

Reconciling cosmology and short-baseline experiments with invisible decay of light sterile neutrinos

Based on arXiv:1404.1794, arXiv:1404.6160

Stefano Gariazzo
http://personalpages.to.infn.it/~gariazzo/
gariazzo@to.infn.it

University of Torino, INFN of Torino

May 29 - Cortona - New Frontiers in Theoretical Physics

- ightharpoonup neutrino existence proposed by Pauli (1930) to explain eta decay
- ▶ first time observed in 1956 by C. Cowan, F. Reines
- oscillations proposed in 1957 by B. Pontecorvo
- "massless" until oscillations detected in 1998 (SuperKamiokande)
- ightharpoonup
 u oscillate only if they have different masses (even if very small) \Rightarrow not all of them are massless

Neutrino oscillations: analogous to CKM mixing for quarks, with

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_{k} \quad (\alpha = e, \mu, \tau)$$

 ν_{α} flavour eigenstates, $U_{\alpha k}$ PMNS mixing matrix, ν_{k} mass eigenstates.

- neutrino existence proposed by Pauli (1930) to explain β decay
- ▶ first time observed in 1956 by C. Cowan, F. Reines
- oscillations proposed in 1957 by B. Pontecorvo
- "massless" until oscillations detected in 1998 (SuperKamiokande)
- ightharpoonup
 u oscillate only if they have different masses (even if very small) \Rightarrow not all of them are massless

Neutrino oscillations: analogous to CKM mixing for quarks, with

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_{k} \quad (\alpha = e, \mu, \tau)$$

 ν_{α} flavour eigenstates, $U_{\alpha k}$ PMNS mixing matrix, ν_{k} mass eigenstates.

- lacktriangle neutrino existence proposed by Pauli (1930) to explain eta decay
- ▶ first time observed in 1956 by C. Cowan, F. Reines
- oscillations proposed in 1957 by B. Pontecorvo
- "massless" until oscillations detected in 1998 (SuperKamiokande)
- ν oscillate only if they have different masses (even if very small)
 ⇒ not all of them are massless

Neutrino oscillations: analogous to CKM mixing for quarks, with

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_{k} \quad (\alpha = e, \mu, \tau)$$

 u_{α} flavour eigenstates, $U_{\alpha k}$ PMNS mixing matrix, u_{k} mass eigenstates.

- ightharpoonup neutrino existence proposed by Pauli (1930) to explain eta decay
- ▶ first time observed in 1956 by C. Cowan, F. Reines
- oscillations proposed in 1957 by B. Pontecorvo
- "massless" until oscillations detected in 1998 (SuperKamiokande)
- ν oscillate only if they have different masses (even if very small)
 ⇒ not all of them are massless

Neutrino oscillations: analogous to CKM mixing for quarks, with

$$u_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_{k} \quad (\alpha = e, \mu, \tau)$$

 ν_{α} flavour eigenstates, $U_{\alpha k}$ PMNS mixing matrix, ν_{k} mass eigenstates.

Oscillations sensitive only to mass differences, not to absolute mass scale!

Effective 2 neutrino mixing ($\Delta m_{21}^2 = m_2^2 - m_1^2$, θ_{12} mixing angle)

$$P_{lpha
ightarrow eta, lpha
eq eta} = \sin^2(2 heta_{12})\sin^2\left(rac{\Delta m_{21}^2 L}{4E}
ight)$$

Current knowledge of the active ν mixing:

$$\begin{array}{lll} \Delta m_{SOL}^2 &= (7.50 \pm 0.20) \cdot 10^{-5} \; \mathrm{eV}^2 &= \Delta m_{21}^2 \\ \Delta m_{ATM}^2 &= (2.32^{+0.12}_{-0.08}) \cdot 10^{-3} \; \mathrm{eV}^2 &= |\Delta m_{32}^2| \simeq |\Delta m_{31}^2| \\ \sin^2(2\theta_{12}) &= 0.857 \pm 0.024 \\ \sin^2(2\theta_{23}) &> 0.95 \\ \sin^2(2\theta_{13}) &= 0.095 \pm 0.010 \\ [\mathrm{PDG} \text{ - Beringer et al. } (2013)] \end{array}$$

CP violation possible only if $\sin \theta_{13} \neq 0$ CP violating phase still unknown.

