Multiplet Recombination in Large N CFT and Holography

Himanshu Raj SISSA and INFN-Sezione di Trieste, Italy

CortonaGGI2016, "New Frontiers in Theoretical Physics"
based on work with V. Bashmakov, M. Bertolini and L. Di Pietro arXiv: 1603.00387 (JHEP)

What is Multiplet recombination?

Example 1: $\lambda \phi^{4}$ theory in $4-\epsilon \operatorname{dim}$

- For $\lambda=0$, the spectrum of primary operators contains $\phi, \phi^{2}, \phi^{3}, \ldots$ Since ϕ is free, multiplet of ϕ is short

$$
\square \phi=0
$$

- In the Wilson-Fisher fixed point, the spectrum of primary operator diminishes. ϕ^{3} becomes a descendant of ϕ through the coupling λ

$$
\square \phi=\frac{\lambda_{*}}{3!} \phi^{3}
$$

- ϕ acquires an anomalous dimension: $\gamma_{\phi}=\frac{1}{108} \epsilon^{2}$
- The conformal multiplets of ϕ and ϕ^{3} merge into a single long multiplet at the Wilson-Fisher fixed point [Rychkov,Tan, 2015]

Example 2: $\mathcal{N}=4$ SYM

- At zero gauge coupling, the theory contains an infinite tower of HS conserved currents
- For $g \neq 0$, all the higher spin currents are broken

$$
\partial^{i_{1}} J_{i_{1}, i_{2}, \ldots, i_{s}}=g \mathcal{X}_{i_{2}, \ldots i_{s}}
$$

- They all acquire anomalous dimension proportional to the gauge coupling
- The superconformal multiplets of $J_{i_{1}, \ldots i_{s}}$ and $\mathcal{X}_{i_{2}, \ldots i_{s}}$ merge

Example 2: $\mathcal{N}=4$ SYM

- At zero gauge coupling, the theory contains an infinite tower of HS conserved currents
- For $g \neq 0$, all the higher spin currents are broken

$$
\partial^{i_{1}} J_{i_{1}, i_{2}, \ldots, i_{s}}=g \mathcal{X}_{i_{2}, \ldots i_{s}}
$$

- They all acquire anomalous dimension proportional to the gauge coupling
- The superconformal multiplets of $J_{i_{1}, \ldots i_{s}}$ and $\mathcal{X}_{i_{2}, \ldots i_{s}}$ merge
- This phenomenon admits a holographic dual description in terms of Higgs mechanism for the infinite tower of HS gauge fields [Beisert, Bianchi, Morales, Samtleben, Heslop, Riccioni, 2003, 2004]

Multiplet Recombination

Consider two CFTs \mathcal{P}_{0} and \mathcal{P}_{1} which are assumed to be connected by either

- Relevant deformation (RG flow)
- Exactly marginal deformation (on a Conformal Manifold)

$$
\underset{\text { rt multiplets) }}{\mathcal{P}_{0}} \stackrel{\lambda}{\longrightarrow}{\underset{\text { (long multiplets) }}{\mathcal{P}_{1}}}^{\stackrel{1}{2}}
$$

Multiplet Recombination

Consider two CFTs \mathcal{P}_{0} and \mathcal{P}_{1} which are assumed to be connected by either

- Relevant deformation (RG flow)
- Exactly marginal deformation (on a Conformal Manifold)

$$
\underset{\text { (short multiplets) }}{\mathcal{P}_{0}} \xrightarrow{\lambda} \underset{\text { (long multiplets) }}{\mathcal{P}_{1}}
$$

In this talk, we will focus on scalar multiplet recombination triggered by a relevant double trace deformation in a CFT having a large N expansion parameter and address the problem from AdS/CFT perspective.

Multiplet Recombination

Consider two CFTs \mathcal{P}_{0} and \mathcal{P}_{1} which are assumed to be connected by either

- Relevant deformation (RG flow)
- Exactly marginal deformation (on a Conformal Manifold)

$$
\underset{\text { (short multiplets) }}{\mathcal{P}_{0}} \xrightarrow{\lambda} \underset{\text { (long multiplets) }}{\mathcal{P}_{1}}
$$

In this talk, we will focus on scalar multiplet recombination triggered by a relevant double trace deformation in a CFT having a large N expansion parameter and address the problem from AdS/CFT perspective.

