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Scope

I Non perturbative study of potential: in QCD perturbative
calculations are allowed just for short distances.

I In the STATIC approximation the quark masses are infinite.
I We do not observe free gluons and quarks, a good

PARAMETRIZATION for the POTENTIAL is

V (r) = A+
B

r
+ σr,

we can study the linear term just in a non perturbative way.
The coefficient is called the string tension.
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Continuum

Yang-Mills theory in the continuum
I Invariance of the lagrangian under transformations of the symmetry

group SU(3)
I Gauge fields or connections are the fundamental variables

Aaµλa = Aµ(x),

they transform like

AΩ
µ = Ω(x)Aµ(x)Ω†(x) + iΩ(x)∂µΩ†(x);

I Invariants: starting from

Fµν = ∂νAµ − ∂µAν + i[Aµ, Aν ]

⇒ trace of a local power

tr(FµνF
ρσ) = tr(ΩFµνΩ† ΩF ρσΩ†)

I Action Yang-Mills (pure)

SG[A] =
1

2g2

∫
tr(FµνFµν)
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On the lattice

Yang-Mills theory on the lattice
I Fundamental variables are the links Uµ(n) defined on a discrete

space Λ (R4 → Z4) and finite space Λ ⊂ Z4

connect two points of the lattice
I The invariants are built multiplying four link variables. In this way

we have an holonomy, a closed loop which define the plaquette

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) =

Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)+Uν(n)+

taking the trace.
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On the lattice

Yang-Mills theory on the lattice

I Fundamental variables are the links Uµ(n) defined on a discrete
space Λ (R4 → Z4) and finite space Λ ⊂ Z4

I The invariants are built multiplying four link variables. In this way
we have an holonomy, a closed loop which define the plaquette

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) =

Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)+Uν(n)+

taking the trace.

I The Wilson Action

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re (tr [I − Uµν(n)]).
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On the lattice

Constraints on the discrete Action

The Wilson action in terms of β = 6
g2 is

SG[U ] =
β

3

∑
n∈Λ

∑
µ<ν

Re (tr [I − Uµν(n)]).

The action must respects the constraints:

1 the gauge inveriance, translated for a discrete spacetime;

2 in the limit a→ 0, the continuum limit, has to reproduce the
Yang-Mills action.
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Kernel: probability amplitude

Feynman propagation kernel
I In Quantum Mechanics we can write the probability amplitude
< xb|e−iHT |xa > as

U(xa, xb;T ) =

∫
Dx(t) ei S

Feynman propagation kernel.

I In a Yang-Mills theory, in the temporal gauge (A0 = 0):

K(A2,A1;T2−T1) =

∫
DΩ

∫ A(x,T2)=AΩ
2 (x)

A(x,T1)=A1(x)

DA(x, t)e−SYM (A,A0=0)

where DΩ the invariant measure on the group. The propagation
kernel is the Euclidean version for the probability amplitude
< A2|e−iHT |A1 > to go to the configuration A2, at the time T2,
starting from A1 at the time T1.
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Kernel: probability amplitude

Spectral decomposition

The propagation kernel, in the temporal gauge A0 = 0, without external
sources, in terms of eigenstates of the Hamiltonian is:

K(A1,A2;T2 − T1) =
∑
n

e−En(T2−T1)ψn(A2)ψ∗n(A1)

where the functional ψn(A) =< A|n > is the representation of the
eigenstate of the Hamiltonian in terms of the eigenstates of the field
operators Â(x): Â(x)|A >= A(x)|A >.
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Kernel in presence of external sources

Kernel in presence of external sources q q̄
(G.C. Rossi and M. Testa, Phys. Rev. D 87,085014 (2013))

I The propagation kernel for a Yang-Mills theory in presence of
external sources q q̄ in x and y is

K(A2, s2, r2,A1, s1, r1;T ) =

∫
G0

DΩ Ωs2s1(x)Ω†r2r1(y)K̃(AΩ
2 ,A1;T )

where
I G0 group of time-independent gauge transformations that tend to

the identity at spatial infinity;
I DΩ is the invariant Haar measure over the group.