Oscillations sensitive only to mass differences, not to absolute mass scale!

Effective 2 neutrino mixing ($\Delta m_{21}^2 = m_2^2 - m_1^2$, θ_{12} mixing angle):

$$P_{\alpha \to \beta, \alpha \neq \beta} = \sin^2(2\theta_{12})\sin^2\left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

Current knowledge of the active ν mixing:

$$\begin{array}{lll} \Delta m_{SOL}^2 &= (7.50 \pm 0.20) \cdot 10^{-5} \; \mathrm{eV}^2 &= \Delta m_{21}^2 \\ \Delta m_{ATM}^2 &= (2.32^{+0.12}_{-0.08}) \cdot 10^{-3} \; \mathrm{eV}^2 &= |\Delta m_{32}^2| \simeq |\Delta m_{31}^2 \\ \sin^2(2\theta_{12}) &= 0.857 \pm 0.024 \\ \sin^2(2\theta_{23}) &> 0.95 \\ \sin^2(2\theta_{13}) &= 0.095 \pm 0.010 \\ \mathrm{[PDG - Beringer \, et \, al. \, (2013)]} \end{array}$$

CP violation possible only if $\sin\theta_{13} \neq 0$ CP violating phase still unknown.

Oscillations sensitive only to mass differences, not to absolute mass scale!

Effective 2 neutrino mixing ($\Delta m_{21}^2 = m_2^2 - m_1^2$, θ_{12} mixing angle):

$$P_{\alpha \to \beta, \alpha \neq \beta} = \sin^2(2\theta_{12})\sin^2\left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

Current knowledge of the active ν mixing:

$$\begin{array}{lll} \Delta m^2_{SOL} &= (7.50 \pm 0.20) \cdot 10^{-5} \; \mathrm{eV}^2 &= \Delta m^2_{21} \\ \Delta m^2_{ATM} &= (2.32^{+0.12}_{-0.08}) \cdot 10^{-3} \; \mathrm{eV}^2 &= |\Delta m^2_{32}| \simeq |\Delta m^2_{31}| \\ \sin^2(2\theta_{12}) &= 0.857 \pm 0.024 \\ \sin^2(2\theta_{23}) &> 0.95 \\ \sin^2(2\theta_{13}) &= 0.095 \pm 0.010 \\ [\text{PDG - Beringer et al. (2013)}] \end{array}$$

CP violation possible only if $\sin heta_{13}
eq 0$ CP violating phase still unknown.

Oscillations sensitive only to mass differences, not to absolute mass scale!

Effective 2 neutrino mixing ($\Delta m_{21}^2 = m_2^2 - m_1^2$, θ_{12} mixing angle):

$$P_{\alpha \to \beta, \alpha \neq \beta} = \sin^2(2\theta_{12})\sin^2\left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

Current knowledge of the active ν mixing:

$$\begin{array}{lll} \Delta m^2_{SOL} &= (7.50 \pm 0.20) \cdot 10^{-5} \; \mathrm{eV}^2 &= \Delta m^2_{21} \\ \Delta m^2_{ATM} &= (2.32^{+0.12}_{-0.08}) \cdot 10^{-3} \; \mathrm{eV}^2 &= |\Delta m^2_{32}| \simeq |\Delta m^2_{31}| \\ \sin^2(2\theta_{12}) &= 0.857 \pm 0.024 \\ \sin^2(2\theta_{23}) &> 0.95 \\ \sin^2(2\theta_{13}) &= 0.095 \pm 0.010 \\ [\text{PDG - Beringer et al. (2013)}] \end{array}$$

CP violation possible only if $\sin\theta_{13} \neq 0$ CP violating phase still unknown.

Problem: observed anomalies in short baseline experiments \Rightarrow deviations from standard 3- ν description?

