Nuclear parton distribution functions

Petja Paakkinen

University of Jyväskylä

LFC17

ECT* Trento 12 Sep 2017

Collinear factorization (in nuclei)

- Factorization theorem $d\sigma^{AB \to k+X} \stackrel{Q \gg \Lambda_{QCD}}{=} \sum_{i,j,X'} f_i^A(Q^2) \otimes d\hat{\sigma}^{ij \to k+X'}(Q^2) \otimes f_j^B(Q^2) + \mathcal{O}(1/Q^2)$ hard-scattering coefficient
- The coefficient functions $\mathrm{d}\hat{\sigma}^{ij \to k+X'}$ are perturbatively calculable
- ... but the parton distribution functions (PDFs) contain long-range physics and cannot be obtained by perturbative means
 - However, the PDFs are *universal*, process independent, and obey the DGLAP equations

$$Q^2 \frac{\partial f_i}{\partial Q^2} = \sum_j P_{ij} \otimes f_j$$

• For a nucleus A, one has

$$f_i^A(x,Q^2) = \frac{Z}{A} f_i^{p/A}(x,Q^2) + \frac{N}{A} f_i^{n/A}(x,Q^2) \qquad \text{(per nucleon),}$$

where the neutron content is obtained via isospin symmetry

Nuclear PDFs

... but in the nuclear environment the partonic contents of the bound nucleons are modified

bound proton PDF $\sim f_i^{p/A}(x,Q^2) \neq f_i^p(x,Q^2) \sim$ free proton PDF

→ Global analyses of *nuclear* parton distribution functions (nPDFs)

- First global fit: EKS98
 [Nucl.Phys. B535 351-371]
- First error analysis: HKM [Phys.Rev. D64 034003]
- First NLO fit: nDS [Phys.Rev. D69 074028]

- ! Not enough data available to fit each nucleus separately
 - $\textbf{ \rightarrow }$ Have to parametrize also the A dependence

Kinematic reach of the current data

 \blacksquare Data much more restricted in x,Q^2 space than for proton PDFs

- Also fewer types of data and less data points
- The LHC data opens a new kinematic region

Current global nPDF analyses

	EPS09	DSSZ	nCTEQ15	KA15	EPPS16
Order in α_s	LO & NLO	NLO	NLO	NNLO	NLO
NC DIS <i>l</i> A/ <i>l</i> d	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DY pA/pd	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RHIC pions dAu/pp	\checkmark	\checkmark	\checkmark		\checkmark
$\nu A DIS$		\checkmark			\checkmark
$\pi A DY$					\checkmark
LHC pPb jets					\checkmark
LHC pPb W, Z					\checkmark
Q cut in DIS	1.3 GeV	1 GeV	2 GeV	1 GeV	1.3 GeV
datapoints	929	1579	708	1479	1811
free parameters	15	25	16	16	20
error analysis	Hessian	Hessian	Hessian	Hessian	Hessian
error tolerance $\Delta\chi^2$	50	30	35	?	52
Free proton PDFs	CTEQ6.1	MSTW2008	CTEQ6M-like	JR09	CT14
HQ treatment	ZM-VFNS	GM-VFNS	GM-VFNS	ZM-VFNS	GM-VFNS
Flavour separation	no	no	valence	no	full
Weight data in χ^2	yes	no	no	no	no
Reference	JHEP 0904 065	PR D85 074028	PR D93 085037	PR D93 014026	EPJ C77 no.3, 163

EPPS16 improvements over EPS09

completely new data types, twice as many data points general mass formalism, undo isospin corrections

more free parameters, free flavours, no data weighting

 \rightarrow more constraints

→ better details

→ less biased 6/30

EPPS16 parametrization

- Parametric freedom for all flavours, in total 20 free parameters
 - Earlier analyses (EPS09, DSSZ, ...) fixed

$$\begin{split} R^A_{u_{\rm V}}(x,Q^2_0) &= R^A_{d_{\rm V}}(x,Q^2_0) \\ R^A_{\bar{u}}(x,Q^2_0) &= R^A_{\bar{d}}(x,Q^2_0) = R^A_{\bar{s}}(x,Q^2_0) \end{split}$$

nCTEQ15 has flavour freedom for valence quarks, but not for sea quarks

Data treatment in EPPS16

■ Recover the true structure functions from the "isoscalarized" ones (charged-lepton DIS)

$$\hat{F}_{2}^{A} = \frac{1}{2}F_{2}^{\mathrm{p},A} + \frac{1}{2}F_{2}^{\mathrm{n},A} \longrightarrow F_{2}^{A} = \frac{Z}{A}F_{2}^{\mathrm{p},A} + \frac{N}{A}F_{2}^{\mathrm{n},A}$$

