Standard Model Higgs boson at ATLAS

Elisabeth Petit LAPP, CNRS-IN2P3

FXP

51

Laboratoire d'Annecy-le-Vieux de Physique des Particules

XXVII Rencontres de Physique de la Vallée d'Aoste

La Thuile 28th of February 2013 **EXPERIMENT**

Vertex Cuts: Z direction < 1 cm Rphi < 1 cm

Muon: blue Cells: **, EMC**

- July 2012: discovery of new boson compatible with Higgs boson
- ♦ Not seen for each individual channel yet
- Property measurements
 - mass
 - spin
 - couplings
- ♦ Here: 2011 data (5 fb⁻¹) + 2012 data (13 fb⁻¹)
 - 65% of 2012 data

	expected reco Nsignal	S/B	main backgrounds
ZZ→4I	~10	100%	ZZ, Z+jets, top
YY	~300	1-20%	yy, yj, jj
WW→IvIv	~60	10%	WW, W+jets, top,
ττ	~150	0.3-30%	Z, Z+jets, top
VH→bb	~70	0.3-2%	Wbb, Zbb, top

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

◆ Two same flavour, opposite sign lepton pairs

- well identified and isolated
- $p_T^{-1} > 20-15-10-7/6 \text{ GeV}$
- $50 < m_{12} < 106 \text{ GeV}$
- $17.5 < m_{34} < 115 \text{ GeV for } m_{41} < 145 \text{ GeV}$

m _H = 125 GeV		4µ	2e2µ/2µ2e	4e
7 TeV	E selection	39%	21%	15%
8 TeV	E selection	37%	23%	20%

ATLAS-CONF-2012-169

In 120-130 GeV window (7+8 TeV):

	4μ	2e2µ	2µ2e	4e	total
signal	4.0	2.4	1.7	1.8	9.9
ZZ	2.03	1.02	0.70	0.94	4.7
Z, Zbb, tt	0.36	0.30	1.21	1.72	3.6
observed	8	4	2	4	18

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

- Two well identified and isolated photons
 - $E_T^{\gamma_1} > 40 \text{ GeV}, E_T^{\gamma_2} > 30 \text{ GeV}$
 - γγ purity: 75%
- Events divided in 12 exclusive categories
 - with \neq resolution: 1.4 \rightarrow 2.5 GeV
 - with \neq S/B: 0.014 → 0.204
 - with \neq production modes fractions
 - 9 ggF enriched
 - 1 VBF enriched
 - 2 VH enriched

- Observation confirmed for γγ channel alone!
 - observed: **6.1**σ at 126.5 GeV
 - expected: 3.3 σ

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

- Best fit for mass:
 - 126.6 ± 0.3 (stat) ± 0.7 (syst) GeV
- Best fit signal strength at 126 .6 GeV
 - $\mu = 1.80 \pm 0.30 (stat)^{+0.21}_{-0.15} (syst)^{+0.20}_{-0.14} (theory)$
 - 2.4 σ from SM hypothesis

Signal strength (μ)

– $m_{_{ll}} < 50 \; GeV \; and \; \Delta \phi_{_{ll}} < 1.8$

♦ Divide events in H+0 jet and H+1 jet

ATLAS-CONF-2012-158

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

• Excess of events for $m_{_{\rm H}} < 150 \text{ GeV}$

- For $m_{_{\rm H}} = 125 \text{ GeV}$
 - observed: 2.6o
 - expected: 1.9σ

• Signal strength at 125 GeV: - $\mu = 1.5 \pm 0.6$

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

- Main background: $Z \rightarrow \tau\tau$, "embedded"
 - data $Z \rightarrow \mu \mu$
 - μ replaced by simulated τ
- Lowest and highest S/B:

τlepτhad	H + 0 jet	VBF	
signal	76.3	4.04	
background	18100	38.5	
observed	17334	39	

- 95% CL exclusion at $m_{_{\rm H}} = 125$ GeV:
 - observed: 1.9*SM
 - expected: 1.2*SM
- p_0 at $m_H = 125$ GeV:
 - observed: 1.1σ
 - expected: 1.7σ
- Signal strength at $m_{_{\rm H}} = 125$ GeV:

$$-(\mu = 0.7 \pm 0.7)$$

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

- BR(H \rightarrow bb) = 57.7% at m_H = 125 GeV
 - but only WH, ZH

ATLAS-CONF-2012-161

- Main backgrounds
 - tt
 - W+jets, Z+jets

Lowest and highest S/B:

	1 lepton	0 lepton, 3 jets
	p _T ^w <50 GeV	E_{T}^{miss} > 200 GeV
signal	10.9	1.3
background	3810	42
observed	3821	32

All but di-boson bkg substraction:

E. Petit - XXVII Rencontres de physique

- 95% CL exclusion at $m_{_{\rm H}} = 125$ GeV:
 - observed: 1.8*SM
 - expected: 1.9*SM
- Signal strength at $m_{H} = 125 \text{ GeV}$:

- $\mu = -0.4 \pm 0.7 \text{ (stat)} \pm 0.8 \text{ (syst)}$

ique de la vallée d'Aoste

- Largest local p₀: 7.0σ
 - expected: 5.9 σ

 $\mu = 1.35 \pm 0.19$ (stat) ± 0.15 (syst)

- ♦ Mass from individual channels:
 - $H \rightarrow ZZ^*$: 123.5 ± 0.8 (stat) ± 0.3 (syst) GeV
 - $H \rightarrow \gamma \gamma$: 126.6 ± 0.3 (stat) ± 0.7 (syst) GeV

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

Possible spin value/channel:

	spin 0	spin 1	spin 2
H→VV	v	v	~
ΥY	v	×	 ✓
H→fĪ	 ✓ 	 ✓ 	×

- ◆ For the moment, 0⁺ (SM Higgs), 0⁻, 2⁺ (graviton-like), 2⁻ (pseudo-tensor)
 - 2⁺: minimal couplings, 100% gg fusion
- Use of angular correlations:

- ♦ Compare 0⁺ and 2⁺
- Use of $\cos\theta^*$
 - flat for SM Higgs

0.6

0.7

0.5

- ♦ Events in 123.8-128.6 GeV
 - 199 expected signal

ATLAS-CONF-2012-168

Events / 0.05

200

100

0

0.1

 $L dt = 13 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV}$

Preliminary

0.2

0.3

0.4

0.9

 $|\cos\theta^*|$

0.8

• Bkg substracted:

- Exclusion spin 2⁺ (gg) hypothesis
 - expected: at 97% CL
 - observed: at 91% CL
- Observation compatible with spin 0 (within 0.5σ)

 $|\cos\theta^*|$

- ♦ Compare 0⁺, 0⁻, 2⁺, 2⁻
- ♦ Events in 115-130 GeV

- Use of 5 angles + m_{12} , m_{34}
 - in BDT
 - in Matrix element (MELA) distribution

Z'

 Φ_1

Z

 Z_1

A'