Motivation: Scalar counterpart of Higgs mechanism in AdS!

Field theory analysis at large N

Double-Trace flow

Double-trace deformation of a large N CFT

$$
\int d^{d} x f O_{1} O_{2}, \quad \frac{d}{2}-1 \leq \Delta_{1}<\Delta_{2}<\frac{d}{2}
$$

Double-Trace flow

Double-trace deformation of a large N CFT

$$
\int d^{d} x f O_{1} O_{2}, \quad \frac{d}{2}-1 \leq \Delta_{1}<\Delta_{2}<\frac{d}{2}
$$

Exactly solvable in the large N limit in auxiliary fields σ_{1} and σ_{2} : $\sigma_{1}=f O_{2}, \quad \sigma_{2}=f O_{1}$. Effective action for $\sigma_{1,2}$ at large N :

$$
-\frac{1}{2} \int\left(\sigma_{1}(k) G_{1}(k) \sigma_{1}(-k)+\sigma_{2}(k) G_{2}(k) \sigma_{2}(-k)+\frac{2}{f} \sigma_{1}(k) \sigma_{2}(-k)\right)
$$

Double-Trace flow

Double-trace deformation of a large N CFT

$$
\int d^{d} x f O_{1} O_{2}, \quad \frac{d}{2}-1 \leq \Delta_{1}<\Delta_{2}<\frac{d}{2}
$$

Exactly solvable in the large N limit in auxiliary fields σ_{1} and σ_{2} : $\sigma_{1}=f O_{2}, \quad \sigma_{2}=f O_{1}$. Effective action for $\sigma_{1,2}$ at large N :

$$
-\frac{1}{2} \int\left(\sigma_{1}(k) G_{1}(k) \sigma_{1}(-k)+\sigma_{2}(k) G_{2}(k) \sigma_{2}(-k)+\frac{2}{f} \sigma_{1}(k) \sigma_{2}(-k)\right)
$$

where $G_{i}(k) \propto k^{2 \Delta_{i}-d}$

Double-Trace flow

Double-trace deformation of a large N CFT

$$
\int d^{d} x f O_{1} O_{2}, \quad \frac{d}{2}-1 \leq \Delta_{1}<\Delta_{2}<\frac{d}{2}
$$

Exactly solvable in the large N limit in auxiliary fields σ_{1} and σ_{2} : $\sigma_{1}=f O_{2}, \quad \sigma_{2}=f O_{1}$. Effective action for $\sigma_{1,2}$ at large N :

$$
-\frac{1}{2} \int\left(\sigma_{1}(k) G_{1}(k) \sigma_{1}(-k)+\sigma_{2}(k) G_{2}(k) \sigma_{2}(-k)+\frac{2}{f} \sigma_{1}(k) \sigma_{2}(-k)\right)
$$

where $G_{i}(k) \propto k^{2 \Delta_{i}-d}$

- σ_{1} and σ_{2} have IR correlators corresponding to operators with scaling dimension $d-\Delta_{1}$ and $d-\Delta_{2}$, respectively.

Double-Trace flow

Double-trace deformation of a large N CFT

$$
\int d^{d} x f O_{1} O_{2}, \quad \frac{d}{2}-1 \leq \Delta_{1}<\Delta_{2}<\frac{d}{2}
$$

Exactly solvable in the large N limit in auxiliary fields σ_{1} and σ_{2} : $\sigma_{1}=f O_{2}, \quad \sigma_{2}=f O_{1}$. Effective action for $\sigma_{1,2}$ at large N :

$$
-\frac{1}{2} \int\left(\sigma_{1}(k) G_{1}(k) \sigma_{1}(-k)+\sigma_{2}(k) G_{2}(k) \sigma_{2}(-k)+\frac{2}{f} \sigma_{1}(k) \sigma_{2}(-k)\right)
$$

where $G_{i}(k) \propto k^{2 \Delta_{i}-d}$

- σ_{1} and σ_{2} have IR correlators corresponding to operators with scaling dimension $d-\Delta_{1}$ and $d-\Delta_{2}$, respectively.
- No multiplet recombination.