- This is important now that we allow flavour freedom for quarks
- To reduce experimental uncertainties & sensitivity to free-proton PDFs:
 - LHC pPb data included as forward-to-backward ratios

$$R_{\rm FB} = \frac{\mathrm{d}\sigma(\eta > 0)}{\mathrm{d}\sigma(\eta < 0)}$$

 \blacksquare νPb and $\bar{\nu} Pb$ DIS data included as normalized cross sections

$$\frac{d\tilde{\sigma}_{i,\mathrm{exp}}^{\nu,\overline{\nu}}}{dxdy} \equiv \frac{d\sigma_{i,\mathrm{exp}}^{\nu,\overline{\nu}}}{dxdy} \Big/ \sigma_{\mathrm{exp}}^{\nu,\overline{\nu}}(E=E_i)$$

We propagate correlated systematic uncertainties to the normalized cross sections

[EPJ C77 no.3, 163]

Look-up tables for LHC observables

- To include the LHC observables in our fit at the NLO level, a fast method to calculate the cross sections "on the fly" is needed
 - → Use look-up tables in EPPS16

 Pre-calculate values σ^{pPb}_{j,k} such that during the fit the observable values are obtained with

$$\sigma^{\mathrm{pPb}} = \sum_{j,k} \sigma^{\mathrm{pPb}}_{j,k} R^{\mathrm{Pb}}_j(x_{k-1} < x < x_k)$$

→ No K-factors needed!

Uncertainty analysis in EPPS16

... but due to presence of some non-quadratic components, the uncertainties are computed separately for the upward and downward directions

$$\left(\delta X^{\pm}\right)^{2} = \sum_{i} \left[\max_{\min} \left\{ X\left(\delta z_{i}^{+}\right) - X_{0}, X\left(\delta z_{i}^{-}\right) - X_{0}, 0\right\} \right]^{2}$$

• δz_i^{\pm} are defined such that they correspond to fixed increase $\Delta \chi^2$ in the χ^2_{global} function

10/30

11/30

Introduction to nPDFs

EPPS16 details

nPDF comparison

*l*A DIS vs. EPPS16 (sample plots)

Bulk of the data, good fit obtained

pA DY vs. EPPS16

Bulk of the data, good fit obtained

νA DIS vs. EPPS16

- \blacksquare Familiar pattern of antishadowing + EMC effect
- Important for constraining the flavour separation

$\pi A DY vs. EPPS16$

■ Also sensitive to the flavour separation [Phys.Lett. B7687-11], but has less constraining power than vA DIS

Z production vs. EPPS16

- \blacksquare Good agreement, data support small-x net nuclear shadowing
- Obtainable constraints limited by low statistics

W production vs. EPPS16

- Good agreement, data support small-*x* net nuclear shadowing
- More data needed for better constraints

CMS dijets + PHENIX π production vs. EPPS16

■ Data support gluon antishadowing + EMC effect

- PHENIX data were included already in EPS09, but with a weight
 - EPPS16: no weights → More realistic error estimates

The effect of including dijet and neutrino data

EPPS16 nuclear modifications for 208 Pb at $Q^2=1.69~{ m GeV}^2$ [EPJ C77 no.3, 163]

Total uncertainties shown as blue bands, individual error sets in green

■ Total uncertainties shown as blue bands, individual error sets in green

EPPS16 nuclear modifications for 208 Pb at $Q^2 = 10000 \text{ GeV}^2$ [EPJ C77 no.3, 163]

Total uncertainties shown as blue bands, individual error sets in green

Why are the quark uncertainties so large?

