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following some older works with Edward Shuryak



E. Shuryak, M.L.,Phys.Rev.C76 (2007) 021901, D80 (2009) 065026, C84 (2011) 061901:
Generalize NS hydro by introducing ALL order dissipative terms in the gradient
expansion of fluid stress tensor

(VVu) we keep (Vu)?  we neglect

Extract momenta-dependent viscosity function 7(w, q) by matching two-point
correlation functions of the stress tensor with the correlation functions computed
from BH AdS/CFT

We postulated a problem, but at the time failed to solve it completely.

(We have done it now!)

We performed some phenomenological studies of the effects of all-order gradients
on entropy/multiplicity production in HI collisions

Motivation: Experiments (RHIC,LHC) probe systems with finite gradients.
Phenomenologically observed low viscosity is an “effective” viscosity measured at
momentum typical for process in study.

High order gradients are very big in early stages of HI collisions

Small perturbations/correlations on top of global explosion are sensitive to high
gradients. This is where our results are most applicable

Relativistic Navier-Stokes hydrodynamics is non-causal/non-stable.

Causality is supposed to be restored after summation of all orders



Relativistic Hydrodynamics

Energy momentum tensor

(T") = (e + P)u'u’ + Pg" + mI™

u, = —1/+/1— (2, u = [i/V/1— B2

IT"” — tensor of dissipations (ideal fluid: IT*” = 0)

Landau frame choice: u, II"” = 0.

Navier Stokes hydro (expanding up to first order in the velocity gradient)

1 2
II; = —nooij, 7 = (31/33 + 0B — §5ij35> : IT,, =

V. (T = 0 — Navier — Stokes Eqns.



Linearized Hydro to all orders

Shuryak and M. L.: Introduce all order gradient expansion of (T""):

II; = — n[V?, (uV)] Ojj — ¢[VZ, (uV)] LSV

where 75 is a third order tensor structure

1
T = 0,008 — géijazaﬁ

2

In Fourier space: V25w —qg’and (uV) - —iw.

n — n(w,q’); ¢ — ((w,q?)

We keep the nonlinear dispersion to all orders, but

We neglect nonlinear interactions (though some terms could be recovered).



Fluids in a weakly curved 4d background

Most general constitutive relation with weakly (2, ~ u;) curved metric

I, = —nV,u,—CV,V,Vutru®u’Cas+pu*V’ Cravs+EVVCrars—0u*V,R,,,

Clavp R, are the Weyl and Ricci tensors of h .

k(w, ¢%), plw, ¢*), &(w, ¢°), 6(w, ¢*) are Gravitational Susceptibilities of the Fluid.

All GSFs contribute to two-point correlators

GSFs carry info about zero temperature limit (pair production)



Results from the Fluid/Gravity correspondence

Analytical results in the hydrodynamic regime w,q <1 (7T = 1):

1 1
n(w,q’) = 2+(2-In 2)iw——q’— [67r—7r 112 (2—31n2—|—1n )]w2—|---
5 1
C(w,q)zﬁ(5—7r—2ln2)—|—--- Blue terms are new!
1 . 1 3
f<;=2—|—Z(5—|—7T—610g2)zw—|—---, p =2+, §:ln2—§—|—---, QZEC.

R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, JHEP 0804, 100 (2008)

Modified sound dispersion:

Lo tpe—l 3~ 2m2)P— (s T A2 4ln2) gt
— — — 2In - — — n“2—4In
V316! 24\/_ 77983 3 1
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Real parts of the viscosities are decreasing functions of momenta. Oscillations
are consistent with the expectations about the viscosities have infinitely many
complex poles.
Imaginary parts have a clear maximum near w ~ 2, introducing a (new?)
transition scale.
Viscosity vanish at large momenta, which is what is required to restore causality.
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Memory function

I, (t) = — / Tt [2ﬁ(t —t',q") B, (t) + C(t — t, qz)auauf?“ua(t’)]

oo

i
207
o 15F

A(t,q°) = / d—wn(w, q’)e ",
e /271' 1.0f

0.5}

Causality: 7j(t —t') ~ 0(t — t') = *
-0.5"

t ~
I, (t) = / at’ [ii(t — ', )3, () + (b — 1, 03,8, u(t) ]

— O



! GraVity" y starring S. Bhattacharyya, V. E Hubeny, S. Minwalla, M. Rangamani

5d GR with negative cosmological constant: <THW (x) >
0
1 5 :
S = ——— xv—g (R + 12), |
167TGN / 5 ( ) : h
|
Einstein Equations |
~“
1 . .
Envn = Run — EgMNR — 6gun = 0. slowly varying BH horizon

Solution: Boosted Black Brane in asymptotic AdS;

ds®* = —2u,dx"dr — r’f (br) u,u,dx"dx"” + r*P,,dx"dx",

fr)=1—-1/r* and P, =n. +u,u,

Hawking temperature



S. Bhattacharyya, V. E Hubeny, S. Minwalla, M. Rangamani, JHEP 0802:045,2008:

Promote 3; and b into a slowly varying functions of boundary coordinates =“

ds® = —2u,(x*)dx"dr — r*f (b(x*)r) u, (x*)u, (x*)dx"dx"” + r*P,, (x*)dx"dx",

Use gradient expansion of the fields u(x) = ug + 6xVu and b(x) = b 4+ 6xVb
to set up a perturbative procedure

The resulting energy momentum tensor

(T'y = T, + kg + V)L + O[(Vu)?]

