The high power target for LENOS Project at Laboratori Nazionali di Legnaro of INFN-LNL

Pierfrancesco Mastinu¹, G. Martín-Hernández², J. Praena³, G. Prete¹, R. Capote⁵, M. Pignatari⁴ And F. Gramegna¹

¹ Laboratori Nazionali di Legnaro, INFN, Italia.
² CEADEN, La Habana, Cuba.
³ Universidad de Sevilla, CNA, Spain.
⁴ Keele University, Keele, Staffordshire, ST5 5BG, UK
⁵ International Atomic Energy Agency Nuclear Data SectionDivision of Physical and Chemical Sciences Department of Nuclear Sciences and Applications A-1400 Vienna, Austria

- Neutron Irradiation Facility. RFQ/Cyclotron.
- Time-of-Flight Facility. CN accelerator

Main characteristic:

Based on a method for the production of different neutron spectra which avoid the use of moderators.

Applications:

- Nuclear Astrophysics.
- Validation of Evaluated Data.
- Nuclear data.
- Medical physics applications.
- Radiation damage tests (SEE).
- Material science physics (neutron imaging).

Our main motivation: Astrophysics

Nucleosynthesis of elements beyond Fe (B=8.8 MeV/A) are produced in stars by successive (n, γ) and β -decays.

The stellar velocity neutron spectrum is a Maxwell-Boltzmann distribution. Depending on the stellar site and the evolutionary stage of the star the most important kT are 8, 30 or 90keV, being 30 keV the standard temperature of reference. (*)

Neutron Activation: validation of nuclear data.

Neutron integral experiments play a central role in validation of evaluated nuclear data [1][2][3].

Evaluated spectrum averaged cross-section in Maxwellian spectrum are being used for the validation of evaluated reactor dosimetry files [4].

M.B. Chadwick *et al.* Nuclear Data Sheets 102, 2887 (2012).
U. Fischer *et al.*, Fusion Engineering and Design 663,51 (2000)
R.A. Forrest *et al.*, UKAEA FUS 467, 2001.
International Reactor Dosimetry and Fusion File, IAEA, 2012.

For instance, experimental MACS can be used for the validation of nuclear data libraries in the 10-120 keV range that is important in the description of fast neutron systems (e.g. Gen-IV nuclear reactors).

The integral measurements with our method at CNA (and LNL) are of interest for the IAEA and it has been mentioned as one of the Actions in few IAEA Reports:

INDC (NDS)-0583. International Neutron Cross-Sections Standards: extending and updating. 2010.INDC (NDS)-0639. Testing and Improving the International Reactor Dosimetry and Fusion File (IRDFF).2013.

INDC (NDS)-0641. Toward a New Evaluation of Neutron Standards. 2013.

LENOS' method concept

In order to produce a MB neutron energy spectra or other desired spectra, we developed a new method:

Shaping the proton beam to shape the neutron beam energy spectra to a desired distribution

This method avoid the use of moderators and improve the neutron flux at sample position. (*)

[*] P.F. Mastinu *et al.,* NIM A, 601 (2009) 333-338

Example of production of stellar or maxwellian neutron spectra. Low power accelerator.

G. Martin-Hernandez et al., App. Rad. Iso. 70 (2012).

Setup for low power, CN at LNL-INFN. (7 MV Van Der Graaf accelerator)

- Proton energy shaper: Al or Pb foil (70-125 um)
- Li metal target
- Low mass water cooled target

- Tunable proton energy
- Tunable viewing angle

Since minor corrections are needed, MACS can be directly measured by neutron activation. Our first measurement was the MACS of ¹⁸¹Ta(n, γ) at kT=30 keV. (*)

Expected Neutron Flux = 5.10¹⁰ n/s.cm²

[*] J. Praena, P.F. Mastinu et al., P. Ast. Soc. Aust., 26, 225 (2009).

We decide to shape the proton beam by using the energy straggling and stopping power of charge particles when interact with a thin foil of material. General method: **multilayer energy shaper.**

LENOS foil material requirements :

Low atomic number and low density, high melting point, high emissivity, high thermal conductivity, high tensile strength.