 \mathbf{L}^{\dagger}

D

р

 $\overline{\theta_2}$ e

- Exclusion spin 2⁺ hypothesis
 - expected: at 80% CL
 - observed: at 85% CL
 - compatible with spin 0 (within 0.18σ)

- ◆ Exclusion spin 0⁻ hypothesis
 - expected: at 96% CL
 - observed: at 99% CL
 - compatible with spin 0 (within 0.5σ)

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

Conclusions

- Most recent ATLAS results on search/study of Higgs-like boson with 13 fb⁻¹
- Observation in $H \rightarrow \gamma \gamma$ channel (6.1 σ)
- Sensitivity close to 1 for fermion decays ($\tau\tau$, $b\overline{b}$)
- Mass of particle: 125.2 ± 0.3 (stat) ± 0.6 (syst) GeV
- Signal strength:
 - $\mu = 1.35 \pm 0.19$ (stat) ± 0.15 (syst)
- ◆ Spin 2 and 0⁻ disfavored by data
- ♦ More soon with whole LHC Run-1 dataset (5+21 fb⁻¹)
- ◆ Higgs-like boson couplings: see talk by Marco Rescigno tomorrow morning
 - also $H \rightarrow \gamma \gamma/ZZ$ in ATLAS by Maud Schwoerer and Antonio Salvucci in Young Scientists Forum

Back-up slides

1

Higgs boson production and decays modes

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

<µ>=17.3 ▲ MC ● data

2

2.5

η

1.5

- Hadronic tau reco
 - narrow isolated jet
 - jet of cone ΔR <0.4, p_T >10 GeV and $|\eta|$ <2.5
 - energy: calo topoclusters in $\Delta R < 0.2$
 - isolation: cone $0.2 < \Delta R < 0.4$
- Identification: τ_{had} jets from QCD jets and electrons
 - discriminating variables: isolation, energy profiles, fractions of EM & Had, energy, angular distances
 - MVA discrimator
 - 1 prompt and 3 prompt separated

31

Missing mass calculator (MMC)

- 2 to 4 neutrinos \Rightarrow missing info to solve system
- Solve equations for each point of grid[$\Delta \varphi(\tau_1, v_i)$, $\Delta \varphi(\tau_2, v_i)$]
- Weight solutions based on kinematic properties of tau lepton
 - $\Delta \theta 3D(\tau_{vis}, v)$ template from simulation as PDF
 - Likelihood

♦ Impact parameters (IP) of tracks in jet

- IP3D: track weights based on longitudinal and transverse IP significance
- Displaced secondary vertex
 - SV1: inclusive displaced vertex
 - JetFitter: mutiple vertices along implied b-hadron line of flight
- NN algorithms:
 - JetFitterCombNN: IP3D+JetFitter
 - MV1: IP3D+JetFitterCombNN+SV1

◆ Identification based on shower shapes in calorimeter:

photonData driven efficiency estimate

- robust against pile-up

Average interactions per bunch crossing

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

- Good stability with position of colliding bunches in train \rightarrow robust with pileup
- Uncertainty on signal yied: 0.4-0.5%

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

Electron

Trigger:

- single (24 GeV threshold)
- di-electron (12 GeV threshold)
- 100% efficiency
- Reconstruction
 - bremsstralhung recovery
 - identification on shower-shapes
- ♦ p_T > 20/15/10/7 GeV
- impact parameter
 - along beam axis: 10 mm from PV
- $\Phi \Sigma E_{T}^{\Delta R=0.2}/E_{T} < 0.2$
- $\blacklozenge d_0 / \sigma_{d0} < 6.5$

Trigger:

- single (24 GeV threshold)

Muon

- di-muon (13 GeV or 18/8 GeV threshold)
- >97% efficiency
- Reconstruction
 - ID+MS
- ♦ p_T > 20/15/10/6 GeV
- ♦ impact parameter
 - along beam axis: 10 mm from PV
 - along bending plane: 1 mm
- $\Sigma E_T^{\Delta R=0.2}/p_T < 0.3$ (0.15 if no ID track)

• $d_0/\sigma_{d0} < 3.5$

- $\Delta R(e;\mu) > 0.2$, $\Delta R(e;e) > 0.1$, $\Delta R(\mu;\mu) > 0.1$
- $50 < m_{12} < 106 \text{ GeV}$
 - closest to Z mass
- $m_{min} < m_{34} < 115 \text{ GeV}$

m _{4l} (GeV)	≤140	160	165	180	≥190
m _{min} (GeV)	17.5	30	35	40	50

All possible same-flavour opposite-cahrge di-lepton have $m_{\parallel} > 5 \text{ GeV}$

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

$H \rightarrow ZZ^*$: Background estimation (1)

- Flavor subleading pair: $l+\mu\mu$
- Main reducible backgrounds: $t\bar{t}$ and Z+jets ($Zb\bar{b}$ + π/K in-flight decays)
 - ~20% of total bkg
- ♦ Control region: no isolation cut on sub-leading pair + fail d_0/σ_{d0} cut (remove ZZ) ⇒ $b\overline{b}$ contribution enhanced:
- tt and Z+jets estimated simultaneously through fit to m_{12}
- Extrapolation to signal region through MC transfer factor (with bb MC)
- Checks of background with other control regions (e.g. fail track isolation, eµ+µµ SS pair, ...): compatible results

$H \rightarrow ZZ^*$: Background estimation (2)

- ♦ Flavor subleading pair: ^ℓ+ee
- Main reducible backgrounds: tt and Z+jets (heavy flavour decays, jets faking electrons, photon conversion)
 - ~20% of total bkg
- Relax identification criteria
- Separate electron-like and fake-like with shower shapes
- Extrapolate with efficiencies from MC
- Cross check: eg same-sign sub-leading di-electrons

$H \rightarrow ZZ^*$: Background estimation (3)

• Control region: isolation and impact parameter on the first lepton pair only

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

$H \rightarrow ZZ^*$: Background estimation (4)

• Summary:

Method	Estimated
	number of events
4μ	
m_{12} fit: Z + jets contribution	$0.27 \pm 0.10 \pm 0.08^{\dagger}$
m_{12} fit: $t\bar{t}$ contribution	$0.02 \pm 0.01 \pm 0.01^{\dagger}$
Sub-leading same sign full analysis	0
2e2µ	
m_{12} fit: Z + jets contribution	$0.21 \pm 0.08 \pm 0.06^{\dagger}$
m_{12} fit: $t\bar{t}$ contribution	$0.02 \pm 0.01 \pm 0.01^{\dagger}$
Sub-leading same sign full analysis	0
2µ2e	
$\ell \ell + e^{\pm}e^{\mp}$	$2.6 \pm 0.4 \pm 0.4^{\dagger}$
$\ell\ell + e^{\pm}e^{\pm}$	$3.7 \pm 0.9 \pm 0.6$
$3\ell + \ell$ (same-sign)	$2.0\pm0.5\pm0.3$
Sub-leading same sign full analysis	0
4e	
$\ell \ell + e^{\pm}e^{\mp}$	$3.1 \pm 0.6 \pm 0.5^{\dagger}$
$\ell\ell + e^{\pm}e^{\pm}$	$3.2 \pm 0.6 \pm 0.5$
$3\ell + \ell$ (same-sign)	$2.2 \pm 0.5 \pm 0.3$
Sub-leading same sign full analysis	2
7 TeV	

