Topological superconductivity and Majorana edge modes in trionic phases

Giandomenico Palumbo

Institute for Theoretical Physics, University of Utrecht, Institute for Theoretical Physics, University of Amsterdam, Delta Institute for Theoretical Physics

New Frontiers in Theoretical Physics - XXXV Convegno Nazionale di Fisica Teorica, Florence, Italy, May 18, 2016

・ 同 ト ・ ヨ ト ・ ヨ ト

What is a topological phase of matter?

- State of matter beyond Landau's theory
- ► Characterization: topological quantum numbers (*Z*, *Z*₂, etc.)
- Bulk-edge correspondence (gapless edge modes)
- Effective Dirac Hamiltonians in free-fermion models
- Field theories at ground state: Chern-Simons and BF theories
- Topological entanglement entropy with topological order
- ▶ 2+1-D non-Abelian phases: non-Abelian anyons
- ► 3+1-D topological phases: fractional statistics of loops

伺い イヨト イヨト ニヨ

Topological Insulators and Superconductors

Symmetry					Spatial Dimension d								
Class	T	C	S	1	2	3	4	5	6	7	8	•••	
Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}		
AIII	0	0	1	Z	0	Z	0	Z	0	\mathbb{Z}	0		
AI	1	0	0	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z		
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	•••	
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	•••	
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	•••	
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}		
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0		
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0		
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0		

Protected gapless edge modes: Dirac in TIs and Majorana in TSCs

What is a trionic phase?

(A. Rapp, et al., Phys. Rev. B 77, 144520 (2008))

 $Color \ superfluidity/superconductivity$

So far, there have been no evidences of topological superconductivity in 2D trionic phases.

2D model on the Lieb lattice: Normal state

$$H = \sum_{i} \left[J(a_{i}^{\dagger}b_{i} + b_{i}^{\dagger}c_{i}) + K(a_{i}^{\dagger}b_{i+\hat{x}} + b_{i}^{\dagger}c_{i+\hat{y}}) + Mc_{i}^{\dagger}a_{i} \right] + \text{h.c.},$$

Here, J and K are taken real, while $M = m e^{i\theta}$ is complex.

$$egin{aligned} \mathcal{H} &= \sum_{oldsymbol{p}} \psi^{\dagger}_{oldsymbol{p}} h(oldsymbol{p}) \psi_{oldsymbol{p}}, \ h(oldsymbol{p})
eq h^*(-oldsymbol{p}) \end{aligned}$$

Giandomenico Palumbo Topological superconductivity and Majorana edge modes in tric

Dirac-like cone and flat band

When m = 0, no doubling-fermion problem because of the flat band (Fradkin et al., 1986).

글 🕨 🖌 글

Chern number in semimetals

where $F_{xy} = \partial_x A_y - \partial_y A_x$, with $A_\alpha = \langle n(\boldsymbol{p}) | \frac{\partial}{\partial p_\alpha} | n(\boldsymbol{p}) \rangle$.

(in the picture above, $\nu = 1$ for the lower band with M = 0.5 i)

伺 とう ヨン うちょう

Giandomenico Palumbo Topological superconductivity and Majorana edge modes in tric

★ロ→ ★御→ ★注→ ★注→ 「注

Phase diagram

・ロン ・回 と ・ヨン ・ヨン

3

Chern insulator vs Chern semimetal

- Free-fermion Hamiltonian
- Gapped bulk
- Time-reversal symmetry is broken
- Non-zero Chern number
- Topologically protected gapless edge states
- Topological phase transitions: the gap closes

- Free-fermion Hamiltonian
- Gapless bulk
- Time-reversal symmetry is broken
- Non-zero Chern number
- Topologically protected gapless edge states
- Topological phase transitions: the bands touch each other

Giandomenico Palumbo Topological superconductivity and Majorana edge modes in tric

Duffin-Kemmer-Petiau theory

Dirac Hamiltonian and Clifford algebra

$$H_{eff}^{Dirac} = \sigma_x p_x + \sigma_y p_y + \sigma_0 m,$$

$$\{\sigma_{\mu},\sigma_{\nu}\}=2\eta_{\mu\nu}I$$

DKP Hamiltonian (J = -K)

$$H_{eff}^{DKP} = K \left[\beta^{x}, \beta^{0} \right] p_{x} + K \left[\beta^{y}, \beta^{0} \right] p_{y} + M \beta^{0},$$

$$\beta^{\mu}\beta^{\nu}\beta^{\sigma} + \beta^{\sigma}\beta^{\nu}\beta^{\mu} = \beta^{\mu}\eta^{\nu\sigma} + \beta^{\sigma}\eta^{\nu\mu}$$

the 3 \times 3 β^{μ} matrices satisfy the Duffin-Kemmer-Petiau algebra (Kemmer, 1939).

3

Topological superconductors

- TSCs = Insulator/semimetal + Cooper pairs
- Class D = PH symmetry + TR symmetry broken

Simplest example: 1D Kitaev chain

Nearest-neighbor Copper pairings (Δ_{NN})

In 2D: p-wave superconductors (very hard to simulate in cold atoms)

・ 同 ト ・ ヨ ト ・ ヨ ト …

TSCs on the Lieb lattice

We now consider the spinful (or double layer) Chern semimetal

$$H_{bdG} = \left(egin{array}{cc} H(oldsymbol{p}) & \Delta_C \ \Delta_C^\dagger & -H(-oldsymbol{p})^* \end{array}
ight)$$

In the real space, the Cooper pairings are given by

$$\Delta_{C} = \sum_{i} \left(\Delta_{1} b_{\uparrow i} b_{\downarrow i} + \Delta_{2} a_{\uparrow i} c_{\downarrow i} + \Delta_{3} a_{\uparrow i} b_{\downarrow i} + \Delta_{NN} b_{\uparrow i+1} b_{\downarrow i} \right) + h.c.$$

向下 イヨト イヨト

Majorana edge modes

For J = K = 1, M = 1.5i, $\Delta_1 = 0.6$, $\Delta_2 = 0.2$, $\Delta_3 = 0.2$, $\Delta_{NN} = 0.3$, we get Majorana edge states crossing zero

Giandomenico Palumbo Topological superconductivity and Majorana edge modes in tric

Conclusions and outlook

We have proposed a new lattice model that supports topological superconducting phases.

These phases are characterized by a non-zero Chern number in the bulk and topologically protected gapless Majorana edge modes.

There are several possible extensions of our model:

- ▶ 3D generalization, $\nu_{2D} \rightarrow \nu_{3D}$
- Fractional Topological Superconductors (Fibonacci anyons)
 References:

G. P. and K. Meichanetzidis, Phys. Rev. B 92, 235106 (2015).G. P. and K. Meichanetzidis, "Two-dimensional topological superconductors on the Lieb lattice", in preparation.

(4月) (3日) (3日) 日