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What is Multiplet recombination?



Example 1: λφ4 theory in 4− ε dim

I For λ = 0, the spectrum of primary operators contains
φ, φ2, φ3, .... Since φ is free, multiplet of φ is short

�φ = 0

I In the Wilson-Fisher fixed point, the spectrum of primary
operator diminishes. φ3 becomes a descendant of φ
through the coupling λ

�φ =
λ∗
3!
φ3

I φ acquires an anomalous dimension: γφ = 1
108ε

2

I The conformal multiplets of φ and φ3 merge into a single
long multiplet at the Wilson-Fisher fixed point
[Rychkov,Tan, 2015]



Example 2: N = 4 SYM

I At zero gauge coupling, the theory contains an infinite
tower of HS conserved currents

I For g 6= 0, all the higher spin currents are broken

∂i1Ji1,i2,...,is = gXi2,...is

I They all acquire anomalous dimension proportional to the
gauge coupling

I The superconformal multiplets of Ji1,...is and Xi2,...is merge

I This phenomenon admits a holographic dual description in
terms of Higgs mechanism for the infinite tower of HS
gauge fields [Beisert, Bianchi, Morales, Samtleben,
Heslop, Riccioni, 2003, 2004]
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Multiplet Recombination

Consider two CFTs P0 and P1 which are assumed to be
connected by either
I Relevant deformation (RG flow)
I Exactly marginal deformation (on a Conformal Manifold)

P0
(short multiplets)

λ−→ P1
(long multiplets)

In this talk, we will focus on scalar multiplet recombination
triggered by a relevant double trace deformation in a CFT
having a large N expansion parameter and address the
problem from AdS/CFT perspective.

Motivation: Scalar counterpart of Higgs mechanism in AdS!
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Field theory analysis at large N



Double-Trace flow

Double-trace deformation of a large N CFT∫
ddx f O1O2,

d

2
− 1 ≤ ∆1 < ∆2 <

d

2

Exactly solvable in the large N limit in auxiliary fields σ1 and σ2:
σ1 = fO2, σ2 = fO1. Effective action for σ1,2 at large N:

−1

2

∫ (
σ1(k)G1(k)σ1(−k) + σ2(k)G2(k)σ2(−k) +

2

f
σ1(k)σ2(−k)

)
where Gi(k) ∝ k2∆i−d

I σ1 and σ2 have IR correlators corresponding to operators
with scaling dimension d−∆1 and d−∆2, respectively.

I No multiplet recombination.
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Multiplet recombination: ∆1 = d
2 − 1

Set ∆1 = d
2 − 1. The effective action is:

−1

2

∫ (
σ1(k)

1

k2
σ1(−k) + σ2(k)G2(k)σ2(−k) +

2

f
σ1(k)σ2(−k)

)

After diagonalization it follows that:
I The dimensions are: [σ2] = d−∆2 and [σ1] = d−∆2 + 2

I Multiplet Recombination:

�σ2 = fσ1
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Holographic analysis



Holographic double-trace flow

I The single trace primary operators O1,2 are dual to two
scalars Φ1,2 in AdS

I Near boundary expansion

Φi(z, k) ∼
z→0

(Φ−i (k)z∆i + Φ+
i (k)zd−∆i)(1 +O(z2)), i = 1, 2

I The relevant double trace deformation
∫
ddx f O1O2 is

implemented by imposing the following boundary condition
[Witten, 2001]

J1(k) ≡ (d− 2∆1)Φ+
1 (k) + fΦ−2 (k)

J2(k) ≡ (d− 2∆2)Φ+
2 (k) + fΦ−1 (k)

I The bulk geometry is still AdS (at least classically)
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Holographic double-trace flow

I The renormalized on-shell boundary action consistent with
the boundary conditions

S =
1

2

∫ (
(d− 2∆1)Φ+

1 Φ−1 + (d− 2∆2)Φ+
2 Φ−2 + 2fΦ−1 Φ−2

)
I In AdS there is non-local relation between the Φ+

i and Φ−i
modes

Φ−[J(k)] = Gi(k)(d− 2∆)Φ+(k)

where

Gi(k) = −1

2

Γ(d2 −∆i)