For lower power we can use a monolayer Aluminium foil.

Graphite disk 70 µm thickness. Power to be dissipated about 50 kW, Mainly by radiation. Working temperature <2000°C Construction material Al Ergal alloy

LENOS Layout: Energy Shaper (3/3)

Prototype almost completed

In order to dissipate so high specific power (about 3 kW/cm²) a new generation of heat cooling device have to be implemented and developed.

The target must satisfy some constrains:

- Low mass (to avoid neutron backscattering and reduce radioactivity)
- Small thickness, in order to maximize the neutron flux (keeping the measuring sample in touch with the neutron producing surface) and reduce neutron spectra perturbation

• Low cost and easy to fabricate procedure, in order to replace the target often even during a measurements

Microchannels + liquid metal cooling medium

LENOS: Lithium target. Design. (2/7)

LENOS: Lithium target. Analytical results (3/7)

WATER			 GALINSTAN			
parameters	description	value	parameters	description	value	
с _Р [J/kg K]	fluid specific heat	4181,7	с _Р [J/kg K]	fluid specific heat	365	
λει [W/m K]	fluid thermal conductivity	0,6069	λει [W/m K]	fluid thermal conductivity	36	
λcu [W/m K]	target thermal conductivity	401	λcu [W/m K]	target thermal conductivity	401	
v [Pa s]	fluid viscosity dinamic	0,0008899	v [Pa s]	fluid viscosity dinamic	0,00221	
ρ [kg/m^3]	fluid density	997	ρ [kg/m^3]	fluid density	6363	
d [m]	diameter of the microchannels	0,00055	d [m]	diameter of the microchannels	0,00055	
Pr	Prandtl number	6,131644142	Pr	Prandtl number	0,022406944	
v [m/s]	velocity in the microchannels	15	v [m/s]	velocity in the microchannels	15	
Re	Reynolds number	9242,89246	Re	Reynolds number	23753,28054	
Nu	Nusselt number	73,77145321	Nu	Nusselt number	8,85821701	
α [W/m^2 K]	convection coefficient	81403,44537	α [W/m^2 K]	convection coefficient	579810,5679	
Tav,fl [ºC]	fluid average temperature	23	Tav,fl [ºC]	fluid average temperature	50	
n	number of microchannels	13	n	number of microchannels	13	
q [W/m^2]	beam specific thermal power	4420970,641	q [W/m^2]	beam specific thermal power	19231222,29	
q [W/cm^2]	beam specific thermal power	884,1941283	q [W/cm^2]	beam specific thermal power	3846,244458	
q [W]	beam thermal power on target	1000	q [W/]	beam thermal power on target	4350	
Ts [ºC]		77,30937992	Ts [ºC]		83,16811275	
Tbeam [ºC]	temperature on beam surface	124,6909261	Tbeam [ºC]	temperature on beam surface	117,338302	
Tin [ºC]	fluid inlet temperature	20	Tin [ºC]	fluid inlet temperature	20	
Q [m^3/s]	fluid volumetric flow	4,63287E-05	Q [m^3/s]	fluid volumetric flow	4,63287E-05	
Tus [ºC]	fluid outlet temperature	25,17728529	Tus [ºC]	fluid outlet temperature	60,42821788	
	lithium thickness [m]	0,00004		lithium thickness [m]	0,00004	
Ts(Li) [ºC]		126,7787516	Ts(Li) [ºC]		126,4203432	
λιi [W/m K]	gold thermal conductivity	84,7	λιi [W/m K]	gold thermal conductivity	84,7	

Different GaInSn eutectic alloys are commercially available with different thermophysical propierties TABLE I. Summary of the thermophysical properties of liquid metals used in heat transfer applications and water for comparison. Experiments conducted as part of this study unlized a commercially available $(q^{2}hirr²)^{2n/2}$ allow, The immediate thermophysical property data for this alloy available to the authors includes a melting point of 8 °C and a density of 6500 kg/m³ (Ref. 15).

