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Introduction

There has been considerable interest recently in
entanglement entropy.

(Takayanagi)

SA = −Tr(ρA log ρA).
Holographic Ryu-Takayanagi
(RT) prescription: area of
co-dimension two minimal
surface homologous to A

SA =
A

4GN
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Key questions

1 Dependence of EE on shape and on field theory.
2 First law for EE.
3 Dependence of EE on the state in theory e.g. excited

states.
4 Other bulk computables e.g. differential entropy and their

roles in field theory.

(Balasubramanian et al, Hartman, Headrick, Hubeny, Liu,
Mezei, Myers et al, Rangamani, Rosenhaus,
Smolkin,Tayakanagi et al, · · · )
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Massive flavors

Brane systems such as D3/D7 are a natural framework in
which to explore these questions.
Well-understood dual field theory and phenomenologically
interesting (Aharony et al, Fayyazuddin et al ’98, Karch and
Katz ’02, ...).

Based on:

Peter Jones, Kostas Skenderis and Marika Taylor
“Entanglement and differential entropy for massive flavors”
arXiv:1505.xxxx
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The D3/D7 system

Consider Nc D3-branes and Nf � Nc parallel coincident
D7-branes.
In the decoupling limit the D7-branes wrap an AdS5 × S3

submanifold of AdS5 × S5

ds2 =
1
z2

(
dz2 + dx · dx

)
+ dθ2 + sin2 θdΩ2

3 + cos2 θdφ2

i.e. θ = π/2.
Dual to SYM coupled to N = 2 massless hypermultiplets
transforming in the bifundamental of SU(Nc)× SU(Nf ).
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Massive flavors

Separating the D3 and D7 branes causes the hypers to
become massive.
From the brane probe perspective, the embedding is
(Karch and Katz, ’02)

sin2 θ = (1−m2z2),

i.e. the D7-branes extend to z = 1/m, with m the mass.
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Deformation

The corresponding deformation of the CFT is by a
dimension three operator, the fermion mass,

I = ICFT + m
∫

d4x
√
−gO3

where the holographic normalization of the operator (brane
holographic renormalization (Karch et al, ’05)) is

〈O3(x)O3(0)〉 = 16T7R
(

1
x6

)
with T7 the D7-brane tension.
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IR behaviour

Integrating out the massive hypers leads to an effective IR
theory

I = ISYM +
1

m2

∫
d4x
√
−gO6 + · · ·

where O6 is a dimension six SYM operator, which breaks
the R symmetry to SO(4).
The finite extent of the probe D7-brane tallies with the field
theory behaviour at energy scales far smaller than m.
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Entanglement entropy

To compute EE for D3/D7 we should find the full
backreacted metric, asymptoting to AdS5 × S5, extract the
effective 5d Einstein metric and apply the RT formula.

This looks hard:
Backreacted metric depends on (z, θ, φ)→ cohomogeneity
three problem.
Smearing over the sphere simplifies problem (Bigazzi et al;
Kontoudi and Policastro) but is obscure in field theory.
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Probe approximation

As usual we work in the quenched approximation Nf � Nc .

Effectively we need to solve

I = Isugra −Nf T7

∫
d8x
√
−γ + · · ·

with γab the induced brane metric perturbatively in Nf T7.
EE is sensitive to the 5d Einstein metric so we cannot work
just with D-brane action.
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Shortcuts?

Following (Jensen and O’Bannon; Karch et al):
1 Exploit CHM map for spherical entangling regions.

Intractable for finite mass, even at zero density.
2 Assume induced brane metric is a direct product of

non-compact and compact parts.
Method is not applicable at finite density or for general
brane embeddings.
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A systematic new method

Kaluza-Klein holography (Skenderis, M.T. ’06):

For any background which is a perturbation of AdS5 × S5,
i.e.

ds2 =
1
z2

(
dz2 + dx · dx

)
+ dΩ2

5

+δgmn(z, xµ, θi).

the pertubations can be decomposed in terms of spherical
harmonics.
Kaluza-Klein holography gives an algorithmic approach to
extract the 5d Einstein metric from the perturbations.
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A systematic new method

Given any brane embedding into AdS Schwarzschild ×S5,
i.e.