Method	Estimate
4μ	
m_{12} fit: Z + jets contribution	$1.8 \pm 0.4 \pm 0.4^{\dagger}$
m_{12} fit: $t\bar{t}$ contribution	$0.07 \pm 0.02 \pm 0.02^{\dagger}$
Sub-leading same sign full analysis	0
2 <i>e</i> 2µ	
m_{12} fit: Z + jets contribution	$1.5 \pm 0.3 \pm 0.3^{\dagger}$
m_{12} fit: $t\bar{t}$ contribution	$0.08 \pm 0.02 \pm 0.03^{\dagger}$
Sub-leading same sign full analysis	0
2µ2e	
$\ell\ell + e^{\pm}e^{\mp}$	$4.7 \pm 0.7 \pm 0.7^{\dagger}$
$\ell\ell + e^{\pm}e^{\pm}$	$3.5\pm0.7\pm0.7$
$3\ell + \ell$ (same-sign)	$4.9\pm0.3\pm0.5$
Sub-leading same sign full analysis	2
4 <i>e</i>	
$\ell\ell + e^{\pm}e^{\mp}$	$7.2 \pm 0.9 \pm 0.7^{\dagger}$
$\ell\ell + e^{\pm}e^{\pm}$	$4.3\pm0.8\pm0.6$
$3\ell + \ell$ (same-sign)	$4.5\pm0.4\pm0.6$
Sub-leading same sign full analysis	6

8 TeV

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

100 < m4l < 160 GeV

						/	_
	4	4μ	2µ2e	/2e2µ		le n	n4l > 160 G
	Low mass	High mass	Low mass	High mass	Low mass	High mass	
	$\sqrt{s} =$	8 TeV Integra	ated Luminos	ity 13.0 fb ⁻¹			_
$ZZ^{(*)}$	8.7 ± 0.4	60.3 ± 4.4	7.2 ± 0.4	91.8 ± 7.0	4.4 ± 0.4	38.9 ± 3.1	_
$Z, Zb\bar{b}, and t\bar{t}$	1.4 ± 0.4	0.4 ± 0.1	4.6 ± 1.0	1.4 ± 0.3	5.2 ± 0.8	1.56 ± 0.2	
Total Background	10.1 ± 0.6	60.7 ± 4.4	11.8 ± 1.2	93.2 ± 7.0	9.6 ± 0.9	40.5 ± 3.1	
Data	16	56	14	115	13	45	_
$m_H = 123 \text{ GeV}$	2.7	± 0.4	3.0	± 0.4	1.5	± 0.2	_
$m_H = 125 \text{ GeV}$	3.5	± 0.4	3.9	± 0.5	1.9	± 0.3	
$m_H = 127 \text{ GeV}$	4.3	± 0.5	5.0	± 0.7	2.3	± 0.3	
$m_H = 400 \text{ GeV}$	8.6	± 1.1	14.8	± 2.0	6.4	± 1.0	
$m_H = 600 \text{ GeV}$	1.7	± 0.2	3.1	± 0.4	1.4	± 0.2	_
	$\sqrt{s} =$	7 TeV Integr	ated Lumino:	sity 4.6 fb ⁻¹			_
ZZ ^(*)	2.5 ± 0.1	17.8 ± 1.3	1.8 ± 0.1	26.8 ± 2.0	0.9 ± 0.1	9.8 ± 0.8	_
$Z, Zb\bar{b}, and t\bar{t}$	0.2 ± 0.1	0.06 ± 0.03	2.1 ± 0.5	0.6 ± 0.2	2.3 ± 0.6	0.7 ± 0.2	
Total Background	2.7 ± 0.2	17.8 ± 1.3	3.9 ± 0.5	27.4 ± 2.0	3.2 ± 0.6	10.5 ± 0.8	
Data	8	25	3	23	3	18	_
$m_H = 125 \text{ GeV}$	1.00	± 0.13	0.98	± 0.13	0.38	± 0.05	_
$m_H = 400 \text{ GeV}$	2.18	± 0.29	3.65	± 0.51	1.51	± 0.23	
$m_H = 600 \text{ GeV}$	0.41	± 0.05	0.71	± 0.10	0.32	± 0.05	_

◆ In 120- 130 GeV window:

	v	$\overline{s} = 8$ TeV		
	Signal (m _H =125 GeV)	ZZ ^(*)	$Z + jets, t\bar{t}$	Observed
4μ	3.1 ± 0.4	1.55 ± 0.07	0.31 ± 0.09	6
$2\mu 2e$	1.4 ± 0.2	0.56 ± 0.04	0.78 ± 0.16	1
$2e2\mu$	1.9 ± 0.3	0.80 ± 0.04	$0.26 \pm \ 0.07$	3
4e	1.5 ± 0.2	0.77 ± 0.08	1.20 ± 0.19	4
total	7.9 ± 1.1	3.7 ± 0.2	2.6 ± 0.3	14
	٧	$\overline{s} = 7$ TeV		
4μ	0.88 ± 0.11	0.48 ± 0.02	0.05 ± 0.02	2
$2\mu 2e$	0.32 ± 0.05	0.14 ± 0.01	$0.43 \pm \ 0.09$	1
$2e2\mu$	0.48 ± 0.06	0.22 ± 0.01	0.04 ± 0.02	1
4e	0.28 ± 0.04	0.17 ± 0.02	0.52 ± 0.13	0
total	2.0 ± 0.3	1.0 ± 0.1	1.0 ± 0.2	4
	$\sqrt{s} = 8$ Te	V and $\sqrt{s} = 1$	7 TeV	
4μ	4.0 ± 0.5	2.03 ± 0.09	0.36 ± 0.09	8
$2\mu 2e$	1.7 ± 0.2	0.70 ± 0.05	1.21 ± 0.18	2
$2e2\mu$	2.4 ± 0.3	1.02 ± 0.05	0.30 ± 0.07	4
4e	1.8 ± 0.3	0.94 ± 0.09	1.72 ± 0.23	4
total	9.9 ± 1.3	$4.7\ \pm 0.3$	$3.6\ \pm\ 0.3$	18

♦ S

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

1σ

2σ

3σ

4σ

600

1σ

2σ

3σ

4σ

160 170 180 m_H [GeV]

500

m_н [GeV]

• $\mu = 1.3^{+0.5}_{-0.4}$ at 123.5 GeV (best fit mass) • $\mu = 0.8^{+0.4}_{-0.3}$ at 126 GeV

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

 $P \to \gamma\gamma$: Background composition

♦ Di-photon purity: data-driven estimate

♦ 2x2D side-band method

$$\oint \left[m_{\gamma\gamma}^{2} = 2 E_{1} E_{2} \left(1 - \cos \Delta \varphi(\gamma_{1}; \gamma_{2}) \right) \right]$$