A short review: [Fan, Langacker, 2012]

- ▶ LSND: search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]
- MiniBooNE: search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E=0.2 \div 2.6$ m/MeV. No ν_{e} excess detected, but $\bar{\nu}_{e}$ excess observed at 2.8σ [MiniBooNE Collaboration, 2013]
- ▶ Reactor anomaly: re-evaluation of the expected anti-neutrino flux \Rightarrow excess of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]
- ▶ Gallium anomaly: GALLEX and SAGE Gallium solar neutrino experiments give a 2.7σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]

Possible explanation:

$$\Delta m_{SRI}^2 \simeq 1 \text{ eV}^2$$

Problem: observed anomalies in short baseline experiments \Rightarrow deviations from standard 3- ν description?

A short review: [Fan, Langacker, 2012]

- ▶ *LSND*: search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]
- ▶ MiniBooNE: search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.2 \div 2.6$ m/MeV. No ν_{e} excess detected, but $\bar{\nu}_{e}$ excess observed at 2.8σ [MiniBooNE Collaboration, 2013]
- ▶ Reactor anomaly: re-evaluation of the expected anti-neutrino flux \Rightarrow excess of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]
- ▶ Gallium anomaly: GALLEX and SAGE Gallium solar neutrino experiments give a 2.7σ anomaly (disappearance of $\nu_{\rm e}$) [Giunti, Laveder, 2011]

Possible explanation:

$$\Delta m_{SBI}^2 \simeq 1 \text{ eV}^2$$

Problem: observed anomalies in short baseline experiments \Rightarrow deviations from standard 3- ν description?

A short review: [Fan, Langacker, 2012]

- ▶ *LSND*: search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]
- ▶ *MiniBooNE*: search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.2 \div 2.6$ m/MeV. No ν_{e} excess detected, but $\bar{\nu}_{e}$ excess observed at 2.8σ [MiniBooNE Collaboration, 2013]
- ▶ Reactor anomaly: re-evaluation of the expected anti-neutrino flux \Rightarrow excess of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]
- ▶ Gallium anomaly: GALLEX and SAGE Gallium solar neutrino experiments give a 2.7σ anomaly (disappearance of $\nu_{\rm e}$) [Giunti, Laveder, 2011]

Possible explanation:

$$\Delta m^2_{SBL} \simeq 1 \; \mathrm{eV}^2$$

Problem: observed anomalies in short baseline experiments \Rightarrow deviations from standard 3- ν description?

A short review: [Fan, Langacker, 2012]

- ▶ *LSND*: search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]
- ▶ MiniBooNE: search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.2 \div 2.6$ m/MeV. No ν_{e} excess detected, but $\bar{\nu}_{e}$ excess observed at 2.8σ [MiniBooNE Collaboration, 2013]
- ▶ Reactor anomaly: re-evaluation of the expected anti-neutrino flux \Rightarrow excess of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]
- ▶ Gallium anomaly: GALLEX and SAGE Gallium solar neutrino experiments give a 2.7σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]

Possible explanation:

$$\Delta m_{SRI}^2 \simeq 1 \text{ eV}^2$$

Problem: observed anomalies in short baseline experiments \Rightarrow deviations from standard 3- ν description?

A short review: [Fan, Langacker, 2012]

- ▶ *LSND*: search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]
- ▶ *MiniBooNE*: search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.2 \div 2.6$ m/MeV. No ν_{e} excess detected, but $\bar{\nu}_{e}$ excess observed at 2.8σ [MiniBooNE Collaboration, 2013]
- ▶ Reactor anomaly: re-evaluation of the expected anti-neutrino flux \Rightarrow excess of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]
- ▶ Gallium anomaly: GALLEX and SAGE Gallium solar neutrino experiments give a 2.7σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]

Possible explanation

$$\Delta m^2_{SBL} \simeq 1 \; \mathrm{eV}^2$$

Problem: observed anomalies in short baseline experiments \Rightarrow deviations from standard 3- ν description?