Multiplet recombination: $\Delta_{1}=\frac{d}{2}-1$

Set $\Delta_{1}=\frac{d}{2}-1$. The effective action is:

$$
-\frac{1}{2} \int\left(\sigma_{1}(k) \frac{1}{k^{2}} \sigma_{1}(-k)+\sigma_{2}(k) G_{2}(k) \sigma_{2}(-k)+\frac{2}{f} \sigma_{1}(k) \sigma_{2}(-k)\right)
$$

Multiplet recombination: $\Delta_{1}=\frac{d}{2}-1$

Set $\Delta_{1}=\frac{d}{2}-1$. The effective action is:
$-\frac{1}{2} \int\left(\sigma_{1}(k) \frac{1}{k^{2}} \sigma_{1}(-k)+\sigma_{2}(k) G_{2}(k) \sigma_{2}(-k)+\frac{2}{f} \sigma_{1}(k) \sigma_{2}(-k)\right)$
After diagonalization it follows that:

Multiplet recombination: $\Delta_{1}=\frac{d}{2}-1$

Set $\Delta_{1}=\frac{d}{2}-1$. The effective action is:
$-\frac{1}{2} \int\left(\sigma_{1}(k) \frac{1}{k^{2}} \sigma_{1}(-k)+\sigma_{2}(k) G_{2}(k) \sigma_{2}(-k)+\frac{2}{f} \sigma_{1}(k) \sigma_{2}(-k)\right)$
After diagonalization it follows that:

- The dimensions are: $\left[\sigma_{2}\right]=d-\Delta_{2}$ and $\left[\sigma_{1}\right]=d-\Delta_{2}+2$

Multiplet recombination: $\Delta_{1}=\frac{d}{2}-1$

Set $\Delta_{1}=\frac{d}{2}-1$. The effective action is:
$-\frac{1}{2} \int\left(\sigma_{1}(k) \frac{1}{k^{2}} \sigma_{1}(-k)+\sigma_{2}(k) G_{2}(k) \sigma_{2}(-k)+\frac{2}{f} \sigma_{1}(k) \sigma_{2}(-k)\right)$
After diagonalization it follows that:

- The dimensions are: $\left[\sigma_{2}\right]=d-\Delta_{2}$ and $\left[\sigma_{1}\right]=d-\Delta_{2}+2$
- Multiplet Recombination:

$$
\square \sigma_{2}=f \sigma_{1}
$$

Holographic analysis

Holographic double-trace flow

Holographic double-trace flow

- The single trace primary operators $O_{1,2}$ are dual to two scalars $\Phi_{1,2}$ in AdS

Holographic double-trace flow

- The single trace primary operators $O_{1,2}$ are dual to two scalars $\Phi_{1,2}$ in AdS
- Near boundary expansion

$$
\Phi_{i}(z, k) \underset{z \rightarrow 0}{\sim}\left(\Phi_{i}^{-}(k) z^{\Delta_{i}}+\Phi_{i}^{+}(k) z^{d-\Delta_{i}}\right)\left(1+\mathcal{O}\left(z^{2}\right)\right), \quad i=1,2
$$

Holographic double-trace flow

- The single trace primary operators $O_{1,2}$ are dual to two scalars $\Phi_{1,2}$ in AdS
- Near boundary expansion

$$
\Phi_{i}(z, k) \underset{z \rightarrow 0}{\sim}\left(\Phi_{i}^{-}(k) z^{\Delta_{i}}+\Phi_{i}^{+}(k) z^{d-\Delta_{i}}\right)\left(1+\mathcal{O}\left(z^{2}\right)\right), \quad i=1,2
$$

- The relevant double trace deformation $\int d^{d} x f O_{1} O_{2}$ is implemented by imposing the following boundary condition [Witten, 2001]

$$
\begin{aligned}
& J_{1}(k) \equiv\left(d-2 \Delta_{1}\right) \Phi_{1}^{+}(k)+f \Phi_{2}^{-}(k) \\
& J_{2}(k) \equiv\left(d-2 \Delta_{2}\right) \Phi_{2}^{+}(k)+f \Phi_{1}^{-}(k)
\end{aligned}
$$

