differential entropy however tells us only about the 5d
metric, not the 10d spacetime.

@ The former does not generically have the same causal
structure e.g. Coulomb branch geometries.
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Conclusions

@ We have developed a systematic method for computing EE
for probe brane systems.

@ Finite terms in the EE may be obtained using volume
renormalization for the minimal surfaces.

@ Exact coefficients in the EE can be matched.

@ Differential entropy computes the area in the 5d Einstein
metric, not the 10d metric.
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Additional results and outlook

@ Phenomenology: finite density, phase transitions.

@ General results for shape and field theory dependence
(including irrelevant deformations).

@ Interpretations of differential entropy in the field theory?
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