A short review: [Fan, Langacker, 2012]

- ▶ *LSND*: search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8σ excess of $\bar{\nu}_{e}$ events [Aguilar et al., 2001]
- ▶ *MiniBooNE*: search for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with $L/E = 0.2 \div 2.6$ m/MeV. No ν_{e} excess detected, but $\bar{\nu}_{e}$ excess observed at 2.8σ [MiniBooNE Collaboration, 2013]
- ▶ Reactor anomaly: re-evaluation of the expected anti-neutrino flux \Rightarrow excess of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with L < 100 m [Azabajan et al, 2012]
- ▶ Gallium anomaly: GALLEX and SAGE Gallium solar neutrino experiments give a 2.7σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]

Possible explanation:

$$\Delta m_{SBI}^2 \simeq 1 \text{ eV}^2$$

SBL anomaly
$$\Rightarrow \Delta m^2_{SBL} \simeq 1 \text{ eV}^2$$
 [Giunti et al., 2013]

1

Existence of an additional neutrino degree of freedom, mass around 1 eV, no weak interaction \Rightarrow sterile.

 \downarrow

3 active $(m_i \ll 1 \; {
m eV}) + 1$ sterile $(m_s \simeq 1 \; {
m eV}) \;
u$ scenario

We must update our mixing paradigm

$$u_{\alpha} = \sum_{k=1}^{3+1} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau, s)$$

[Giunti et al, 2013]

 $0.82 \le \Delta m_{SBL}^2 / \text{ eV}^2 \le 2.19$

 (3σ)

 ν_s is mainly ν_4 :

$$m_s \simeq m_4 \simeq \sqrt{\Delta m_{SBL}^2}$$

SBL anomaly
$$\Rightarrow \Delta m^2_{SBL} \simeq 1 \text{ eV}^2$$
 [Giunti et al., 2013] \Downarrow

Existence of an additional neutrino degree of freedom, mass around 1 eV, no weak interaction \Rightarrow sterile.

1

3 active $(m_i \ll 1 \text{ eV}) + 1 \text{ sterile } (m_s \simeq 1 \text{ eV}) \
u \text{ scenario}$

We must update our mixing paradigm

$$\nu_{\alpha} = \sum_{k=1}^{3+1} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau, s)$$

[Giunti et al, 2013] $82 \leq \Delta m^2_{SBL}/~ ext{eV}^2 \leq 2.19$

 ν_s is mainly ν_4 :

$$m_s \simeq m_4 \simeq \sqrt{\Delta m_{SBL}^2}$$

SBL anomaly
$$\Rightarrow \Delta m^2_{SBL} \simeq 1 \text{ eV}^2$$
 [Giunti et al., 2013] \Downarrow

Existence of an additional neutrino degree of freedom, mass around 1 eV, no weak interaction \Rightarrow sterile.

1

3 active $(m_i \ll 1 \text{ eV}) + 1 \text{ sterile } (m_s \simeq 1 \text{ eV}) \
u \text{ scenario}$

We must update our mixing paradigm

$$u_{\alpha} = \sum_{k=1}^{3+1} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau, s)$$

[Giunti et al, 2013] $0.82 \leq \Delta m_{SBL}^2 / \mathrm{eV}^2 \leq 2.19$

 u_s is mainly u_4 :

$$m_s \simeq m_4 \simeq \sqrt{\Delta m_{SBL}^2}$$

SBL anomaly
$$\Rightarrow \Delta m^2_{SBL} \simeq 1 \text{ eV}^2$$
 [Giunti et al., 2013] \Downarrow

Existence of an additional neutrino degree of freedom, mass around 1 eV, no weak interaction \Rightarrow sterile.

3 active $(m_i \ll 1 \text{ eV}) + 1 \text{ sterile } (m_s \simeq 1 \text{ eV}) \
u \text{ scenario}$

We must update our mixing paradigm:

$$\nu_{\alpha} = \sum_{k=1}^{3+1} U_{\alpha k} \nu_{k} \quad (\alpha = e, \mu, \tau, s)$$

[Giunti et al, 2013] $0.82 \le \Delta m_{SBL}^2 / \text{ eV}^2 \le 2.19$

 u_s is mainly u_4

$$m_s \simeq m_4 \simeq \sqrt{\Delta m_{SBL}^2}$$

SBL anomaly
$$\Rightarrow \Delta m^2_{SBL} \simeq 1 \text{ eV}^2$$
 [Giunti et al., 2013] \Downarrow