— = —, ™m = 2 — log(2)

also obtained in other refs



We do it somewhat differently, linearizing in the velocity amplitude

u,(x%) = (=1, 4i(x%)) + O(€”), b(x") = bg + eb1(x) + O(€?),
”"seed” metric, i.e., a linearized version of the BH metric

seed

— « i 2 « i 4 «
ds’ , = 2drdv—r*f(r)dv’4r’dx’—e [ZBi(X )drdx + ﬁﬁi(x )dvdx + ﬁbl(x )dv2] +0O(€?),

ds® = dsgeecl + dsgorr[ﬁ] gauge fix gy = 0, gy o u,

corr

k 2 . o
ds’ = ¢ (—3h drdv + —dv® 4+ r’hd&” + —jidvdx + 1° oy dx‘de>
r r

h{B], k[B], j[B], «[B] are to be found by solving the Einstein equations.

Boundary cond: no singularities, no modification to AdS asymptotics at » — oo

h<o@), k<o), <o), a;<o@).



Stress tensor from the Holographic Dictionary

We consider a hypersurface X at constant r.

Varr
Vector ny; normal to X: nn = M .
\/gMNVMrVNr
Induced metric vyn on X: YMN = 8MN — MmN

Extrinsic curvature tensor Cy:

1
Kumn = 2 (HA Oa YN + Yva O™ 4+ Yna Om HA) -

The stress tensor for the dual fluid

v
r—o0o

- ~ 1
(T = lm ;B =0t (KL - K sl - 56

where G’ is associated with v,,. The last two terms are counter-terms which
remove divergences near the boundary » = oc.



~

T = —3(1 — 4eby) + — { —6rk + 4r*9p8 — 49j — r*8day; + 18(r® — r)h

+6(r® — r¥)8:h + 2r’6%h + 6r48Vh} :

T0 = [9 [4r4ﬁi — 4(1’4 — 1)j; + r'9,6; — r 9k + (r5 — r)@r}}
—x? (= 0% + 0:05 + "B, Oho — 2*0,0th — 3:°0¢h) b,

Ti) = ———232 [41‘ B — 4r> ji+r ) L Bi — rzaik + (r4 — 1)8r°i]

2r3

. [a%’i — 810j — 10, O — 2010, 0h — 3(x® — r2)8ih] } ,

T = 5(1 — 4eby) + —5J { [—82k (1= rYObona + 28V8j]
_2 [(1 Mk — 20798 + 2r°9j — ok + (r° — r)@rk] + t°9%h
—2r°9%h + 2 [(3 —12rt 4 9r5) h+ (r® — r)ah + (2r — 4r® + 2r9)8rh] }
+§ {—2r |20'948)) — 20y + 'Oy + (r° — r¥)Bpay] — r'G0)h
+ [0k + (1 = r) 0oy + 20" — 1)ADuayu — 20,0y + 0oy |



Approaching the boundary r — oo

1 1
ji — —iwr?’ﬁi — 51‘28185 -+ O (-) ,

r
2 n(w,q%) ((w,q%) 1
aij_><¥_T % g it O\ 5 )

k—>§(r3—|—iwr2>86—|—(’)<i>’

r2

h =0

The dissipative part of the stress tensor

Il = — [ﬂ(w,qz)Gij + C(Waqz)ﬁij]



Einstein equations for the metric corrections

Dynamical equations:

E; = 0: 56h + r&°h = 0.

E,. = 0: 3r’°0;k = 6r*98 + r’* 0,08 — 20j — r 6,0j — r® 8;0;c
E; = 0: —8%j; = (8%B; — 8:0B) + 3rd.Bi — 30,5 + r’0:00u;.
E; = 0:

(I‘7 — I'3)8304ij -+ (5[‘6 — r2)8raij + 2r5c’9v8raij + 31‘48VOéij

2
4pd {82aij — (313k04jk + 00k ik — §5ij3k3104k1> }

2 2
—|—3r4 (8iﬁj + ai/Bi — 5513(95) —|—I‘3(9v (ai,Bj + aj,Bi - 551‘]8/3> = 0.



Holographic RG flow-type equations

jJi and oy; are linear functionals of 3;. They can be uniquely decomposed as

ji — a(waqa I') /Bi + b(waqa r) 818/3

Qh; = 2C(w7q7 I') oij + d(waqar) Tj

The Einstein equations reduce to ordinary diff equations

r@fa — 30,a — qzr?’@ ¢ — 3iwr® — q2r = 0

2 232 _
ro.b — 38b—|——r 8c—§rq8d—r = 0

(r" —r*)d%c + (5r — r))o,c — 2iwr’d,c — rdra + a — iwr’c + 3r* — iwr®

2
2
(r" —r*)82d+ (5r° —r?)8,d — 2iwr’H.d + q?r?’d — 3iwr*d+2b—2rd,b— gr?’c

0

0.



Navier-Stokes equations

Using dynamical Einstein equations, we have constructed an " off-shell” TH"”

Constraint equations

EVV — 0 and Evi = 0
are equivalent to the stress tensor conservation law

8,T" = 0

which determines the temperature and velocity profiles as functions of time,
provided initial configuration is specified.



Conclusions

We have found that all order dissipative terms of a weakly perturbed conformal
fluid are fully accounted for by two viscosity functions 7(w, ¢*) and ¢(w, ¢*)

For a weakly curved background space, there are additional four transport
functions called Gravitational Susceptibilities of the Fluid.

We have derived a closed form linear holographic RG flow-type equations for
the viscosity functions and GSFs.

At large momenta, the effective viscosity is a decreasing function of both
frequency and momentum. The corresponding memory function has support in
the past only, the behavior consistent with causality restoration.