- There is a subtle interplay with isospin
- For example, we can write

$$f_{u_{\rm V}}^{A} = \left(R_{u_{\rm V}+d_{\rm V}}^{A} - \frac{A - 2Z}{A}R_{u_{\rm V}-d_{\rm V}}^{A}\right)\frac{f_{u_{\rm V}}^{p} + f_{d_{\rm V}}^{p}}{2}$$

$$f_{d_{\rm V}}^A = \left(R_{u_{\rm V}+d_{\rm V}}^A + \frac{A - 2Z}{A} R_{u_{\rm V}-d_{\rm V}}^A \right) \frac{f_{u_{\rm V}}^p + f_{d_{\rm V}}^p}{2}$$

where

$$R_{u_{\rm V}+d_{\rm V}}^{A} = \frac{f_{u_{\rm V}}^{p/A} + f_{d_{\rm V}}^{p/A}}{f_{u_{\rm V}}^{p} + f_{d_{\rm V}}^{p}}$$
$$R_{u_{\rm V}-d_{\rm V}}^{A} = \frac{f_{u_{\rm V}}^{p/A} - f_{d_{\rm V}}^{p/A}}{f_{u_{\rm V}}^{p} + f_{d_{\rm V}}^{p}}$$

and the neutron excess $\frac{A-2Z}{A}\approx 0.2$ for Pb

→ Need high-precision data on non-isoscalar nuclei to constrain the difference

Comparison between EPS09 and EPPS16: W asymmetry [EPJ C77 no.3, 163]

- Example of an observable where the flavour dependence plays a role
- CMS measurement suggested some deviation from EPS09 prediction in the backward direction
- This deviation is now accommodated by the larger uncertainties (flavour freedom) of EPPS16
- These data are not included in the EPPS16 analysis since they are predominantly sensitive to free proton PDFs

Comparison between EPS09, DSSZ and EPPS16

- No flavour freedom in EPS09 nor DSSZ
 - \rightarrow Compare the averages

$$\begin{split} R_{\rm V}^{\rm Pb} &\equiv \frac{u_{\rm V}^{\rm p/Pb} + d_{\rm V}^{\rm p/Pb}}{u_{\rm V}^{\rm p} + d_{\rm V}^{\rm p}} \\ R_{\rm S}^{\rm Pb} &\equiv \frac{\overline{u}^{\rm p/Pb} + \overline{d}^{\rm p/Pb} + \overline{s}^{\rm p/Pb}}{\overline{u}^{\rm p} + \overline{d}^{\rm p} + \overline{s}^{\rm p}} \end{split}$$

- All three appear consistent (except DSSZ large-*x* valence quarks)
- EPPS16 sea quark uncertainties larger due to more degrees of freedom (flavour dependence)
- EPS09 gluon uncertainties smaller due to artificial weight for PHENIX data (no gluon modifications in DSSZ due to including nuclear effects in FFs)
- EPPS16 error bands are larger but less biased

Comparison between nCTEQ15 and EPPS16

[EPJ C77 no.3, 163]

- Asymmetric valence modifications in nCTEQ15 possibly due to isospin-symmetric DIS data + no vA DIS
- EPPS16 error bands are typically larger but less biased

Comparison between nCTEQ15, DSSZ and EPPS16: CMS dijets

- These data were used as input in EPPS16
- nCTEQ15 has large uncertainties due to not having these data in the fit
- DSSZ + CT14 not compatible with these data

CMS dijets

- \blacksquare Direct dijet $R_{\rm pPb}$ now possible with the new pp baseline measurement
- Preliminary data published a year ago [CMS-PAS-HIN-16-003]
- Sensitive to gluons in a wide x range roughly from 0.8 to 10^{-3}

Open heavy flavour production

- Finalized D^0 data recently published by LHCb [LHCB-PAPER-2017-015]
- PDF uncertainties significantly larger than the experimental uncertainties
- \blacksquare Forward rapidities sensitive to gluons at very small x down to $\sim 10^{-5}$

- I have given an introduction to nuclear PDFs
- Most important recent developments (in EPPS16):
 - CMS dijets → new constraints for mid/high-*x* gluons
 - Neutrino DIS data

- → $R^A_{liv}(x, Q^2_0) \sim R^A_{dv}(x, Q^2_0)$
- Full flavour dependence \rightarrow less biased but larger uncertainties
- A consistent fit for wide variety of observables and kinematic range from Q = 1.3 GeV up to the EW scale can be achieved
 - \rightarrow Supports collinear factorization and universality of nPDFs
- We look forward to more high-precision data from LHC pPb (and from the future colliders)