Existence of an additional neutrino degree of freedom, mass around 1 eV, no weak interaction \Rightarrow sterile.

$$\downarrow$$

3 active ($m_i \ll 1$ eV) + 1 sterile ($m_s \simeq 1$ eV) u scenario

We must update our mixing paradigm:

$$u_{\alpha} = \sum_{k=1}^{3+1} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau, s)$$

[Giunti et al, 2013] $0.82 \le \Delta m_{SBL}^2 / \text{ eV}^2 \le 2.19$

 ν_s is mainly ν_4 :

$$\textit{m}_{\textrm{s}} \simeq \textit{m}_{\textrm{4}} \simeq \sqrt{\Delta \textit{m}_{\textrm{SBL}}^2}$$

SBL anomaly
$$\Rightarrow \Delta m^2_{SBL} \simeq 1 \ \text{eV}^2$$
 [Giunti et al., 2013] $\downarrow \! \downarrow$

Existence of an additional neutrino degree of freedom, mass around 1 eV, no weak interaction \Rightarrow sterile.

$$\downarrow$$

3 active ($m_i \ll 1$ eV) + 1 sterile ($m_s \simeq 1$ eV) u scenario

We must update our mixing paradigm:

$$\nu_{\alpha} = \sum_{k=1}^{3+1} U_{\alpha k} \nu_{k} \quad (\alpha = e, \mu, \tau, s)$$
 [Giunti et al, 2013]
$$0.82 \leq \Delta m_{SBL}^{2} / \text{ eV}^{2} \leq 2.19$$

$$\nu_{s} \text{ is mainly } \nu_{4} : \tag{3σ}$$

$$m_s \simeq m_4 \simeq \sqrt{\Delta m_{SBL}^2}$$

Sterile ν in cosmology: distribution function $f_s(p) = \frac{\beta_s}{e^{p/\alpha_s}T_{\nu} + 1}$

Contribution of the ν_s to cosmology described with: [Acero, Lesgourgues, 2009]

- ► $m_s^{\text{eff}} = (94.1 \text{ eV}) \, \omega_s = \rho_s / \rho_c^0$, from which we obtain $m_s^{\text{eff}} = m_s \beta_s \alpha_s^3$ Constant is given by $\sum m_s = (94.1 \text{ eV}) \, \omega_s$ for SM neutrinos.

Problem: 2 observables ($\Delta N_{\rm eff}$, $m_s^{\rm eff}$), 3 parameters (α_s , β_s , m_s)!

$$\Rightarrow m_{TH}^{ ext{eff}} = m_s (\Delta N_{ ext{eff}}^{TH})^{3/4}$$

Sterile ν in cosmology: distribution function $f_s(p) = \frac{\beta_s}{e^{p/\alpha_s}T_{\nu} + 1}$

Contribution of the u_s to cosmology described with: [Acero, Lesgourgues, 2009]

- ▶ $\Delta N_{\text{eff}} = N_{\text{eff}} 3.046$: $\rho_R = \left[1 + \frac{7}{8} \left(\frac{T_\nu}{T_\gamma}\right)^4 N_{\text{eff}}\right] \rho_\gamma$, it becomes $\Delta N_{\text{eff}} = \beta_s \alpha_s^4$
- $m_s^{\text{eff}} = (94.1 \text{ eV}) \, \omega_s = \rho_s/\rho_c^0$, from which we obtain $m_s^{\text{eff}} = m_s \beta_s \alpha_s^3$

Problem: 2 observables ($\Delta N_{\rm eff}$, $m_s^{\rm eff}$), 3 parameters (α_s , β_s , m_s)!

$$\Rightarrow m_{TH}^{ ext{eff}} = m_s \, (\Delta N_{ ext{eff}}^{TH})^{3/4}$$

Sterile ν in cosmology: distribution function $f_s(p) = \frac{\beta_s}{e^{p/\alpha_s}T_{\nu} + 1}$

Contribution of the ν_s to cosmology described with: [Acero, Lesgourgues, 2009]