 Di-photon primary vertex: Calo-pointing

Average interactions per bunch crossing

\sqrt{s}			8 TeV			
Category	$\sigma_{CB}(GeV)$	FWHM (GeV)	Observed	N_S	N_B	N_S / N_B
Unconv. central, low p_{Tt}	1.47	3.45	569	29	538	0.053
Unconv. central, high p_{Tt}	1.37	3.22	25	4.2	25	0.168
Unconv. rest, low p_{Tt}	1.59	3.75	2773	61	2610	0.023
Unconv. rest, high p_{Tt}	1.52	3.59	148	8.7	138	0.063
Conv. central, low p_{Tt}	1.64	3.86	446	18	417	0.044
Conv. central, high p_{Tt}	1.49	3.51	18	2.8	17	0.163
Conv. rest, low p_{Tt}	1.83	4.32	2898	54	2763	0.019
Conv. rest, high p_{Tt}	1.7	4.00	144	7.4	138	0.053
Conv. transition	2.35	5.57	1872	25	1825	0.014
High Mass two-jet	1.55	3.65	47	6.8	33	0.204
Low Mass two-jet	1.46	3.45	62	4.2	45	0.093
One-lepton	1.63	3.85	18	1.7	16	0.108
Inclusive	1.64	3.87	8802	223	8284	0.027

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

$H \rightarrow \gamma \gamma$: Systematic uncertainties

♦ yield

 \blacklozenge resolution

migration between categories

Table 5: Summary of systematic uncertainties impact on the signal yield for the analysis of the 8 data

Systematic uncertainties	Value(%)			Constraint
Luminosity		±3	3.6	
Trigger		±C).5	
Photon ID		±5	5.3	Log-normal
Isolation		±1	.0	
Photon Energy Scale		±C).4	
Branching ratio	±5.9%	$-\pm 2.1\%$ (m)	$_{H} = 110 - 150 \text{ GeV}$	Asymmetric Log-normal
Scale	ggH: ^{+7.2} ZH: ^{+1.6} 5	VBF: +0.2 -0.2 ttH: +3.8 -9.3	WH: +0.2 _0.6	Asymmetric Log-normal
Pdf+ α_s	ggH: ^{+7.5} -6.9 WH: ±3.5	VBF: +2.6 2.7 ZH: ±3.6	ttH: ±7.8	Asymmetric Log-normal
Theory cross section on ggF	High Mass	two-jet: 25	Low Mass two-jet: 30	Log-normal

• Resolution:

- calorimeter energy resolution: 12%.
- extrapolation of electron calibration to photons (material): 6%

– pile-up: 1.5%

 $ggH: \pm 30$ VBF: ±6 VH. ttH: ±30 Low Mass two-jet category VBF: ±11 ggH: ±7 VH. ttH: ± 7 Jet Energy Scale Low p_{Tt} ggH: -0.1 VBF: -1.6 resp. Base Others: -0.2 Flavour (q/g) -0.1-1.4-0.1Forward -0.1-1.6-0.1High p_{Tt} ggH: -0.6 VBF: -2.7 Others: -0.4 -0.7-2.5-0.5-0.5-2.7-0.2High Mass two-jet ggH: +9.2 VBF: +4.5 Others: +13.5 +9.7+7.0+4.1+10.7+4.8+18.2Low Mass two-jet VBF: +4.1 ggH: +2.4 Others: +0.8 +2.4+4.1+0.7+0.6+1.7+0.04one-lepton ggH: +0.0 VBF: +0.0 Others: -0.03 +0.0+0.0-0.03+0.0+0.0+0.0Low p_{Tt} : +1.3 High p_{Tt} : -10.0 High Mass two-jet: -8.7 Higgs $p_{\rm T}$ Low Mass two-jet category: -11.00 one-lepton category: -0.45 Material Mismodeling Unconv: -4.0 Conv: +3.5 JVF High Mass two-jet: 18 Low Mass two-jet: 12 one-lepton category: 2 e reco e Escale and resolution one-lepton category: < 1 μ reco, ID resolution one-lepton category: < 1one-lepton category: 2 μ spectrometer resolution

Value(%)

High Mass two-jet category

Systematic uncertainties

Underlying Event

$H \rightarrow \gamma \gamma$: myy distributions (1)

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

$H \rightarrow \gamma \gamma$: myy distributions (2)

- Reconstruction/identification
 - electron: tight cuts (shower-shapes)
 - muon: ID + muon spectrometer
- $p_{T} > 25/15 \text{ GeV}$
- $10 < m_{\parallel} < 50 \text{ GeV}$
- isolation: $\Sigma p_T^{\Delta R=0.2-0.3}/p_T < 0.12-0.2$
- $E_T^{miss,rel} > 25 \text{ GeV}$
- impact parameter
- $\Delta \phi_{\parallel} < 1.8$

$H \rightarrow WW$: Selection cuts (2)

Jets:

- anti-kT, $\Delta R = 0.4$
- $\ p_{_{\rm T}}$ > 25 GeV for $|\eta|$ < 2.5, $p_{_{\rm T}}$ > 30 GeV for 2.5 $|\eta|$ < 4.5

Events / 5 Ge[\]

- b-tagging:
 - neural network combining track impact parameter and secondary vertex information
 - 85% efficiency
- ♦ H + 0 jet
 - $p_{T}^{\parallel} > 30 \text{ GeV}$
 - $\Delta \varphi(\mathbb{H}, \mathbb{E}_{T}^{\text{miss}}) > \pi/2$
- ♦ H + 1 jet
 - jet in not b-tagged
 - rejet $|m_{\tau\tau} m_{Z}| < 25 \text{ GeV}$

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

$H \rightarrow WW$: Background estimation (1)

General strategy:

$H \rightarrow WW$: Background estimation (2)

- Top quark control region
 - b-tagged jet
 - remove cuts on $\Delta \phi_{ll}$ and m_{ll}

• Normalisation factor: 1.03 ± 0.02 (stat)

♦ Total uncertainty: 37%

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

$H \rightarrow WW$: Background estimation (3)

- ♦ WW control region
 - remove cut on $\Delta \phi_{\rm ll}$
 - m_{ll} > 80 GeV

- Disagreement: jet multiplicity + showering algorithm
- ♦ H + 0 jet
 - normalisation factor: 1.13 ± 0.04 (stat)
 - total uncertainty: 13%

- ♦ H + 1 jet
 - normalisation factor: 0.84 ± 0.08 (stat)
 - total uncertainty: 54%

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

 $P \to WW$: Background estimation (4)

♦ W+jets control region

- anti-identification/isolation on one of leptons
- extrapolated to signal region: fake-rates
- ♦ WZ, ZZ, Wγ from MC
- $Z \rightarrow \tau \tau$
 - $\Delta \phi_{ll} > 2.8$, $m_{ll} < 80 \ GeV$
 - difference between data and MC
 - normalisation factors: 0.87± 0.03 (0 jet), 0.85± 0.03 (1 jet)
 - uncertainties: 100 % (0 jet), 42% (1 jet)

$H \rightarrow WW$: Background estimation (5)

• Summary:

Cutflow evolution in the different signal regions									
H+ 0-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
Jet veto	110 ± 1	3004 ± 12	242 ± 8	387 ± 8	215 ± 8	1575 ± 20	340 ± 5	5762 ± 28	5960
$\Delta \phi_{\ell \ell, E_{\tau}^{\text{miss}}} > \pi/2$	108 ± 1	2941 ± 12	232 ± 8	361 ± 8	206 ± 8	1201 ± 21	305 ± 5	5246 ± 28	5230
$p_{\mathrm{T},\ell\ell} > 30 \mathrm{GeV}$	99 ± 1	2442 ± 11	188 ± 7	330 ± 7	193 ± 8	57 ± 8	222 ± 3	3433 ± 19	3630
$m_{\ell\ell} < 50 { m ~GeV}$	78.6 ± 0.8	579 ± 5	69 ± 4	55 ± 3	34 ± 3	11 ± 4	65 ± 2	814 ± 9	947
$\Delta\phi_{\ell\ell} < 1.8$	75.6 ± 0.8	555 ± 5	68 ± 4	54 ± 3	34 ± 3	8 ± 4	56 ± 2	774 ± 9	917
H+ 1-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
One jet	59.5 ± 0.8	850 ± 5	158 ± 7	3451 ± 24	1037 ± 17	505 ± 9	155 ± 5	6155 ± 33	6264
<i>b</i> -jet veto	50.4 ± 0.7	728 ± 5	128 ± 5	862 ± 13	283 ± 10	429 ± 8	126 ± 4	2555 ± 20	2655
$Z \rightarrow \tau \tau$ veto	50.1 ± 0.7	708 ± 5	122 ± 5	823 ± 12	268 ± 9	368 ± 8	122 ± 4	2411 ± 19	2511
$m_{\ell\ell} < 50~{\rm GeV}$	37.7 ± 0.6	130 ± 2	39 ± 2	142 ± 5	55 ± 4	99 ± 3	30 ± 2	495 ± 8	548
$\Delta\phi_{\ell\ell} < 1.8$	34.9 ± 0.6	118 ± 2	35 ± 2	134 ± 5	52 ± 4	22 ± 2	24 ± 1	386 ± 8	433

• For 0.75 $m_{H} < m_{T} < m_{H} (m_{H} = 125 \text{ GeV})$:

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
H+ 0-jet	45 ± 9	242 ± 32	26 ± 4	16 ± 2	11 ± 2	4 ± 3	34 ± 17	334 ± 28	423
H+ 1-jet	18 ± 6	40 ± 22	10 ± 2	37 ± 13	13 ± 7	2 ± 1	11 ± 6	114 ± 18	141

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

\rightarrow WW: Background estimation (6)

 $H \rightarrow WW$: Systematic uncertainties

• On signal and bkg events:

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	13	-
1-jet incl. ggF signal ren./fact. scale	10	-
PDF model (signal only)	8	-
QCD scale (acceptance)	4	-
Jet energy scale and resolution	4	2
W+jets fake factor	-	5
WW theoretical model	-	5
Source (1-jet)	Signal (%)	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	26	-
1-jet incl. ggF signal ren./fact. scale 2-jet incl. ggF signal ren./fact. scale	26 15	-
1-jet incl. ggF signal ren./fact. scale 2-jet incl. ggF signal ren./fact. scale Parton shower/ U.E. model (signal only)	26 15 10	-
1-jet incl. ggF signal ren./fact. scale 2-jet incl. ggF signal ren./fact. scale Parton shower/ U.E. model (signal only) <i>b</i> -tagging efficiency	26 15 10	11
1-jet incl. ggF signal ren./fact. scale 2-jet incl. ggF signal ren./fact. scale Parton shower/ U.E. model (signal only) <i>b</i> -tagging efficiency PDF model (signal only)	26 15 10 - 7	11
1-jet incl. ggF signal ren./fact. scale 2-jet incl. ggF signal ren./fact. scale Parton shower/ U.E. model (signal only) <i>b</i> -tagging efficiency PDF model (signal only) QCD scale (acceptance)	26 15 10 - 7 4	
 1-jet incl. ggF signal ren./fact. scale 2-jet incl. ggF signal ren./fact. scale Parton shower/ U.E. model (signal only) b-tagging efficiency PDF model (signal only) QCD scale (acceptance) Jet energy scale and resolution 	26 15 10 - 7 4 1	- - - - - - - - - - - - - - - - - - -
1-jet incl. ggF signal ren./fact. scale 2-jet incl. ggF signal ren./fact. scale Parton shower/ U.E. model (signal only) <i>b</i> -tagging efficiency PDF model (signal only) QCD scale (acceptance) Jet energy scale and resolution W+jets fake factor	26 15 10 - 7 4 1	- - - 11 - 2 3 5

• On signal strength:

Source	Upward uncertainty (%)	Downward uncertainty (%)
Statistical uncertainty	+23	-22
Signal yield $(\sigma \cdot \mathcal{B})$	+14	-9
Signal acceptance	+9	-6
WW normalisation, theory	+20	-20
Other backgrounds, theory	+9	-9
W+jets fake rate	+11	-12
Experimental + bkg subtraction	+14	-11
MC statistics	+8	-8
Total uncertainty	+41	-38

♦ Example of 8 TeV data:

Channel	Trigger	Trigger $p_{\rm T}$ Threshold (GeV)	Offline $p_{\rm T}$ Threshold (GeV)
$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	single electron	$p_{\rm T}^{\ e} > 24$	$p_{\rm T}^{\ e} > 25$ $p_{\rm T}^{\ \mu} > 10$
	di-electron	$p_{\rm T}^{e_1} > 12$ $p_{\rm T}^{e_2} > 12$	$p_{\rm T}^{e_1} > 15$ $p_{\rm T}^{e_2} > 15$
	di-muon	$p_{\rm T}^{\ \mu 1} > 18$ $p_{\rm T}^{\ \mu 2} > 8$	$p_{\rm T} {}^{\mu 1} > 20$ $p_{\rm T} {}^{\mu 2} > 10$
	$e - \mu$ combined	$p_{\rm T} ^e > 12$ $p_{\rm T} ^\mu > 8$	$p_{\rm T}^{\ e} > 15$ $p_{\rm T}^{\ \mu} > 10$
$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	single electron	$p_{\rm T}^{\ e} > 24$	$p_{\rm T}^{\ e} > 26$
		_	p_{T} $^{ au_{\mathrm{had-vis}}}$ > 20
	single muon	$p_{\rm T}{}^{\mu} > 24$	$p_{\rm T}{}^{\mu} > 26$
		_	$p_{\mathrm{T}} \tau_{\mathrm{had-vis}} > 20$
	combined $e + \tau_{had-vis}$	$p_{\rm T}^{\ e} > 18$	$20 < p_{\rm T}^{\ e} < 26$
		$p_{\rm T}$ $\tau_{\rm had-vis}$ > 20	$p_{\mathrm{T}} \tau_{\mathrm{had-vis}} > 25$
	combined $\mu + \tau_{had-vis}$	$p_{\rm T}{}^{\mu} > 15$	$17 < p_{\rm T}^{\mu} < 26$
		$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 20$	$p_{\mathrm{T}} \tau_{\mathrm{had-vis}} > 25$
$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	combined two $ au_{ m had}$	$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 29$	p_{T} $^{ au_{\mathrm{had-vis}}}$ > 40
		$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 20$	$p_{\mathrm{T}} ^{\tau_{\mathrm{had-vis}}} > 25$

