Anisotropy in the $Q\overline{Q}$ -potential in a magnetic field

Francesco Negro

UniPi

29 May 2014

Cortona XXXIV Convegno Nazionale di Fisica Teorica

INFN

Collaborators:

Reference:

Claudio Bonati, Massimo D'Elia, Marco Mariti, Michele Mesiti and Francesco Sanfilippo. arXiv:1403.6094, to appear in PRD

Francesco Negro Anisotropy in the $Q\overline{Q}$ -potential in a magnetic field

- Phenomenological Motivation
- Static $Q\overline{Q}$ potential
- Lattice QCD & Magnetic Fields (*eB*)
- Static $Q\overline{Q}$ potential in the presence of (eB)
- Conclusions

Phenomenological Motivation

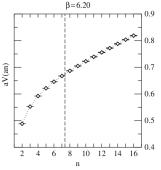
QCD is a strongly interacting theory. In the IR regime the coupling constant is large, hence it displays many non-perturbative properties (confinement, chiral simmetry breaking, ...).

ElectroWeak corrections are often small if compared to the Strong int. But: what happens if we consider the presence of an external magnetic field, *eB*, large enough to be comparable with the scale Λ_{QCD} ?

- Astrophysics in a class of neutron stars, called magnetars: $eB \sim 10^{10}$ T [Duncan and Thompson, '92]
- Cosmology during the ElectroWeak phase transition: $eB \sim 10^{16}$ T [Vachaspati, '91]
- Heavy ion collisions at LHC in non-central HIC: $eB \sim 10^{15} \text{ T} \sim 15m_{\pi}^2$ [Skokov, Illarionov and Toneev, '09]

$$1~\text{GeV}^2\sim 5\cdot 10^{15}~\text{T}$$

The static $Q\overline{Q}$ -Potential


 $V_{Q\overline{Q}}$ is a non-perturbative feature of QCD. A property of gauge fields only.

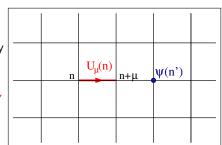
 $\begin{array}{l} \mbox{Coulomb term} + \mbox{linear term} \\ \rightarrow \mbox{Cornell Potential} \end{array}$

$$V_{Q\overline{Q}}(\vec{r}) = C + \sigma |\vec{r}| + \frac{\alpha}{|\vec{r}|}$$

- $\sigma \equiv \text{String Tension}$
- $\alpha \equiv \text{Coulomb Parameter}$
- It gives a description of the phenomenon of confinement
- Spectrum for heavy mesons: e.g. charmonia and bottomonia \rightarrow NR bound states of heavy quarks $(c\overline{c}, b\overline{b})$

POSSIBLE DEPENDENCE ON *eB*? PRESENCE OF ANISOTROPIES?

The Lattice QCD approach


NP properties of QCD? \implies Lattice QCD

Lattice QCD in 3 steps:

1- Feynman path integral formulation of the Euclidean theory

2– We regularize the integral by introducing a finite lattice: UV cut-off $\rightarrow a$ IR cut-off $\rightarrow V$

3- We get a well defined multidimensional integral \rightarrow Monte Carlo approach

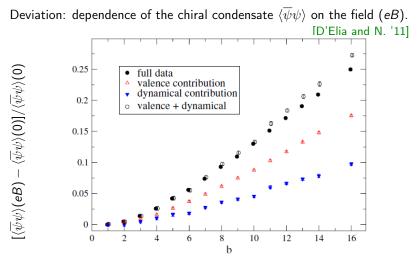
$$\langle \hat{O} \rangle = \frac{\int \mathcal{D} U O[U] e^{-S_E[U]}}{\int \mathcal{D} U e^{-S_E[U]}}, \text{ where } U_\mu(x) = \exp(ig_s a A_\mu(x)).$$

Integration variables \rightarrow the links (elementary parallel transporters); 3 × 3 matrices belonging to the Gauge Group SU(3).

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

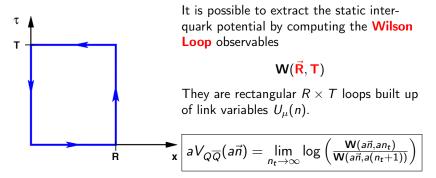
The degrees of freedom for QED are abelian phases $u_{\mu}(n)$. They enter the fermionic action:

$$S_{E} = S_{YM}^{SU(3)} + S_{Ferm}, \quad \text{where}$$


$$S_{Ferm} = \sum_{n} \left[am\overline{\chi}(n)\chi(n) + \frac{1}{2}\sum_{\mu} \eta_{\mu}(n) \left(\overline{\chi}(n)U_{\mu}(n)u_{\mu}(n)\chi(n+\hat{\mu}) + -\overline{\chi}(n)U_{\mu}^{\dagger}(n-\hat{\mu})u_{\mu}^{\dagger}(n-\hat{\mu})\chi(n-\hat{\mu})\right) \right].$$

We fix them in order to produce the desired magnetic field. We will consider uniform magnetic field along the Z direction.

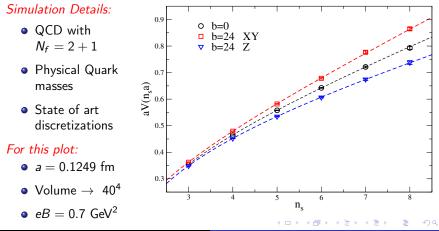
The magnetic field can influence the gluon field through quark loops.


