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What is a topological phase of matter?

I State of matter beyond Landau’s theory

I Characterization: topological quantum numbers (Z , Z2, etc.)

I Bulk-edge correspondence (gapless edge modes)

I Effective Dirac Hamiltonians in free-fermion models

I Field theories at ground state: Chern-Simons and BF theories

I Topological entanglement entropy with topological order

I 2+1-D non-Abelian phases: non-Abelian anyons

I 3+1-D topological phases: fractional statistics of loops
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Topological Insulators and Superconductors

Protected gapless edge modes: Dirac in TIs and Majorana in TSCs
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What is a trionic phase?

(A. Rapp, et al., Phys. Rev. B 77, 144520 (2008))

Color superfluidity/superconductivity

So far, there have been no evidences of topological
superconductivity in 2D trionic phases.
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2D model on the Lieb lattice: Normal state

H =
∑

i

[
J(a†i bi + b†i ci ) + K (a†i bi+x̂ + b†i ci+ŷ ) + M c†i ai

]
+ h.c.,

Here, J and K are taken real, while M = me iθ is complex.

H =
∑
p
ψ†ph(p)ψp,

h(p) 6= h∗(−p)

Giandomenico Palumbo Topological superconductivity and Majorana edge modes in trionic phases



Dirac-like cone and flat band

When m = 0, no doubling-fermion problem because of the flat
band (Fradkin et al., 1986).
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Chern number in semimetals
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∫
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d2p Fxy ,

where Fxy = ∂xAy − ∂yAx , with Aα = 〈n(p)| ∂∂pα
|n(p)〉.

(in the picture above, ν = 1 for the lower band with M = 0.5 i)
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Phase diagram
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Chern insulator vs Chern semimetal

I Free-fermion
Hamiltonian

I Gapped bulk

I Time-reversal
symmetry is broken

I Non-zero Chern
number

I Topologically
protected gapless
edge states

I Topological phase
transitions: the gap
closes

I Free-fermion
Hamiltonian

I Gapless bulk

I Time-reversal
symmetry is broken

I Non-zero Chern
number

I Topologically
protected gapless
edge states

I Topological phase
transitions: the bands
touch each other
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Duffin-Kemmer-Petiau theory
Dirac Hamiltonian and Clifford algebra

HDirac
eff = σxpx + σypy + σ0m,

{σµ, σν} = 2ηµν I

DKP Hamiltonian (J = −K )

HDKP
eff = K

[
βx , β0

]
px + K

[
βy , β0

]
py + Mβ0,

βµβνβσ + βσβνβµ = βµηνσ + βσηνµ

the 3× 3 βµ matrices satisfy the Duffin-Kemmer-Petiau algebra
(Kemmer, 1939).
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Topological superconductors

I TSCs = Insulator/semimetal + Cooper pairs

I Class D = PH symmetry + TR symmetry broken

Simplest example: 1D Kitaev chain

Nearest-neighbor Copper pairings (∆NN)

In 2D: p-wave superconductors (very hard to simulate in cold
atoms)
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TSCs on the Lieb lattice

We now consider the spinful (or double layer) Chern semimetal

HbdG =

(
H(p) ∆C

∆†C −H(−p)∗

)

In the real space, the Cooper pairings are given by

∆C =
∑

i

(
∆1b↑ib↓i + ∆2a↑i c↓i + ∆3a↑ib↓i + ∆NNb↑i+1b↓i

)
+ h.c .
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Majorana edge modes
For J = K = 1, M = 1.5i , ∆1 = 0.6, ∆2 = 0.2, ∆3 = 0.2,
∆NN = 0.3, we get Majorana edge states crossing zero
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Conclusions and outlook

We have proposed a new lattice model that supports topological
superconducting phases.
These phases are characterized by a non-zero Chern number in the
bulk and topologically protected gapless Majorana edge modes.

There are several possible extensions of our model:

I 3D generalization, ν2D → ν3D

I Fractional Topological Superconductors (Fibonacci anyons)
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