2-jet VBF	Boosted	2-jet VH	1-jet		
Pre-selection: exactly two leptons with opposite charges					
30	$30 \text{ GeV} < m_{\ell\ell} < 75 \text{ GeV} (30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV})$				
for same-fl	for same-flavor (different-flavor) leptons, and $p_{T,\ell 1} + p_{T,\ell 2} > 35$ GeV				
At least	one jet with $p_T > 40$ G	$ \text{eV} (JVF_{\text{jet}} > 0.5 \text{ if } \eta_{\text{jet}} < 2$	2.4)		
$E_{\rm T}^{\rm miss} > 40~{ m Ge}$	$eV(E_{\rm T}^{\rm miss} > 20 \text{ GeV})$ fo	r same-flavor (different-flavo	r) leptons		
	$H_{\rm T}^{\rm miss} > 40 \text{ GeV for}$	same-flavor leptons			
$0.1 < x_{1,2} < 1$					
	$0.5 < \Delta \phi_{\ell\ell} < 2.5$				
$p_{\rm T} = 25 \text{GeV} (\text{IVE})$	excluding 2-jet VBF	$p_{T,j2} > 25 \text{ GeV} (\text{JVF})$	excluding 2-jet VBF,		
$p_{T,j2} > 25 \text{ GeV} (JVF)$			Boosted and 2-jet VH		
$\Delta \eta_{jj} > 3.0$	$p_{T,\tau\tau} > 100 \text{ GeV}$	excluding Boosted	$m_{\tau\tau j} > 225 \text{ GeV}$		
$m_{jj} > 400 \text{ GeV}$	b-tagged jet veto	$\Delta \eta_{jj} < 2.0$	b-tagged jet veto		
b-tagged jet veto		$30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$	_		
Lepton centrality and CJV	—	<i>b</i> -tagged jet veto			
0-jet (7 TeV only)					
Pre-selection: exactly two leptons with opposite charges					
Different-flavor leptons with 30 GeV < $m_{\ell\ell}$ < 100 GeV and $p_{T,\ell 1} + p_{T,\ell 2}$ > 35 GeV					
$\Delta \phi_{\ell\ell} > 2.5$					
b-tagged jet veto					

$H \rightarrow \tau_{lep} \tau_{lep}$: background estimation

- $Z \rightarrow \tau \tau$: embedding procedure
- top: from MC
 - scale factors from control region (b-tagged)
- $Z \rightarrow ee$, $\mu\mu$: from MC
 - scale factors from control region (low E_T^{miss})
- ♦ fake leptons: data
 - control region with reversed isolation
- Diboson: MC
 - checked from control region (3 leptons)
- Summary for 8 TeV:

		$ee + \mu\mu + e\mu$		
	VBF category	Boosted category	VH category	1-jet category
$gg \rightarrow H (125 \text{ GeV})$	$1.3 \pm 0.2 \pm 0.4$	$12.4 \pm 0.6 \pm 2.9$	$2.5 \pm 0.3 \pm 0.6$	$7.0 \pm 0.5 \pm 1.6$
VBF H (125 GeV)	$3.63 \pm 0.10 \pm 0.02$	$3.36 \pm 0.09 \pm 0.30$	$0.21 \pm 0.03 \pm 0.02$	$1.82 \pm 0.07 \pm 0.18$
VH (125 GeV)	$0.01 \pm 0.01 \pm 0.01$	$2.20 \pm 0.05 \pm 0.22$	$0.64 \pm 0.03 \pm 0.09$	$0.44 \pm 0.02 \pm 0.05$
$Z/\gamma^* \rightarrow \tau \tau$ embedded	$47 \pm 2 \pm 1$	$(1.24 \pm 0.01 \pm 0.08) \times 10^3$	$393 \pm 7 \pm 26$	$(0.86 \pm 0.01 \pm 0.06) \times 10^3$
$Z/\gamma^* \to \ell \ell$	$14 \pm 3 \pm 2$	$(0.21 \pm 0.02 \pm 0.04) \times 10^3$	$(0.08 \pm 0.01 \pm 0.02) \times 10^3$	$(0.16 \pm 0.01 \pm 0.03) \times 10^3$
Тор	$15 \pm 2 \pm 3$	$(0.39 \pm 0.01 \pm 0.07) \times 10^3$	$87 \pm 4 \pm 23$	$117 \pm 5 \pm 18$
Diboson	$3.6\pm0.8\pm0.6$	$55 \pm 3 \pm 10$	$15 \pm 1 \pm 4$	$40 \pm 3 \pm 7$
Backgrounds with fake leptons	$12 \pm 2 \pm 3$	$102 \pm 7 \pm 23$	$86 \pm 4 \pm 16$	$230 \pm 8 \pm 52$
Total background	$91 \pm 5 \pm 5$	$(2.01 \pm 0.03 \pm 0.12) \times 10^3$	$(0.66 \pm 0.02 \pm 0.05) \times 10^3$	$(1.40 \pm 0.02 \pm 0.08) \times 10^3$
Observed data	98	2014	636	1405

7 Te	Ŵ	8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm ~GeV}$	-	$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm GeV}$	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm ~GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	
▶ ≥ 2 jets	▶ $p_{\rm T}^{\rm H}$ > 100 GeV	$\triangleright \ge 2$ jets	$P_{\rm T}^{\rm H} > 100 {\rm GeV}$	
▶ p_T^{j1} , $p_T^{j2} > 40$ GeV	$> 0 < x_1 < 1$	$P_T p_T^{j1} > 40, p_T^{j2} > 30 \text{ GeV}$	$> 0 < x_1 < 1$	
$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	
$> m_{jj} > 500 \text{ GeV}$	⊳ Fails VBF	$> m_{jj} > 500 \text{ GeV}$	▹ Fails VBF	
▷ centrality req.	-	▷ centrality req.	-	
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	
▶ $p_{\rm T}$ ^{Total} < 40 GeV	-	$\triangleright p_{\mathrm{T}}^{\mathrm{Total}} < 30 \mathrm{GeV}$	-	
-	-	$\triangleright p_{\mathrm{T}}^{\ell} > 26 \mathrm{GeV}$	-	
• <i>m</i> _T <50 GeV	• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-	
_	-	 <i>b</i>-tagged jet veto 	 b-tagged jet veto 	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
▶ ≥ 1 jet, p_T >25 GeV	$\triangleright 0$ jets $p_T > 25$ GeV	▶ ≥ 1 jet, $p_{\rm T}$ >30 GeV	$\triangleright 0$ jets $p_T > 30$ GeV	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 { m GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 \text{ GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 \text{ GeV}$	
Fails VBF, Boosted	 Fails Boosted 	Fails VBF, Boosted	 Fails Boosted 	
• <i>m</i> _T <50 GeV	• <i>m</i> _T <30 GeV	• <i>m</i> _T <50 GeV	• <i>m</i> _T <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
_	$\bullet p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	-	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	