IDBI = −Tp

∫
dp+1x

√
−(γ + B) + Tp

∫
eB ∧ C

given the worldvolume metric γ and gauge field B one can
compute the sources for ten dimensional sugra fields.
Kaluza-Klein holography expresses the 5d Einstein metric
in terms of specific spherical harmonics of these sources.
No problems working at finite density!
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Example: massive flavours

The change in the 5d Einstein metric is particularly simple:
for z ≤ 1/m

δ(ds2) =
1
z2

(
f (z)dz2 + h(z)dx · dx

)
with

f̃ (z) = (f (z) + zh′(z)) =
t0
12

(1−m2z2)2

where t0 = VS3T7 = 2π2T7.
The gauge invariant combination is f̃ (z).
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Change in EE

We explored three types of domains:
1 Slab in y , z plane, width l = ∆x .
2 Half plane x > 0; ∆x →∞ limit of slab.
3 Spherical region, of radius l ; Casini-Huerta-Myers (CHM)

case.
Focus on the first two in this talk.
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Entangling surfaces

z = 0

z̃

∆x
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Results for EE

For the slab:

AdS5 result:

S =
L2

2GN

(
1

2ε2
+

√
πΓ(−1

3)

6Γ(1
6)z∗2

)

with L2 the regulated area of the y , z directions, ε the UV
cutoff and z∗ the turning point of the bulk entangling
surface.
The turning point is linearly related to the slab width

l = c0z∗.
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Entangling surfaces

Since the D7-branes extend only to z = 1/m, the entanglement
depends on whether the turning point of the entangling surface
is as z∗ < 1/m or z∗ ≥ 1/m.

1
m

l

D7-brane
(
z < 1

m

)

AdS Region
(
z > 1

m

)

z = 0
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Results for EE

For mz∗ ≤ 1:

δS =
t0L2

48GN

(
1

2ε2
+

2
3

m2+

√
π

12z∗2
Γ(−1/3)

Γ(7/6)
+m4z∗2

√
π

12
Γ(1/3)

Γ(11/6)

+
2
3

m2log(ε3/2z∗3)

)
+ δSgauge(m, ε).

For mz∗ � 1:

δS =
t0L2

48GN

(
1

2ε2
+2m2log(mε)− 1

48m4z∗6
+· · ·

)
+δSgauge(m, ε)
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Half space limit

The half space is obtained as the l →∞ limit at fixed m:

δS =
t0L2

96GN

(
1

2ε2
+ 2m2log(mε)

)
+ δSgauge(m, ε)
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Comments

The entanglement entropy has a fourth order phase
transition at mz∗ = 1 (relic of probe approximation).
The gauge dependent terms depend on our choice of h(z),
i.e. the gauge choice for the metric.
The relation between the slab width l and the turning point
z∗ is corrected perturbatively:

l = (c0 + t0c1(z∗) + · · · )z∗
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Scheme dependence and finite quantities

EE is UV divergent.
One is often interested in "universal" divergent terms....
But one may also be interested in IR finite effects: e.g.
finite mass in d = 4 (Hertzberg, Wilczek)

SHW = m4 ∂2S
∂(m2)2

or finite slab width (Cardy et al)

Sl = l
∂S
∂l
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Renormalized entanglement entropy

One can define a renormalized entanglement entropy via
volume renormalisation (Witten, Graham), i.e.

Sren =
1

4GN

∫
γ

dd−1x
√

g − 1
4(d − 2)GN

∫
∂γ

dd−2x
√

H + · · ·

with H the induced boundary metric.

