

Unidentified Gamma-ray Sources and e-ASTROGAM

Josep M. Paredes

Institute of Cosmos Sciences
Universitat de Barcelona

e-ASTROGAM workshop: the extreme Universe

28 February to 2 March 2017

Padova

Italy

The EGRET gamma-ray sky

E > 100 MeV

The COMPTEL gamma-ray sky

E: 0.75-30 MeV

Type of Source	Number of Sources	Comments	
Spin-Down Pulsars:	3	Crab, Vela, PSR B1509-58.	
Stellar Black Hole Candidates:	2	Cyg X-1, Nova Persei 1992 (GRO J0422+32).	
Supernova Remnants: (Continuum Emission)	1	Crab nebula.	
Active Galactic Nuclei:	10	CTA 102, 3C 454.3, PKS 0528+134, GRO J 0516-609, PKS 0208-512, 3C 273, PKS 1222+216, 3C 279, Cen A, PKS 1622-297.	
Unidentified Sources: $\bullet b < 10^{\circ}$ $\bullet b > 10^{\circ}$	4 5	GRO J1823—12, GRO J2228+61 (2CG 106+1.5), GRO J0241+6119 (2CG 135+01), Carina/Vela region (extended). GRO J1753+57 (extended), GRO J1040+48, GRO J1214+06, HVC complexes M and A area (extended), HVC complex C (extended).	
Gamma-Ray Line Sources: • 1.809 MeV (²⁶ Al) • 1.157 MeV (⁴⁴ Ti) • 0847 and 1.238 MeV (⁵⁶ Co) • 2.223 MeV (<i>n</i> -capture)	3 2 1 1	Cygnus region (extended), Vela region (extended, may include RX J0852-4621), Carina region. Cas A, RX J0852-4621 (GRO J0852-4642). SN 1991T. GRO J0317-853.	
Gamma-Ray Burst Sources: (within COMPTEL field-of- up to Phase IV/Cycle-5)	31	Location error radii vary from 0.34° to 2.79° (mean error radius: view 1.13°).	

Unidentified sources published after the 1st COMPTEL Source Catalog:

• GRO J1411-64: I/b: 311.5/-2.5 Zhang et al., AA 396, 923 (2002)

GRO J1035-55: I/b: 285.4/1.1
 Zhang/Collmar, Ap&SSS 307, 23Z (2007)

• 3EG J0520+2556: detection by COMPTEL at low energies in search for EGRET unidentified sources in the COMPTEL data
Zhang et al., AA 421, 983 (2004)

Schönfelder et al. 2000, A&ASS 143, 145

The VHE gamma-ray sky

E > 100 GeV

http://tevcat.uchicago.edu/

Cluster BIN BL Lac (class unclear) WR

3EG J1824-1514 GRO J1823-12

0.0

Orbital modulation

[10⁻⁶ ph cm⁻² s⁻¹]
0.0 cm⁻² s⁻¹]
4 cm cm⁻¹⁰ cm⁻² s⁻¹]
4 cm cm⁻² s⁻¹]
4 cm cm⁻² s⁻¹]
4 cm cm⁻¹⁰ cm⁻² s⁻¹]
4 cm cm⁻² s⁻¹]
5 cm cm⁻²