Holographic double-trace flow

- The single trace primary operators $O_{1,2}$ are dual to two scalars $\Phi_{1,2}$ in AdS
- Near boundary expansion

$$
\Phi_{i}(z, k) \underset{z \rightarrow 0}{\sim}\left(\Phi_{i}^{-}(k) z^{\Delta_{i}}+\Phi_{i}^{+}(k) z^{d-\Delta_{i}}\right)\left(1+\mathcal{O}\left(z^{2}\right)\right), \quad i=1,2
$$

- The relevant double trace deformation $\int d^{d} x f O_{1} O_{2}$ is implemented by imposing the following boundary condition [Witten, 2001]

$$
\begin{aligned}
& J_{1}(k) \equiv\left(d-2 \Delta_{1}\right) \Phi_{1}^{+}(k)+f \Phi_{2}^{-}(k) \\
& J_{2}(k) \equiv\left(d-2 \Delta_{2}\right) \Phi_{2}^{+}(k)+f \Phi_{1}^{-}(k)
\end{aligned}
$$

- The bulk geometry is still AdS (at least classically)

Holographic double-trace flow

Holographic double-trace flow

- The renormalized on-shell boundary action consistent with the boundary conditions

$$
S=\frac{1}{2} \int\left(\left(d-2 \Delta_{1}\right) \Phi_{1}^{+} \Phi_{1}^{-}+\left(d-2 \Delta_{2}\right) \Phi_{2}^{+} \Phi_{2}^{-}+2 f \Phi_{1}^{-} \Phi_{2}^{-}\right)
$$

Holographic double-trace flow

- The renormalized on-shell boundary action consistent with the boundary conditions

$$
S=\frac{1}{2} \int\left(\left(d-2 \Delta_{1}\right) \Phi_{1}^{+} \Phi_{1}^{-}+\left(d-2 \Delta_{2}\right) \Phi_{2}^{+} \Phi_{2}^{-}+2 f \Phi_{1}^{-} \Phi_{2}^{-}\right)
$$

- In AdS there is non-local relation between the Φ_{i}^{+}and Φ_{i}^{-} modes

$$
\Phi^{-}[J(k)]=G_{i}(k)(d-2 \Delta) \Phi^{+}(k)
$$

where

$$
G_{i}(k)=-\frac{1}{2} \frac{\Gamma\left(\frac{d}{2}-\Delta_{i}\right)}{\Gamma\left(1-\frac{d}{2}+\Delta_{i}\right)}\left(\frac{k}{2}\right)^{2 \Delta_{i}-d}
$$

Holographic double-trace flow

- The renormalized on-shell boundary action consistent with the boundary conditions

$$
S=\frac{1}{2} \int\left(\left(d-2 \Delta_{1}\right) \Phi_{1}^{+} \Phi_{1}^{-}+\left(d-2 \Delta_{2}\right) \Phi_{2}^{+} \Phi_{2}^{-}+2 f \Phi_{1}^{-} \Phi_{2}^{-}\right)
$$

- In AdS there is non-local relation between the Φ_{i}^{+}and Φ_{i}^{-} modes

$$
\Phi^{-}[J(k)]=G_{i}(k)(d-2 \Delta) \Phi^{+}(k)
$$

where

$$
G_{i}(k)=-\frac{1}{2} \frac{\Gamma\left(\frac{d}{2}-\Delta_{i}\right)}{\Gamma\left(1-\frac{d}{2}+\Delta_{i}\right)}\left(\frac{k}{2}\right)^{2 \Delta_{i}-d}
$$

- Solve for $\left(\Phi_{1}^{-}, \Phi_{2}^{-}, \Phi_{1}^{+}, \Phi_{2}^{+}\right)$in terms of $\left(J_{1}, J_{2}\right) \rightarrow$ on-shell action explicitly in terms of the sources

Holographic double-trace flow

On-shell action

$$
\begin{aligned}
S\left[J_{1}, J_{2}\right]=\frac{1}{2} \int \frac{d^{d} k}{(2 \pi)^{d}} & \left(J_{1}(k) \frac{G_{1}}{1-f^{2} G_{1} G_{2}} J_{1}(-k)+J_{2}(k) \frac{G_{2}}{1-f^{2} G_{1} G_{2}} J_{2}(-k)\right. \\
& \left.-2 J_{1}(k) \frac{f G_{1} G_{2}}{1-f^{2} G_{1} G_{2}} J_{2}(-k)\right)
\end{aligned}
$$