Γ(1− d
2 + ∆i)

(
k

2

)2∆i−d

I Solve for (Φ−1 ,Φ
−
2 ,Φ

+
1 ,Φ

+
2 ) in terms of (J1, J2)→ on-shell

action explicitly in terms of the sources
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Holographic double-trace flow

On-shell action

S[J1, J2] =
1

2

∫
ddk

(2π)d

(
J1(k)

G1

1− f2G1G2
J1(−k) + J2(k)

G2

1− f2G1G2
J2(−k)

−2J1(k)
fG1G2

1− f2G1G2
J2(−k)

)

This action for the sources J1, J2 is in exact agreement with the
effective action for the fields σ1, σ2 obtained from the field
theory analysis.

No multiplet recombination yet!
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Singleton Limit: ∆1 → d
2 − 1

Caveat: Unlike in the FT analysis we cannot simply substitute
∆1 = d

2 − 1 in the on-shell action because the kernel vanishes

G1(k) →
η→0
−2η

k2
, ∆1 −

d

2
+ 1 ≡ η

Consider a scalar in AdS, dual to operator of dim
d
2 − 1 < ∆ < d

2 . The on-shell action is

S[J ] =
1

2

∫
J(k)G(k)J(−k) →

η→0
−1

2

∫
J(k)

2η

k2
J(−k)

We need to rescale the source as J(k) = 1√
2η
Ĵ(k), keeping

Ĵ(k) finite in the limit. The resulting action is non-vanishing and
gives the two point function of a free scalar.
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Holographic multiplet recombination

On-shell action (after rescalings)

S =
1

2

∫ (
Ĵ1(k)

−k−2

1 + f̂2k−2G2

Ĵ1(−k) + J2(k)
G2

1 + f̂2k−2G2

J2(−k)

+2Ĵ1(k)
f̂k−2G2

1 + f̂2k−2G2

J2(−k)

)
; Ĵ1 =

√
2η J1, f̂ =

√
2ηf

Leading non-local pieces gives rise to the IR correlators (recall:
Ji is the source of Oi and IR/UV map σ2 = f̂O1 , σ1 = f̂O2)

〈σ2(k)σ2(−k)〉 = kd−2∆2 , 〈σ1(k)σ1(−k)〉 =
1

f̂2
kd−2∆2+4

〈σ1(k)σ2(−k)〉 =
1

f̂
kd−2∆2+2

Implication: [σ2] = d−∆2, [σ1] = d−∆2 + 2 and σ1 = − 1
f̂
�σ2

Multiplet recombination!
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1 + f̂2k−2G2

J2(−k)

+2Ĵ1(k)
f̂k−2G2

1 + f̂2k−2G2

J2(−k)

)
; Ĵ1 =

√
2η J1, f̂ =

√
2ηf

Leading non-local pieces gives rise to the IR correlators (recall:
Ji is the source of Oi and IR/UV map σ2 = f̂O1 , σ1 = f̂O2)

〈σ2(k)σ2(−k)〉 = kd−2∆2 , 〈σ1(k)σ1(−k)〉 =
1

f̂2
kd−2∆2+4

〈σ1(k)σ2(−k)〉 =
1

f̂
kd−2∆2+2

Implication: [σ2] = d−∆2, [σ1] = d−∆2 + 2 and σ1 = − 1
f̂
�σ2

Multiplet recombination!



Conclusion / Outlook

Conclusion
I We have provided the AdS/CFT description of scalar

multiplet recombination as a special limit of a double trace
holographic RG flow

I Scalar analogue of Higgs mechanism for higher spin fields
in AdS

Outlook
I Fermionic multiplet recombination and eventually to a

supersymmetric setup
I An explicit example of multiplet recombination involving

antisymmetric tensor operators (as opposed to symmetric
tensor operators that appear in theories with HS symmetry)
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