τ_{lep} τ_{had}: background estimation

10 GeV

Events /

GeV

20 500

400

200

100

250

200

150

100

50

0

- Non-VBF categories:
- \blacklozenge Z \rightarrow $\tau\tau$: embedding procedure
- multi-jet: data
 - same sign (lepton- τ) vs opposite signe
- \bullet W + jets: from MC
 - scale factors: control region ($m_{\tau} > 70 \text{ GeV}$)
- top: from MC
 - Events / – scale factors: control region (b-tagged, invert m_{T^3})
- ◆ VBF categories: high statistics MC samples Summary for 8 TeV:

-

	Cut	Description		
\mathcal{C}	Preselection	No muons or electrons in the event		
		Exactly 2 medium τ_{had} candidates matched with the trigger objects		
		At least 1 of the τ_{had} candidates identified as tight		
		Both τ_{had} candidates are from the same primary vertex		
2		Leading $\tau_{\text{had-vis}}$ $p_T > 40$ GeV and sub-leading $\tau_{\text{had-vis}}$ $p_T > 25$ GeV, $ \eta < 2.5$		
		τ_{had} candidates have opposite charge and 1- or 3-tracks		
		$0.8 < \Delta R(\tau_1, \tau_2) < 2.8$		
		$\Delta \eta(\tau, \tau) < 1.5$		
		if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, $\min \left\{ \Delta \phi(E_{\rm T}^{\rm miss}, \tau_1), \Delta \phi(E_{\rm T}^{\rm miss}, \tau_2) \right\} < 0.2\pi$		
	VBF	At least two tagging jets, j_1 , j_2 , leading tagging jet with $p_T > 50$ GeV		
		$\eta_{j1} \times \eta_{j2} < 0, \ \Delta \eta_{jj} > 2.6$ and invariant mass $m_{jj} > 350$ GeV		
		$\min(\eta_{j1}, \eta_{j2}) < \eta_{\tau 1}, \eta_{\tau 2} < \max(\eta_{j1}, \eta_{j2})$		
		$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$		
	Boosted	Fails VBF		
		At least one tagging jet with $p_{\rm T} > 70(50)$ GeV in the 8(7) TeV dataset		
		$\Delta R(\tau_1, \tau_2) < 1.9$		
		$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$		
		if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.1\pi$.		

 $\rightarrow \tau_{had} \tau_{had}$: background estimation

- $Z \rightarrow \tau \tau$: embedding procedure
- ♦ multi-jet: data
 - looser τ selection
- top, $Z \rightarrow ee$, $\mu\mu$, Z+jets: from MC
 - scale factors from control regions

$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	7 TeV analy	sis (4.6 fb ⁻¹)	8 TeV analysis (13.0 fb ⁻¹)	
	VBF category	Boosted category	VBF category	Boosted category
$gg \rightarrow H (125 \text{ GeV})$	$0.36 \pm 0.06 \pm 0.12$	$2.4 \pm 0.2 \pm 0.7$	$1.0 \pm 0.1 \pm 0.3$	$8.2 \pm 0.4 \pm 1.8$
VBF H (125 GeV)	$1.12 \pm 0.04 \pm 0.18$	$0.68 \pm 0.03 \pm 0.07$	$3.01 \pm 0.09 \pm 0.48$	$1.98 \pm 0.07 \pm 0.30$
VH (125 GeV)	< 0.02	$0.61~\pm~0.05~\pm~0.06$	< 0.05	$1.4 \pm 0.2 \pm 0.2$
$Z/\gamma^* \to \tau \tau$ embedded	$20 \pm 2 \pm 3$	$392 \pm 9 \pm 12$	$50 \pm 4 \pm 6$	$1080 \pm 20 \pm 110$
W/Z boson+jets	$1.5 \pm 0.7 \pm 0.4$	$5 \pm 1 \pm 1$	0.4 ± 0.4	$90 \pm 20 \pm 30$
Тор	$1.0 \pm 0.2 \pm 0.2$	$3.0 \pm 0.3 \pm 0.5$	1.4 ± 1.0	$21 \pm 3 \pm 5$
Diboson	$0.10 \pm 0.07 \pm 0.02$	$4.4 \pm 0.6 \pm 0.7$	< 0.01	< 0.5
Multijet	$10.2 \pm 0.9 \pm 5.0$	$156 \pm 6 \pm 30$	$44 \pm 5 \pm 7$	$420 \pm 20 \pm 60$
Total background	$32.5 \pm 2.2 \pm 5.9$	$561 \pm 11 \pm 32$	$96 \pm 6 \pm 9$	$1607 \pm 37 \pm 130$
Observed data	38	535	110	1435

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	
$Z \rightarrow \tau^+ \tau^-$				
Embedding	1-4% (S)	2–4% (S)	1-4% (S)	
Tau Energy Scale	_	4–15% (S)	3–8% (S)	
Tau Identification	_	4–5%	1-2%	
Trigger Efficiency	2–4%	2–5%	2–4%	
Normalisation	5%	4% (non-VBF), 16% (VBF)	9–10%	
Signal				
Jet Energy Scale	1-5% (S)	3–9% (S)	2–4% (S)	
Tau Energy Scale	_	2–9% (S)	4-6% (S)	
Tau Identification	_	4–5%	10%	
Theory	8-28%	18-23%	3-20%	
Trigger Efficiency	small	small	5%	

♦ 7 TeV vs 8 TeV:

♦ For 3 channels:

♦ VBF vs non-VBF:

Object	0-lepton	1-lepton	2-lepton		
Lantons	0 loose leptons	1 tight lepton	1 medium lepton		
Leptons		+ 0 loose leptons	+ 1 loose lepton		
	2 b-tags	2 b-tags	2 b-tags		
Inte	$p_{\rm T}^1 > 45 { m ~GeV}$	$p_{\rm T}^1 > 45 { m ~GeV}$	$p_{\rm T}^1 > 45 { m ~GeV}$		
Jets	$p_{\rm T}^2 > 20 {\rm ~GeV}$	$p_{\rm T}^2 > 20 \text{ GeV}$	$p_{\rm T}^2 > 20 {\rm GeV}$		
	$+ \leq 1$ extra jets	+ 0 extra jets	-		
Missing F_	$E_{\rm T}^{\rm miss} > 120 {\rm GeV}$	-	$E_{\rm T}^{\rm miss} < 60 {\rm GeV}$		
wissing L_T	$p_{\rm T}^{\rm miss} > 30 {\rm ~GeV}$				
	$\Delta \phi(\dot{E}_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{miss}}) < \pi/2$				
	$Min[\Delta \phi(E_T^{miss}, jet)] > 1.5$				
	$\Delta \phi(E_{\rm T}^{\rm miss}, b\bar{b}) > 2.8$				
Vector Boson	-	$m_{\rm T}^W < 120 { m ~GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$		