	Hg ³	$Ga^{63}In^{30}Sn^{126}$	$Na^{27}K^{7\beta k}$	SnPbInBi ^k	Water ^a
Density (kg/m ³)	13 564.0 [¢]	6363.2 ⁴	868.2	9230*	998.0 ⁸
Melting point (°C)	-38.87	10.5	-11	58	0
Heat capacity (J/kg/K)	139.068	365.813	982.1°	209*	4181#
Kinematic viscosity (10-6 m ² /s)	0.114 8 ^e	0.348 09 ^e	1.05 ^e	4.04 ^e	0.960*
Electrical conductivity (S/µm)	1.044 52 ^e	3.307 37 ^e	2.878 ^e	1.28°	5.5×10 ⁻¹
Thermal conductivity (W/m/K)	8.716 9 ^e	39 ^d	21.8°	10 ^d	0.606*
Prandtl Number ()f	0.024.8	0.020 8	0.0411	0.7793	6.62

- Conservative calculations shows that ~3.5 kW/cm² could be dissipated. T_{Li} <152 °C. Melting point of Lithium is 182°C.
- Li (30 μ m) on a backing of Cu (1.5mm). g
- Microchannels, GALINSTAN (gallium, indium e stannum $Ga_{68}In_{21}Sn_{11}$), alloy at T=15 °C

LENOS: Lithium target. ANSYS results (5/7)

SnInGa alloy cooled

Pressure

INFN

exotic beams for science

 P^{in} =2.5bar ΔP =2.5 bar

Velocity

µ-channel fluid velocity =5 m/s

Temperature Li 40 µm Mass flow=55 l/h Inlet fluid temperature=15°C

beam Power=1000W Flat beam profile

Melting point Li = 182°C

LENOS: Lithium target. Comparison (6/7)

Analytical

Good agreement for water, less for liquid metal

WATER				GALINSTAN		
parameters	description	value		parameters	description	value
cp [J/kg K]	fluid specific heat	4181,7		с _Р [J/kg K]	fluid specific heat	365
λει [W/m K]	fluid thermal conductivity	0,6069		λει [W/m K]	fluid thermal conductivity	36
λcu [W/m K]	target thermal conductivity	401		λcu [W/m K]	target thermal conductivity	401
v [Pa s]	fluid viscosity dinamic	0,0008899		v [Pa s]	fluid viscosity dinamic 0,00221	
ρ [kg/m^3]	fluid density	997		ρ [kg/m^3]	fluid density 6363	
d [m]	diameter of the microchannels	0,00055		d [m]	diameter of the microchannels	0,00055
Pr	Prandtl number	6,131644142		Pr	Prandtl number	0,022406944
v [m/s]	velocity in the microchannels	15		v [m/s]	velocity in the microchannels	5
Re	Reynolds number	9242,89246		Re	Reynolds number	7917,760181
Nu	Nusselt number	73,77145321		Nu	Nusselt number	7,305505188
α [W/m^2 K]	convection coefficient	81403,44537		α [W/m^2 K]	convection coefficient	478178,5214
Tav,fl [ºC]	fluid average temperature	23		Tav,fl [ºC]	fluid average temperature	80
n	number of microchannels	13		n	number of microchannels	13
q [W/m^2]	beam specific thermal power	4420970,641		q [W/m^2]	beam specific thermal power	11052426,6
q [W/cm^2]	beam specific thermal power	884,1941283		q [W/cm^2]	beam specific thermal power	2210,485321
q [W]	beam thermal power on target	1000		q [W/]	beam thermal power on target	2500
Ts [≌C]		77,30937992		Ts [ºC]		103,113599
Tbeam [ºC]	temperature on beam surface	124,6909261		Tbeam [ºC]	temperature on beam surface	122,7516388
Tin [ºC]	fluid inlet temperature	20		Tin [ºC]	fluid inlet temperature	20
Q [m^3/s]	fluid volumetric flow	4,63287E-05		Q [m^3/s]	fluid volumetric flow	1,54429E-05
Tus [ºC]	fluid outlet temperature	25,17728529		Tus [ºC]	fluid outlet temperature	89,70382393
	lithium thickness [m]	0,00004			lithium thickness [m]	0,00004
Ts(Li) [ºC]		126,7787516		Ts(Li) [ºC]		127,9712027
λιι [W/m K]	gold thermal conductivity	84,7		λιι [W/m K]	gold thermal conductivity	84,7

ANSYS

But...