Holographic double-trace flow

On-shell action

$$
\begin{aligned}
S\left[J_{1}, J_{2}\right]=\frac{1}{2} \int \frac{d^{d} k}{(2 \pi)^{d}} & \left(J_{1}(k) \frac{G_{1}}{1-f^{2} G_{1} G_{2}} J_{1}(-k)+J_{2}(k) \frac{G_{2}}{1-f^{2} G_{1} G_{2}} J_{2}(-k)\right. \\
& \left.-2 J_{1}(k) \frac{f G_{1} G_{2}}{1-f^{2} G_{1} G_{2}} J_{2}(-k)\right)
\end{aligned}
$$

This action for the sources J_{1}, J_{2} is in exact agreement with the effective action for the fields σ_{1}, σ_{2} obtained from the field theory analysis.

Holographic double-trace flow

On-shell action

$$
\begin{aligned}
S\left[J_{1}, J_{2}\right]=\frac{1}{2} \int \frac{d^{d} k}{(2 \pi)^{d}} & \left(J_{1}(k) \frac{G_{1}}{1-f^{2} G_{1} G_{2}} J_{1}(-k)+J_{2}(k) \frac{G_{2}}{1-f^{2} G_{1} G_{2}} J_{2}(-k)\right. \\
& \left.-2 J_{1}(k) \frac{f G_{1} G_{2}}{1-f^{2} G_{1} G_{2}} J_{2}(-k)\right)
\end{aligned}
$$

This action for the sources J_{1}, J_{2} is in exact agreement with the effective action for the fields σ_{1}, σ_{2} obtained from the field theory analysis.

No multiplet recombination yet!

Singleton Limit: $\Delta_{1} \rightarrow \frac{d}{2}-1$

Caveat: Unlike in the FT analysis we cannot simply substitute $\Delta_{1}=\frac{d}{2}-1$ in the on-shell action because the kernel vanishes

$$
G_{1}(k) \underset{\eta \rightarrow 0}{\rightarrow}-\frac{2 \eta}{k^{2}}, \quad \Delta_{1}-\frac{d}{2}+1 \equiv \eta
$$

Singleton Limit: $\Delta_{1} \rightarrow \frac{d}{2}-1$

Caveat: Unlike in the FT analysis we cannot simply substitute $\Delta_{1}=\frac{d}{2}-1$ in the on-shell action because the kernel vanishes

$$
G_{1}(k) \underset{\eta \rightarrow 0}{\rightarrow}-\frac{2 \eta}{k^{2}}, \quad \Delta_{1}-\frac{d}{2}+1 \equiv \eta
$$

Consider a scalar in AdS, dual to operator of dim $\frac{d}{2}-1<\Delta<\frac{d}{2}$. The on-shell action is

$$
S[J]=\frac{1}{2} \int J(k) G(k) J(-k) \underset{\eta \rightarrow 0}{\rightarrow}-\frac{1}{2} \int J(k) \frac{2 \eta}{k^{2}} J(-k)
$$

Singleton Limit: $\Delta_{1} \rightarrow \frac{d}{2}-1$

Caveat: Unlike in the FT analysis we cannot simply substitute $\Delta_{1}=\frac{d}{2}-1$ in the on-shell action because the kernel vanishes

$$
G_{1}(k) \underset{\eta \rightarrow 0}{\longrightarrow}-\frac{2 \eta}{k^{2}}, \quad \Delta_{1}-\frac{d}{2}+1 \equiv \eta
$$

Consider a scalar in AdS, dual to operator of dim $\frac{d}{2}-1<\Delta<\frac{d}{2}$. The on-shell action is

$$
S[J]=\frac{1}{2} \int J(k) G(k) J(-k) \underset{\eta \rightarrow 0}{\rightarrow}-\frac{1}{2} \int J(k) \frac{2 \eta}{k^{2}} J(-k)
$$

We need to rescale the source as $J(k)=\frac{1}{\sqrt{2 \eta}} \hat{J}(k)$, keeping $\hat{J}(k)$ finite in the limit. The resulting action is non-vanishing and gives the two point function of a free scalar.