0-lepton channel											
$E_{\rm T}^{\rm miss}~({\rm GeV})$	120-160	160-	>200								
$\Delta R(b, \bar{b})$	0.7-1.9	0.7-	1.7	<1.5							
1-lepton channel											
$p_{\rm T}^W$ (GeV)	0-50 50-100	100-150	150-200	>200							
$\Delta R(b, \bar{b})$	>0.7	7	0.7-1.6	<1.4							
$E_{\rm T}^{\rm miss}~({\rm GeV})$		> 25		> 50							
$m_{\rm T}^W({\rm GeV})$	> 40)	-								
2-lepton channel											
$p_{\rm T}^Z({\rm GeV})$	0-50 50-100	100-150	150-200	>200							
$\Delta R(b, \bar{b})$	>0.7	7	0.7-1.8	<1.6							

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

$H \rightarrow b\overline{b}$: background estimation

♦ Di-boson:

- shape from MC
- resonant background normalisation
- top, W/Z + jets
 - shape from MC
 - normalised to data (control regions)

• multijet:

- from data

	0-lepton, 2 jet 0-lepton, 3 jet					1-lepton				2-lepton						
Bin	$E_{\rm T}^{\rm miss}$ [GeV]				$p_{\rm T}^W[{\rm GeV}]$				$p_{\rm T}^{\rm Z}[{\rm GeV}]$							
	120-160	160-200	>200	120-160	160-200	>200	0-50	50-100	100-150	150-200	> 200	0-50	50-100	100-150	150-200	>200
ZH	2.9	2.1	2.6	0.8	0.8	1.1	0.3	0.4	0.1	0.0	0.0	4.7	6.8	4.0	1.5	1.4
WH	0.8	0.4	0.4	0.2	0.2	0.2	10.6	12.9	7.5	3.6	3.6	0.0	0.0	0.0	0.0	0.0
Тор	89	25	8	92	25	10	1440	2276	1120	147	43	230	310	84	3	0
W + c,light	30	10	5	9	3	2	580	585	209	36	17	0	0	0	0	0
W + b	35	13	13	8	3	2	770	778	288	77	64	0	0	0	0	0
Z + c,light	35	14	14	8	5	8	17	17	4	1	0	201	230	91	12	15
Z + b	144	51	43	41	22	16	50	63	13	5	1	1010	1180	469	75	51
Diboson	23	11	10	4	4	3	53	59	23	13	7	37	39	16	6	4
Multijet	3	1	1	1	1	0	890	522	68	14	3	12	3	0	0	0
Total Bkg.	361	127	- 98	164	63	42	3810	4310	1730	297	138	1500	1770	665	97	72
	± 29	± 11	± 12	± 13	± 8	± 5	± 150	± 86	± 90	± 27	± 14	± 90	± 110	± 47	± 12	± 12
Data	342	131	- 90	175	65	32	3821	4301	1697	297	132	1485	1773	657	100	69

74

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

- $H \rightarrow ZZ^*$: 123.5 ± 0.8 (stat) ± 0.3 (syst) GeV
- $H \rightarrow \gamma \gamma$: 126.6 ± 0.3 (stat) ± 0.7 (syst) GeV
- $m_{H}^{\gamma\gamma}$ and m_{H}^{41} varied independently:
 - almost uncorrelated

- likelihood for $\Delta m_{\rm H} = m_{\rm H}^{\gamma\gamma} m_{\rm H}^{41}$
 - m_H profiled

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

- Dominated by 4μ channel
- Mass scale systematics
 - absolute energy scale (from Z): 0.4%
 - low E_{T} electrons: 0.2%
 - muon momentum scale: 0.2%

• Checks:

- mass measurement with ID tracks alone
- bkg unconstrained
- Z mass constraint on m₁₂
- More checks:
 - check of kinematic distributions
 - scale measurement with ID or MS tracks only
 - FSR: data/MC agreement to 0.1%
 - event-by-event errors

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

- Uncertainties:
 - absolute energy scale ($Z \rightarrow ee$): 0.3%
 - material before calo: 0.3%
 - relative calibration of calo layers: 0.2 and 0.1%
 - difference in lateral shower-shape photons-electrons: 0.1%
 - read-out electronic gain: 0.15%

More uncertainties:

- converted photons: data/MC diff: 0.13%
- background modelling: 0.1%
- stability with mass resolution: 0.15%

_

$$\begin{split} A(X \to VV) &= \Lambda^{-1} \left[2g_1 t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2g_2 t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*1,\mu\alpha} f^{*2,\nu\alpha} \right. \\ &+ g_3 \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) + g_4 \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} f^{*(2)}_{\alpha\beta} \\ &+ m_V^2 \left(2g_5 t_{\mu\nu} \epsilon^{*\mu}_1 \epsilon^{*\nu}_2 + 2g_6 \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} (\epsilon^{*\nu}_1 \epsilon^{*\alpha}_2 - \epsilon^{*\alpha}_1 \epsilon^{*\nu}_2) + g_7 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon^*_1 \epsilon^*_2 \right) \\ &+ g_8 \frac{\tilde{q}_\mu \tilde{q}_\nu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + g_9 t_{\mu\alpha} \tilde{q}^\alpha \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu}_1 \epsilon^{*\rho}_2 q^\sigma \\ &+ \frac{g_{10} t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma (\epsilon^{*\nu}_1 (q\epsilon^*_2) + \epsilon^{*\nu}_2 (q\epsilon^*_1)) \right], \end{split}$$

- General interaction of spin-2 particle with gauge bosons pair:
 10 independent tensor couplings
 - excluding generic spin-2 model is impossible
 - start with model with minimal couplings (g1=g5=1)
 - two production modes allowed: gg and qqbar
 - study 5 different gg fractions from 0% to 100%

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

 $H \rightarrow ZZ^* \rightarrow 4I: Spin (1)$

Input variables:

E. Petit - XXVII Rencontres de physique de la vallée d'Aoste

 $H \rightarrow ZZ^* \rightarrow 4I$: Spin (3)

Discriminants:

 \rightarrow ZZ* \rightarrow 4I: Spin (2)

• Discriminants:

		0	+ vs 0-		()+ vs 2+		0	+ vs 2-		
	Tested J^P hypotheses for an assumed 0^+										
			0-			2_{m}^{+}		2-			
		expected	observed	obs 0+	expected	observed	obs 0+	expected	observed	obs 0 ⁺	
		BDT analysis									
DDT	p0-value	0.041	0.011	0.69	0.20	0.16	0.57	0.046	0.029	0.56	
BDT	σ	1.7	2.3	-0.50	0.84	0.99	-0.18	1.7	1.9	-0.15	
	J ^P -MELA analysis										
	p ₀ -value	0.031	0.0028	0.76	0.18	0.17	0.53	0.04	0.025	0.56	
J'-IVIELA	σ	1.9	2.7	-0.72	0.91	0.97	-0.08	1.7	2.0	-0.15	