- Micro-channels are not small «tubes»
- CFX package has problems also to reproduce the fluidoDynamics inside the microchannels, even the velocity-pressure drop relation
- Internal characteristics of the channels hard to measure
- > So we (trived) moved fast to hardware tests
- ➢ We have continuosly developed our target in order to improve the performances: the new developments are PATENT PENDING by INFN and will be ready soon.

LENOS: Lithium target. Tests (7/7)

Many targets has been successfully manufactured at LNL

Indium has been used as a threshold thermometer

TIG test: Measured power transfer: 3.4 kW Not reached the Indium melting point

Preliminary Tests done depositing a thin Indium layer instead of Lithium. Melting point of Indium 157°C. Thermal conductivity of Indium is 81.6 W/($m\cdot K$). Thermal conductivity of Lithium is 84.7 W/($m\cdot K$).

Heat spot

Oxyd-acethilene test: Measured power transfer =1.5 kW Not reached the Indium melting point

Lithium target testing: e-Beam

Target (copper backing) was irradiated by electron beam in 10⁻⁴ mbar

I=0-74 A V=60 kV P=ηV·I =0-4.4 kW

Maximum transfered Power 13 kW/cm²

Temperature mapped with thermocamera.Transfered power measured by the water temperature and mass flow. Beam spot 0.5 and 1.2 cm diameter

[*] P.F. Mastinu et al., Physics Procedia 26 (2012) 261-273

Large uncertainty in surface temperature determination due to uncertaincy in the emissivity. Estimated value 0.23< \$\varepsilon < 0.84

At home

Lenos Target Assembly

Lithium Target Assembly final version in CF

LENOS facility TOF: CN 7 MV Van der Graaf.

Pulsed beam:

- 3 MHz rf pulsing system on the high voltage terminal.
- 1 ns pulse width.
- Only 3 MHz operating: no adequate for neutron TOF measurement in the energy range of interest.

We have developed, installed and testing a switching system able to provide 1 ns pulse at 1 MHz, 625 kHz.... (*) low Rep rate available now for TOF measurements at CN accelerator of LNL

LENOS TARGET APPLICATION: LARAMED, THE MEDICAL RADIOISOTOPE PRODUCTION FACILITY@LNL

Among the several radionuclides of copper, ⁶⁴Cu is the most commonly used for basic science investigations and clinical PET, and its production and use have now been reported in the United States, Europe, and Japan. Several companies, including MDSNordion (Canada), ACOM(Italy), Trace Life Sciences (United States), IBA Molecular (United States and Europe), and IsoTrace (United States) are supplying ⁶⁴Cu for use in preparation of radiopharmaceuticals.

- PET
- CANCER RADIOTHERAPY

⁶²Zn/⁶²Cu generator can be used instead of the more common ¹⁸F for PET. Problems related to the time distribution of the short lived (109.8 min) ¹⁸F can be reduced. It can also be used instead of ^{99m}Tc.

• PET

LARAMED: ⁶⁴Cu/⁶²Zn tandem production, single

target

Sublimation effects not taken into account

Beam spot size 1.2 cm Total power to be dissipated 10,2 kW

Proton energy distribution impinging on Ni

THANK YOU FOR YOUR ATTENTION ! And see you in Legnaro

Union of Compact Accelerator driven Neutron Source

<u>Laboratori Nazionali di Legnaro</u> <u>13-15 May 2015</u>

- Neutron facility (irradiation, ? TOF ?)
- Based on a method for the production of different neutron spectra which avoid the use of moderators
 - Nuclear Astrophysics.
 - Validation of Evaluated Data for energy and non-energy applications.
 - Medical physics applications.
 - Radiation damage tests (SEE)
 - Material science physics (neutron imaging)