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Aim: determination of LECs appearing in VV and AA correlators

* |nput:
- 2013 revised ALEPH spectral data from non-strange tau decays
(Davier et al. 14, original data had incomplete correlation matrix (Boito
et al.’11); previously: OPAL data, Boito et al. ’13; MG, Maltman & Peris ‘14)
- B-factory strange mode distributions for main exclusive modes
- RBC/UKQCD lattice data (Boyle et al. '14)
- fit to revised ALEPH non-strange spectral data (Boito et al. ‘14)

* Ingredients:
relate spectral data to vacuum polarizations:
- V-A finite-energy sum rules (FESRSs)
- flavor-breaking V and V+A inverse-moment FESRs (Dirr & Kambor ‘99)
connect with low-energy constants (LECs):
- NNLO ChPT (Amoros, Bijnens & Talavera '99)



Non-strange V-A vacuum polarization sum rules

Define ﬁ%}w_)A(Qz) = / dsw(s/sg) pv(s) - p2A(s) : 0 < sg <m?
0 s+ @

(bars indicate that the pion pole has been subtracted)
then (using D = 2. 4 OPE coefficients; Boito et al. ‘13)
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Evaluation of V-A vacuum polarization

Split up integral into two parts:
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sum over bins with data, integral using
pr(s) = e 0T TTS sin(ar + Brs) T e{V, A}

with DV parameters from fits to weighted moments of ALEPH spectral
functions (Boito et al. ‘14);

switch point above at s, = 1.55 GeV? (at Q% = 0 insensitive to switch
point)



Flavor-breaking IMFESRs (Diirr & Kambor ‘99)

Define  All7(Q?) = a1 (Q?) — Husr (Q?) Tec{V, A, V+A}
ATTy (0) = / Tis W/50) AL (9) + OPE
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where we neglected DV contributions (triple pinch, 1/s),

self-consistency checks: w(x) independence, sy independence of sum on
right-hand side; both satisfied on interval 2 GeV? < sy < mi



Results from data

We find LSy = —6.446(50) x 1072
Ceff = 8.38(18) x 1072 GeV ™2

from non-strange ALEPH spectral data, and
Ally (0) = 0.0224(9)
ATT4(0) = 0.113(8)
Ally 4 4(0) = 0.0338(10)
Ally_4(0) = 0.0111(11)

from ALEPH non-strange and strange spectral data



ChPT connects to LECs (ABT ‘99)

V-A to NNLO:

e r r 1~
Lio = Lio (1 = 4Q2px + pxc)) = 22px + prc) Ly — < Brerc (11, 0)

—4m3 (CTy — Cgy + Cgg) — 4(2mE +m32)(Cl3 — Cgy + CFy)
.1 T T
CS? = Cygr — 6472 (1 — log —W T3 3 log m[;) Ly — ERT(K(ILL?O)
use L = 5.93(43) x 107 from Bijnens & Talavera '02;
(all values at n = 770 MeV)
lattice results to disentangle C7, — Cf, + C%,, C13 — Cgy + Cgy and L
use 3 RBC/UKQCD ensembles: 1/a = 1.379(7) GeV, m, = 172, 250 MeV
1/a = 1.785(5) GeV, m, = 340 MeV



ChPT for flavor-breaking case

using physical meson masses and decay constants, and p = 770 MeV

ATy (0) = 0.00775 — 0.7218L% + 1.423L§ + 1.062L}, + 3.740C%,
ATy 4(0) = 0.00880 — 0.7218L% + 1.423L% + 3.740(CY, + C5, + Chy)
Ally_ 4(0) = 0.00670 — 0.7218L% + 1.423L5 + 2.125L7,

— 3.740(C5 — Cg1 + C4p)
use further L. = 0.84(38) x 10~ (MILC ‘09) and L}, from BT ‘02
- get O, + Cgy + Cg from Ally 4 4(0)
- from AIly_ 4(0), LS5 and the lattice, get L}, , C}, — Ci, + C%, and
Cls — Cgz + Cyy
- Ally (0) then directly yields C;



Results

Taking correlations completely into account, we find

L7, = —3.50(17) x 107°
Cry +CL +Chy = 2.37(16) x 1073 GeV ™2
CTy — Ch 4+ C%y = —0.56(15) x 1073 GeV 2
re —Ch,+ O = 0.46(9) x 1073 GeV ™2
Ci = 1.46(15) x 107° GeV~?
Cly+Chy = 0.90(9) x 1072 GeV ™~
CL. = 5.10(22) x 1073 GeV 2

(the latter directly from CS



Comments

Fit errors improved compared to our previous, OPAL-based, analysis
(ALEPH data has smaller errors)

* Errors have reached the level of the expected systematic uncertainties
from the neglected NNNLO terms (about 6% for L', , and about 25% for

NNLO LECs):
precision attainable with an NNLO analysis has been reached

* Large-N suppressed LEC combination C|; — Cj, + Cg; not smaller
in size than C[, — Cj; + Cg, (significant cancellations in the latter)

 Also determined D = 6, 8 OPE condensates, ~2.4 o different from
values found based on OPAL data