I The states, which are the basis of the spectral decomposition, are
eigenstates of the Hamiltonian Hψk(A, s, r) = Ekψk(A, s, r) with
eigenvalue Ek:

K(A2, s2, r2,A1, s1, r1;T ) =
∑
k

e−EkTψk(A2, s2, r2)ψ∗k(A1, s1, r1).
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Kernel in presence of external sources

Theory with q q̄ sources

(G.C. Rossi and M. Testa, Phys. Rev. D 87,085014 (2013))

I The kernel is symmetric under global color rotation, [Û(V ), Ĥ] = 0
and the eigenstates of the Hamiltonian in the sector qq̄ are of the
form:

ψ(A, s1, s2) = [φ(A)1 + φa(A)λa]s1s2 ≡ φ(A)1 + φa(A)λa.

I Under a global rotation

U(V )ψ(A) ≡ ψV (A) = V ψ(AV )V + = φ(AV )1 + φa(A)V λaV †,

we have:

1 the orbital color, which comes from A→ AV ;
2 the color spin which comes from the action of V on the source

indexes.
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Kernel in presence of external sources

Eigenstates of H

(G.C. Rossi and M. Testa, Phys. Rev. D 87,085014 (2013))
For A = 0

ψV (0) = V ψ(0)V + = φ(0)1 + V λaV +φa(0);

we have three possibilities (otherwise ψV (0) could be in a reducible
representation 1⊕ 8):

1 φ(0) 6= 0 con φa(0) = 0;

2 φ(0) = 0 con φa(0) 6= 0;

3 φ(0) = φa(0) = 0.

In the firsts two cases:
if φ(0) 6= 0 then ψ(A) is in the singlet of spin color;
if φa(0) 6= 0 then ψ(A) is in the octet of spin color.
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Kernel in presence of external sources

Kernel with homogeneous boundary conditions

(G.C. Rossi and M. Testa, Phys. Rev. D 87,085014 (2013))

I It can be shown that there are four different types of eigenstates of
the energy;

I from the previous statement it follows that the structure of the
kernel is

K(0, r1, r2;0, s1, s2) =

= |φ(0)|2 δs1s2δr1r2

Nc
e−E[S]T +

∑
a

|φa(0)|2
∑
b

λb
r1r2

λb
s1s2

e−E[Ad]T + ...

We study these boundary conditions with a lattice simulation.
The condition A = 0 corresponds to the links at the boundary
U1 = U2 = U3 = 1.
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Kernel in presence of external sources

Extraction of the potential

(G.C. Rossi and M. Testa, Phys. Rev. D 87,085014 (2013))
Singlet correlator:

P1(K(R, T )) =
1

3

∫
DΩ tr(Ω(x)Ω†(y))K̃(iΩ†∇Ω, 0).

Octet correlator:

P8(K(R, T )) = 2

∫
DΩ tr(Ω(x)λaΩ†(y)λa)K̃((Ω†∇Ω, 0).

Note that no gauge fixing is needed.
Under the hypothesis, verified in perturbation theory, there is one state
and the singlet potential is given by

V̂1 = −ln < tr P1(K(R, T )) > .
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Singlet correlator

Numerical results
Singlet correlators in adimensional units with parameters: β = 6, 4000 configs,

lattice extension N3 = 103, NT = 4, 5, 6, 7, 9, 10; a is the lattice spacing

(a ' (0.1− 0.05)fm). The statistical error was estimated by a jackknife

method.
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Singlet correlator

Numerical results
Singlet potential in adimensional units varying NT , β = 6 lattice
extension N3 = 103, NT = 4, 5, 6, 7, 9, 10, (4000 configs).
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Singlet correlator

Numerical results
Singlet correlators from which we extract potentials in adimensional units
β = 7 lattice extension N3 = 203, NT = 4, 6, 8, 10, (4000 configs).
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Singlet correlator

Numerical results
Singlet correlators which give the singlet potentials in adimensional units
varying β lattice extension N3 x NT = 103 x 4
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Singlet correlator

Numerical results
Singlet potentials in adimensional units varying β lattice extension N3 x
NT = 103 x 4
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Octet channel

Numerical results
Correlators in the octet channel in adimensional units varying the
configuration number, β = 6, lattice extension N3 x NT = 103 x 4
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Conclusions
We have performed numerical calculations of the correlators in the singlet and
the octet channels for a pure Yang-Mills theory in presence of two static
sources with homogeneous boundary conditions.