Holographic multiplet recombination

On-shell action (after rescalings)

$$
\begin{aligned}
S=\frac{1}{2} \int & \left(\hat{J}_{1}(k) \frac{-k^{-2}}{1+\hat{f}^{2} k^{-2} G_{2}} \hat{J}_{1}(-k)+J_{2}(k) \frac{G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right. \\
& \left.+2 \hat{J}_{1}(k) \frac{\hat{f} k^{-2} G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right) ; \quad \hat{J}_{1}=\sqrt{2 \eta} J_{1}, \hat{f}=\sqrt{2 \eta} f
\end{aligned}
$$

Holographic multiplet recombination

On-shell action (after rescalings)

$$
\begin{aligned}
S=\frac{1}{2} \int & \left(\hat{J}_{1}(k) \frac{-k^{-2}}{1+\hat{f}^{2} k^{-2} G_{2}} \hat{J}_{1}(-k)+J_{2}(k) \frac{G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right. \\
& \left.+2 \hat{J}_{1}(k) \frac{\hat{f} k^{-2} G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right) ; \quad \hat{J}_{1}=\sqrt{2 \eta} J_{1}, \hat{f}=\sqrt{2 \eta} f
\end{aligned}
$$

Leading non-local pieces gives rise to the IR correlators (recall: J_{i} is the source of O_{i} and IR/UV map $\sigma_{2}=\hat{f} O_{1}, \sigma_{1}=\hat{f} O_{2}$)

Holographic multiplet recombination

On-shell action (after rescalings)

$$
\begin{aligned}
S=\frac{1}{2} \int & \left(\hat{J}_{1}(k) \frac{-k^{-2}}{1+\hat{f}^{2} k^{-2} G_{2}} \hat{J}_{1}(-k)+J_{2}(k) \frac{G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right. \\
& \left.+2 \hat{J}_{1}(k) \frac{\hat{f} k^{-2} G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right) ; \quad \hat{J}_{1}=\sqrt{2 \eta} J_{1}, \hat{f}=\sqrt{2 \eta} f
\end{aligned}
$$

Leading non-local pieces gives rise to the IR correlators (recall: J_{i} is the source of O_{i} and IR/UV map $\sigma_{2}=\hat{f} O_{1}, \sigma_{1}=\hat{f} O_{2}$)

$$
\left\langle\sigma_{2}(k) \sigma_{2}(-k)\right\rangle=k^{d-2 \Delta_{2}},\left\langle\sigma_{1}(k) \sigma_{1}(-k)\right\rangle=\frac{1}{\hat{f}^{2}} k^{d-2 \Delta_{2}+4}
$$

Holographic multiplet recombination

On-shell action (after rescalings)

$$
\begin{aligned}
S=\frac{1}{2} \int & \left(\hat{J}_{1}(k) \frac{-k^{-2}}{1+\hat{f}^{2} k^{-2} G_{2}} \hat{J}_{1}(-k)+J_{2}(k) \frac{G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right. \\
& \left.+2 \hat{J}_{1}(k) \frac{\hat{f} k^{-2} G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right) ; \quad \hat{J}_{1}=\sqrt{2 \eta} J_{1}, \hat{f}=\sqrt{2 \eta} f
\end{aligned}
$$

Leading non-local pieces gives rise to the IR correlators (recall: J_{i} is the source of O_{i} and IR/UV map $\sigma_{2}=\hat{f} O_{1}, \sigma_{1}=\hat{f} O_{2}$)

$$
\begin{gathered}
\left\langle\sigma_{2}(k) \sigma_{2}(-k)\right\rangle=k^{d-2 \Delta_{2}},\left\langle\sigma_{1}(k) \sigma_{1}(-k)\right\rangle=\frac{1}{\hat{f}^{2}} k^{d-2 \Delta_{2}+4} \\
\left\langle\sigma_{1}(k) \sigma_{2}(-k)\right\rangle=\frac{1}{\hat{f}} k^{d-2 \Delta_{2}+2}
\end{gathered}
$$