Many nice features:
The metric gauge dependence cancels in the renormalized
EE.
Classification of when logarithmic terms arise (under
relevant deformations).
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Deformations of the CFT

Recall that for the half space:

δS =
t0L2

48GN

(
1

2ε2
+ 2m2log(mε)

)
+ δSgauge(m, ε)

The m→ 0 limit follows from conformal invariance and
agrees with the result for free massless hypermultiplets.
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Deformations of the CFT

At finite mass the CFT is deformed as

I = ICFT + m
∫

d4x
√
−gO3.

The change in the entanglement entropy under a relevant
perturbation of dimension ∆ = (d + 2)/2 has been argued
to contain universal log divergences (Rosenhaus,
Smolkin):

δS = Nm2 (d − 2)

4(d − 1)

π
d+2

2

Γ(d+2
2 )
A log

(
εUV

εIR

)
,

with N the operator normalisation and A the area of the
slab.
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Deformations of the CFT

Using the known operator normalisation we indeed obtain

δS =
2πt0

3
m2A log

(
εUV

εIR

)
in agreement with our result, setting εIR = 1/m.
Moreover, the result agrees with the results for free
massive hypers, i.e. there is a non-renormalisation
theorem (which was not obvious given N = 2 susy).
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Finite slab width

We can also understand the ml � 1 limit for the slab:
The leading finite contribution is

δS =
t0L2

48GN

(
− 1

48m4z∗6

)
.

Integrating out the massive flavors results in

I = ISYM +
1

m2

∫
d4x
√
−gO6

with O6 an R-charged operator.
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Finite slab width

Symmetry implies that the leading contribution to the
entanglement entropy is at order 1/m4.
By translational invariance along the slab the EE scales as
L2.
Hence

δS ∼ L2

m4l6

on dimensional grounds, since there is no other scale in
the theory.

We may also be able to match the coefficient (?)
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Differential entropy

The differential entropy is defined as

E =
∞∑

k=1

[S(Ik )− S(Ik ∩ Ik+1)]

where {Ik} is a set of intervals partitioning the boundary.
We will take {Ik} to be slabs of width ∆x , with intersection
of width (∆x − Lx/n), and take n→∞.
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Holes and differential entropy

In AdS5 the differential entropy computes the area of a
hole of radius z∗, the turning point of the entangling
surface associated with each slab.
This equivalence can be proved geometrically
(Balasubramanian et al; Myers et al; Headrick et al).
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Differential entropy

Witten diagram showing differential entropy: differential entropy
computes area of red hole.

z̃

z = 0
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Differential entropy for massive flavor systems

z > 1
m

z̃

z < 1
m

z = 0
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Differential entropy for massive flavor systems

It still computes the area of a hole in the 5d Einstein metric.

For ml � 1 the metric is just AdS5, yet the differential
entropy is changed:

E =
V

4GN

(
c3

0
(∆x)3 +

t0c6
0

384m4(∆x)7

)

with c0 the number such that ∆x = c0z∗ + · · · .
The metric is unchanged, but the relation between ∆x and
the turning points of the entangling surface z∗ is changed.

Marika Taylor Flavor entanglement



STAG RESEARCH
CENTERSTAG RESEARCH

CENTERSTAG RESEARCH
CENTER

Differential entropy for massive flavor system

The change is consistent with the viewpoint of the IR
theory as an irrelevant deformation of SYM.
Differential entropy however tells us only about the 5d
metric, not the 10d spacetime.
The former does not generically have the same causal
structure e.g. Coulomb branch geometries.
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Conclusions

We have developed a systematic method for computing EE
for probe brane systems.
Finite terms in the EE may be obtained using volume
renormalization for the minimal surfaces.
Exact coefficients in the EE can be matched.
Differential entropy computes the area in the 5d Einstein
metric, not the 10d metric.
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Additional results and outlook

Phenomenology: finite density, phase transitions.
General results for shape and field theory dependence
(including irrelevant deformations).
Interpretations of differential entropy in the field theory?
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