H.E.S.S. Aharonian et al. 2006, A&A 460, 743

Fermi (> 100 MeV) Abdo et al. 2009, ApJ 706, L56

COMPTEL Collmar & Zhang 2014, A&A 565, A38

First unidentified TeV source: TeV J2032+415

E > 100 GeV

HEGRA

Cyg OB2 Field: HEGRA CT-System

Aharonian et al. 2002, A&A 393, L37

MAGIC

Albert et al. 2008, ApJ 675, L25

Aliu et al. 2014, ApJ 783,16

No flux variability over 3 yr, compatible with HEGRA

TeV J2032+415: Multiwavelength approach

GMRT, 45 cm

VLA. 6 cm

Paredes et al. 2007, ApJ 654, L135

- ♦ Fermi: GeV pulsar LAT PSR J2032+4127 Abdo et al. 2009, Sci 325, 840
- ♦ GBT: radio pulsar Camilo et al. 2009, ApJ 705,1 same position and period GeV pulsar same position than GMRT#5 Be star
- ♦ Binary nature, P~20-30yr Lyne et al. 2015, MNRAS 451, 581
 - Josep M. Paredes e-ASTROGAM workshop Padova
- Gamma-ray pulsar: hard to explain the full extended y-ray emission
- Emission originated by more than one source?

MGRO J2019+37: extended VHE source

VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR).

VER J2019+368 is a bright extended (~1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2–104.

Aliu et al. 2014 ApJ 788, 78

Abeysekara et al. 2017 arXiv:1702.02992 THE 2HWC HAWC OBSERVATORY GAMMA RAY CATALOG

HESS Galactic Plane Survey: unidentified sources

★ 8 VHE gamma-ray sources ★ Angular sizes 3-18' ★ Spectrum: power-law (2.1-2.5) No clear counterpart in lower-energy wavebands. If confirmed → a new VHE class?

Thirty-one TeV sources (11 unid., 10 PWN, 2 binaries, 7 SNR, 1 Blazar) have no counterparts in 3FGL Acero et al. 2015, ApJSS 218, 23

NVSS (grey scale)

First AGILE GRID Catalogue

E > 100 MeV

FERMI LAT THIRD SOURCE CATALOG (3FGL)

100 MeV to 300 GeV

Acero et al. 2015, ApJSS 218, 23

L	AT 3FGL Sou	rce Classes			
Description	Identi	Identified		Associated	
	Designator	Number	Designator	Number	
Pulsar, identified by	PSR	143			
pulsations	PS	SR			
Pulsar, no pulsations seen	/4	O7\	psr	24	
in LAT yet		<u>67) </u>			
Pulsar wind nebula	PWN	9	pwn	2	
Supernova remnant	SNR	12	snr	11	
Supernova remnant/pul- sar wind nebula		•••	spp	49	
Globular cluster	GLC	0	glc	15	
High-mass binary	HMB	3	hmb	0	
Binary	BIN	1	bin	0	
Nova	NOV	1	nov	0	
Star-forming region	SFR	1	sfr	0	
Compact steep spectrum quasar	CSS	0	css	1	
BL Lac type of blazar	BLL	18	ы	642	
FSRQ type of blazar	FSRQ	38	fsrq	446	
Non-blazar active galaxy	AGN	0	agn	3	
Radio galaxy	RDG	3	rdg	12	
Seyfert galaxy	SEY A	GN 0	sey	1	
Blazar candidate of	BCU	5	bcu	568	
uncertain type	(1	771)			
Normal galaxy (or part)	GAL	2	gal	1	
Starburst galaxy	SBG	0	sbg	4	
Narrow-line Seyfert 1	NLSY1	2	nlsy1	3	
Soft-spectrum radio	SSRQ	0	ssrq	3	
quasar					
Total		238		1785	
Unassociated				1010	

Note

The designation "spp" indicates potential association with SNR or PWN (see Table 7). Designations shown in capital letters are firm identifications; lowercase letters indicate associations. In the case of AGNs, many of the associations have high confidence. Among the pulsars, those with names beginning with LAT were discovered with the LAT.