I For the singlet corraltor we find a discrepancy between homogeneous
boundary conditions and the periodic ones consistent with the multilevel
calculation (M. Lüsher and Weisz, hep-lat/0108014, JHEP 09 (2001) 010,
2001):

< P ∗ P >hom= 1, 4(7)× 10−4 vs < P ∗ P >per= 2.48(2)× 10−4,

using the parameters T
a

= 6 r
a

= 6 β = 5.7.

At present we are exploring higher statistic and checking other possible
causes of the discrepancy (L. Giusti, A.L. Guerrieri, S. Petrarca, A. Rubeo,
M. Testa, to be published).

I In the octet channel the signal is zero. We suspect that this is due to the
fact that the integration over G is in fact extended to the group of all
gauge transformations, not vanishing to the infinity, thus averaged to zero
(O. Philipsen and M. Wagner, Phys.Rev. D89 014509, 2014).
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Thank you for your attention!
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Number of points on the lattice V = N3 ·NT

Vmin = 103 · 4 = 4000, Vmax = 203 · 10 = 80000

where
β = aNT = 1

T
L = aN spatial length
T = aNT euclidean time.

Volume
Vmin = (0.1 fm3) Vmax = (0.8 fm3)
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Loop di Wilson:

WL[U ] = tr[
∏

(k,µ)∈L

Uµ(k)].

Correlator of the Wilson loop in the static approximation:

< WL >∝ e−V (r)t(1 +O(e−∆E t)) = e−V (r)ant(1 +O(e−∆E ant)).

The lowest value of the energy, E1, represents the static quark antiquark
potential

E1 = V (r) r = a|m− n|.

< WL >∝ e−V (r)t(1 +O(e−∆E t)) = e−V (r)ant(1 +O(e−∆E ant)).
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The Polyakov loop is defined setting nt = NT , where NT is the number
of points on the lattice in the temporal direction (aNT = t is the
euclidean time)

P (m) = tr[

NT−1∏
j=0

U4(m, j)]

where 4 is the Lorentz index, m and j are the points on the lattice,
respectively spatial and temporal.
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Link variable on the lattice

Uµ(n) = eiaAµ(n).

Limit a→ 0:
Uµ(n) = eiaAµ(n) ∼ 1 + iaAµ(n),

I Plaquette ∼ a
Uµν(n) = eiaAµ(n)+ia2∂µAν(n);

I Wilson action ∼ a2

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re tr[1− Uµν(n)].
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In the continuum: the path-ordered of the exponential of the integral
which contains the gauge field along the path Cxy which links the points
x y (gauge transporter)

G(xy) = Pei
∫
Cxy

A·ds
.

Comparing G(xy) with Uµ(n) we can see that we approximate the path
length with the value of the field in the starting point, this is true at the
first order, O(a).
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Studying the potential just considering the self interaction is equivalent
to take the lagrangian:

L = −1

4
FµνF

µν + ψ̄D0ψ + ψ̄mψ

in the limit of infinite mass m. In this limit the solution is the Wilson
loop.
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Kernel (with all the possible sources)

K(A2,A1;T2 − T1) =

∫
DΩ

∫ A(x,T2)=AΩ
2 (x)

A(x,T1)=A1(x)

DA(x, t)e−SYM (A,A0=0)

Kernel with sources quark antiquark

K(A2, s2, r2,A1, s1, r1) =
∑
k

e−EkTψk(A2, s2, r2)ψ∗k(A1, s1, r1)
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Symmetries of the kernel

I Invariance of the kernel without Gauss constraint under gauge
transformations

K̃(AΩ
2 , T2;AΩ

1 T1) = K̃(A2, T2;A1T1),

⇒ [Ĥ, Û(Ω)] = 0

Û(Ω) unitary operators
⇒ Ĥ has to be diagonal in the subspaces which correspond to the
irreducible representations of the gauge group.

BackUp



Gauss constraint in QCD:

∂iE
a
i = gρa + gfabcAbiE

c
i (1)
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Static potential parametrization

V (r) = A+
B

r
+ σr

where B = − 4
3αS .

Coulombian behavior dominates at short distances where perturbation
theory works;
linear confining behavior dominates at long distances where non
perturbative calculations work.
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