
Software development tools
summary

Also sprach Giulio

• The main point I would like to make is that
when talking about software development one
has to think about the whole process, from
how to plan for new features to deployment,
not about the single separate tools and steps

• I subscribe to this point of view, since we are
at the very beginning of the journey and can
take advantage of organized vs blobbing
development

• Good development planning and policies should
also avoid a heavy turn to QA tools
– Which are nevertheless usefull

• And should be worth their price

• Some weeks ago Andrea Di Simone circulated a
proposal for coding policy
– Maybe it’s the right time to agree on a base policy and

start to follow it
• Even if I’m not sure we can make it until the development is

made on top of legacy BaBar code…

• When will we decide what/how much BaBar code
will be kept by SuperB?

• QA tools (or systems) could be also useful in
our quest of “parallelizable code”

– Especially running dynamic analysis ones, like
valgrind or igprof

– Extend, or go into thoroughly, the analysis to all
SuperB code

• Maybe this will also help us identifying code to be
rewritten from scratch

• I realized that there’s much more to “building” a software
than simply “running make”
– There is integration with VCS, QA/Unit test tools, cross

compilation, integration with externals, packaging, distribution…
• Etics is certainly a complete (and almost “keys in hand” tool), but I

would keep investigating other solutions trying not to shoot a fly with
a bazooka.

• Is our VCS suitable? Git promises to solve a lot of problems
but, at least at a first glance, needs a clear and clean
definition of development workflow (everything in Git is a
branch, and you can have remotes with many branches to
commit to…).
– Do we have one?

• Planning, planning and planning

– With a (possibly) clear picture of the complexity of
our software (which shouldn’t be too hard to
define, given baBar experience…) identify the
tools which adapt easier and faster

• I’m thinking about the “small build unit -> Scram V1
model” choice, for example…

– More coordination among developers (Fast and
Full) to identify common strategies and policies