FERMI LAT THIRD SOURCE CATALOG (3FGL)

100 MeV to 300 GeV

Association: close positional correspondence

Identification: correlated variability at other wavelengths or characterization

of the 3FGL source by its angular extent

4 yr, 3033 sources

238 identified sources 1785 associated sources 1010 unassociated

> $lbl > 5^{\circ}$, 675 sources $lbl < 5^{\circ}$, 335 sources

Galactic latitude b of unassociated sources

All associated sources

All active galaxy source classes

The likely nature of 3FGL unassociated sources

AGNs and PSR: The two main classes of gamma-ray sources Roughly distinguished by their **timing** and spectral properties

AGNs: Variability on month-long timescales Pulsars: Tend to be non-variable (on long timescales)

- The majority of unassociated γ-ray sources do not show significant γ-ray variability and could be considered steady γ-ray emitters
- ❖ Diffuse Galactic emission: Some fraction of the unassociated sources at low latitudes may be local emission maxima of diffuse Galactic emission that are not adequately modeled Nolan et al 2012, ApJSS 199, 31

The likely nature of 3FGL unassociated sources

AGNs and PSR: The two main classes of gamma-ray sources Roughly distinguished by their timing and **spectral** properties

AGNs: Energy spectra breaks more softly than pulsars in the LAT energy band

Pulsars: Spectra with more curvature, PL + exponential cutoff at a few GeV

The likely nature of 3FGL unassociated sources

■ Source density extrapolation Ace

Acero et al. 2015, ApJSS 218, 23

1010 unassociated

Ibl $> 5^{\circ}$, 675 sources Ibl $< 5^{\circ}$, 335 sources ~ 100 AGN 110 PSR 103 SNR 21 other

☐ Artificial Neural Networks algorithms Saz Parkinson et al. 2016, ApJ 820, 8

1008 unassociated sources:

334 (33%) being classified as likely PSR

559 (55%) as likely AGN

■ Radio follow-up on all unassociated gamma-ray sources from the 3FGL catalog ATCA + VLA, 4-0 – 10.0 GHz

Schizel et al. 2017, arXiv:1702.07036

2097 radio candidates

♦142 new AGN associations (VLBI follow-up)

♦245 empty fields:

unassociated γ-ray sources with not a single compact radio source above 2mJy within 3σ of their γ-ray localization 39% of them are located away from the GP

36 extended radio sources that are candidates for association with a corresponding γ-ray object:
 19 of which are most likely SNR or HII regions
 16 17 could be radio galaxies.

UNID AGN

3FGL Unassociated sources and e-ASTROGAM

3FGL Unassociated sources and e-ASTROGAM

335 unassociated sources at lbl < 5°

0.1 – 0.3 GeV 166 (50%)

0.3 - 1.0 GeV 276 (82%)

1.0 - 3.0 GeV 194 (58%)

675 unassociated sources at lbl > 5°

0.1 – 0.3 GeV 26 (4%)

0.3 – 1.0 GeV 124 (18%)

1.0 - 3.0 GeV 5 (0.7%)

3FGL Unassociated sources and e-ASTROGAM

The majority of the sources (2415 out of 3033) from the 3FGL Catalog of GeV-band sources have power-law spectra (at energies larger than 100 MeV) steeper than E⁻², implying that their peak energy output is below 100 MeV

Most powerful AGNs peak in the MeV region

PSR B1509-58

γ-ray pulsars typically have spectral peaks in the GeV energy band (Thompson 2004).

Some exceptions: PSR B1509-58 energy spectrum peaks at 2.6 ± 0.8 MeV (Ge Chen et al 2016)

Summary

	Detected	Unidentified	
EGRET	271	168	62%
COMPTEL 1st cat	32	9	28%
AGILE 1st cat	47	8	17%
FERMI 3FGL	3033	1010	33%
CHERENKOV	204	44	22%

e-ASTROGAM will detect:

82% of the 3FGL unassociated at lbl $< 5^{\circ} \rightarrow 276$ sources 18% of the 3FGL unassociated at lbl $> 5^{\circ} \rightarrow 124$ sources

- e-ASTROGAM will study their low energies simultaneously and will contribute to associate them to AGN, pulsars, other
- e-ASTROGAM will detect all (11) COMPTEL unidentified sources
- e-ASTROGAM will detect new unidentified sources