Holographic multiplet recombination

On-shell action (after rescalings)

$$
\begin{aligned}
S=\frac{1}{2} \int & \left(\hat{J}_{1}(k) \frac{-k^{-2}}{1+\hat{f}^{2} k^{-2} G_{2}} \hat{J}_{1}(-k)+J_{2}(k) \frac{G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right. \\
& \left.+2 \hat{J}_{1}(k) \frac{\hat{f} k^{-2} G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right) ; \quad \hat{J}_{1}=\sqrt{2 \eta} J_{1}, \hat{f}=\sqrt{2 \eta} f
\end{aligned}
$$

Leading non-local pieces gives rise to the IR correlators (recall: J_{i} is the source of O_{i} and IR/UV map $\sigma_{2}=\hat{f} O_{1}, \sigma_{1}=\hat{f} O_{2}$)

$$
\begin{gathered}
\left\langle\sigma_{2}(k) \sigma_{2}(-k)\right\rangle=k^{d-2 \Delta_{2}},\left\langle\sigma_{1}(k) \sigma_{1}(-k)\right\rangle=\frac{1}{\hat{f}^{2}} k^{d-2 \Delta_{2}+4} \\
\left\langle\sigma_{1}(k) \sigma_{2}(-k)\right\rangle=\frac{1}{\hat{f}} k^{d-2 \Delta_{2}+2}
\end{gathered}
$$

Implication: $\left[\sigma_{2}\right]=d-\Delta_{2},\left[\sigma_{1}\right]=d-\Delta_{2}+2$ and $\sigma_{1}=-\frac{1}{\hat{f}} \square \sigma_{2}$

Holographic multiplet recombination

On-shell action (after rescalings)

$$
\begin{aligned}
S=\frac{1}{2} \int & \left(\hat{J}_{1}(k) \frac{-k^{-2}}{1+\hat{f}^{2} k^{-2} G_{2}} \hat{J}_{1}(-k)+J_{2}(k) \frac{G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right. \\
& \left.+2 \hat{J}_{1}(k) \frac{\hat{f} k^{-2} G_{2}}{1+\hat{f}^{2} k^{-2} G_{2}} J_{2}(-k)\right) ; \quad \hat{J}_{1}=\sqrt{2 \eta} J_{1}, \hat{f}=\sqrt{2 \eta} f
\end{aligned}
$$

Leading non-local pieces gives rise to the IR correlators (recall: J_{i} is the source of O_{i} and IR/UV map $\sigma_{2}=\hat{f} O_{1}, \sigma_{1}=\hat{f} O_{2}$)

$$
\begin{gathered}
\left\langle\sigma_{2}(k) \sigma_{2}(-k)\right\rangle=k^{d-2 \Delta_{2}},\left\langle\sigma_{1}(k) \sigma_{1}(-k)\right\rangle=\frac{1}{\hat{f}^{2}} k^{d-2 \Delta_{2}+4} \\
\left\langle\sigma_{1}(k) \sigma_{2}(-k)\right\rangle=\frac{1}{\hat{f}} k^{d-2 \Delta_{2}+2}
\end{gathered}
$$

Implication: $\left[\sigma_{2}\right]=d-\Delta_{2},\left[\sigma_{1}\right]=d-\Delta_{2}+2$ and $\sigma_{1}=-\frac{1}{\hat{f}} \square \sigma_{2}$
Multiplet recombination!

Conclusion / Outlook

Conclusion

- We have provided the AdS/CFT description of scalar multiplet recombination as a special limit of a double trace holographic RG flow
- Scalar analogue of Higgs mechanism for higher spin fields in AdS

Conclusion / Outlook

Conclusion

- We have provided the AdS/CFT description of scalar multiplet recombination as a special limit of a double trace holographic RG flow
- Scalar analogue of Higgs mechanism for higher spin fields in AdS
Outlook
- Fermionic multiplet recombination and eventually to a supersymmetric setup
- An explicit example of multiplet recombination involving antisymmetric tensor operators (as opposed to symmetric tensor operators that appear in theories with HS symmetry)

Conclusion / Outlook

Conclusion

- We have provided the AdS/CFT description of scalar multiplet recombination as a special limit of a double trace holographic RG flow
- Scalar analogue of Higgs mechanism for higher spin fields in AdS
Outlook
- Fermionic multiplet recombination and eventually to a supersymmetric setup
- An explicit example of multiplet recombination involving antisymmetric tensor operators (as opposed to symmetric tensor operators that appear in theories with HS symmetry)

Thank you for your attention!