HOW MUCH?

Chiral Condensate at non-zero (*eB*)

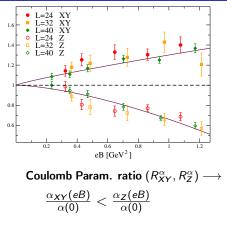
We disentangled the contribution due to the modification of the gluon fields: 40% of the total signal.

The $Q\overline{Q}$ potential from Lattice QCD


They correspond to the following process:

- creation of a quark-antiquark pair at distance \vec{R}
- imaginary time propagation for an interval of time T
- annihilation of the pair.

$$\langle \mathbf{W}(\vec{\mathbf{R}},\mathbf{T}) \rangle \simeq C \exp\left(-\mathbf{T} V_{Q\overline{Q}}(\vec{\mathbf{R}})\right)$$


The $Q\overline{Q}$ potential at $eB \neq 0$

Rotation simmetry is broken by the magnetic field $e\vec{B} = eB\hat{Z}$. We cannot average over Wilson Loops with different spatial orientations! We get different results for parallel Z and perpendicular X - Y directions.

Francesco Negro Anisotropy in the $Q\overline{Q}$ -potential in a magnetic field

String Tension and Coulomb Parameter

The solid lines corresponds to fit on 40^4 data according to the power law

 $R = 1 + A \cdot (eB)^C$

Lattices: Ratios: (24⁴, 0.2173 fm) $R_{DIR}^{\mathcal{O}} =$ (32⁴, 0.1535 fm) $\mathcal{O}_{DIR}(eB)/\mathcal{O}(0)$ $(40^4, 0.1249 \text{ fm})$ \leftarrow String Tension ratio $(R_{XY}^{\sigma}, R_{Z}^{\sigma})$ $\frac{\sigma_{XY}(eB)}{\sigma(0)} > \frac{\sigma_Z(eB)}{\sigma(0)}$ 24 XY 32 XY 40 XY 24 Z 32 Z 40 7 0.8 0.6 eB [GeV2]

Possible Phenomenology

Modification of the heavy meson spectrum [Alford and Strickland, '13]

NR treatment of the heavy quark-antiquark pair in the presence of eB. Hamiltonian with the $eB \equiv 0$ Cornell Potential & spin-spin interaction

At $eB \simeq 0.3 \text{ GeV}^2$:		
	$\Delta m/m \sim 10\%$	
$ \begin{array}{l} \eta_{c}, \ J/\Psi \\ \eta_{b}, \ \Upsilon \end{array} $	$\Delta m/m \sim 1\%$	

Mixings of the singlet and triplet states.

Computed with an isotropic potential \longrightarrow Further effect due to the anisotropy at $eB \neq 0$. Work in progress with A. Rucci

Possible effect in Heavy Ion Collisions

An influence on cross-sections and decay rates has been pointed out.

[Strickland, Nohorona et al. '13]

In Heavy Ion Collisions the dynamic which determines the final particle multiplicity is very complicated.

Even small corrections may have large effects on the final multiplicities.

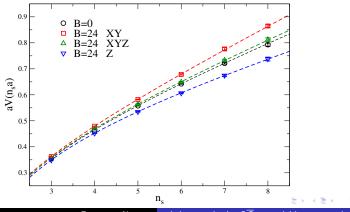
Conclusions and Perspectives

Conclusions:

- Determiantion of $V_{Q\overline{Q}}$ at non-zero eB.
- Gauge fields gets modified by $eB \longrightarrow$ anisotropy
- Determination of σ and α
- Possible phenomenological relevance

Open questions:

- Complete angular dependence of $V_{Q\overline{Q}}$: still missing.
- Vanishing string tension along Z for large enough eB?
- What happens at finite temperature T? Influence on HIC?
- Need for a direct lattice computation of the spectrum!


Thank you!

Francesco Negro Anisotropy in the $Q\overline{Q}$ -potential in a magnetic field

Backup - XYZ average

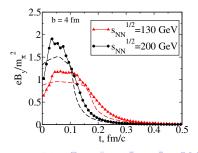
We cannot average over Wilson Loops with different spatial orientations! But: what happens if we try to do it?

The dependence on *eB* apparently disappears! That is why previous studies on this subject didn't reported any significant dependence of the potential on the magnetic field.

Francesco Negro Anisotropy in the $Q\overline{Q}$ -potential in a magnetic field

Backup - Timescales in HIC

- Formation time of the plasma ightarrow $au_{f} \sim$ 0.2 fm
- <u>Temperature</u> [Zhao and Rapp, '11] Assumption for the deconfinement temperature: $T_c \simeq 170$ MeV


Т	RHIC at 200 GeV	LHC at 2.76 TeV
$T > 2T_c$	-	$\tau_f < \tau < 1 fm/c$
$T_c < T < 2T_c$	$\tau_f < \tau < 3fm/c$	$1fm/c<\tau<6fm/c$
$T = T_c$	$3fm/c<\tau<5fm/c$	$6fm/c<\tau<9fm/c$

- Magnetic Field

Estimate of *eB* time evolution @ RHIC for Au - Au collisions for two values of $\sqrt{s_{NN}}$.

As the collision energy increases the magnetic field increases, but it gets more shrinked in time.

```
[Skokov, Illarionov and Toneev, '09]
```