- $m_s^{\text{eff}} = (94.1 \text{ eV}) \, \omega_s = \rho_s/\rho_c^0$, from which we obtain $m_s^{\text{eff}} = m_s \beta_s \alpha_s^3$

Problem: 2 observables ($\Delta N_{\rm eff}$, $m_s^{\rm eff}$), 3 parameters (α_s , β_s , m_s)!

$$\Rightarrow m_{TH}^{ ext{eff}} = m_s \, (\Delta N_{ ext{eff}}^{TH})^{3/4}$$

Sterile ν in cosmology: distribution function $f_s(p) = \frac{\beta_s}{e^{p/\alpha_s}T_{\nu} + 1}$

Contribution of the ν_s to cosmology described with: [Acero, Lesgourgues, 2009]

- ► $m_s^{\rm eff} = (94.1 \, {\rm eV}) \, \omega_s = \rho_s/\rho_c^0$, from which we obtain $m_s^{\rm eff} = m_s \beta_s \alpha_s^3$ Constant is given by $\sum m_i = (94.1 \, {\rm eV}) \, \omega_\nu$ for SM neutrinos.

Problem: 2 observables ($\Delta N_{\rm eff}$, $m_s^{\rm eff}$), 3 parameters (α_s , β_s , m_s)!

$$\Rightarrow m_{TH}^{ ext{eff}} = m_s \, (\Delta N_{ ext{eff}}^{TH})^{3/4}$$

Sterile ν in cosmology: distribution function $f_s(p) = \frac{\beta_s}{e^{p/\alpha_s T_{\nu}} + 1}$

Contribution of the $u_{\rm s}$ to cosmology described with: [Acero, Lesgourgues, 2009]

- ► $m_s^{\rm eff} = (94.1 \, {\rm eV}) \, \omega_s = \rho_s/\rho_c^0$, from which we obtain $m_s^{\rm eff} = m_s \beta_s \alpha_s^3$ Constant is given by $\sum m_i = (94.1 \, {\rm eV}) \, \omega_\nu$ for SM neutrinos.

Problem: 2 observables ($\Delta N_{\rm eff}$, $m_s^{\rm eff}$), 3 parameters (α_s , β_s , m_s)!

$$\Rightarrow m_{TH}^{ ext{eff}} = m_s \, (\Delta N_{ ext{eff}}^{TH})^{3/4}$$

Sterile ν in cosmology: distribution function $f_s(p) = \frac{\beta_s}{e^{p/\alpha_s T_{\nu}} + 1}$

Contribution of the $\nu_{\rm s}$ to cosmology described with: [Acero, Lesgourgues, 2009]

- ► $m_s^{\rm eff} = (94.1 \, {\rm eV}) \, \omega_s = \rho_s/\rho_c^0$, from which we obtain $m_s^{\rm eff} = m_s \beta_s \alpha_s^3$ Constant is given by $\sum m_i = (94.1 \, {\rm eV}) \, \omega_\nu$ for SM neutrinos.

Problem: 2 observables ($\Delta N_{\rm eff}$, $m_s^{\rm eff}$), 3 parameters (α_s , β_s , m_s)!

$$\Rightarrow m_{TH}^{\text{eff}} = m_s (\Delta N_{\text{off}}^{TH})^{3/4}$$

Parameters

In the following we will study the Universe evolution considering a $\Lambda CDM + r_{0.002} + \nu_s$ model with 9 free parameters:

$$\{\omega_{CDM}, \omega_b, \theta_s, \tau, \ln(10^{10}A_s), n_s\} + r_{0.002} + \{\Delta N_{\text{eff}}, m_s\}$$

 ω_{CDM} - CDM density today ω_b - baryon density today θ_s - angular sound horizon τ - optical depth to reionization $\ln(10^{10}A_s)$ - amplitude and n_s tilt of the primordial power spectrum

 $r_{0.002}$ - tensor to scalar ratio at 0.002 Mpc $^{-1}$

 $\Delta \textit{N}_{
m eff}$ effective number of $\nu_{\it s}$ $m_{\it s}$ physical mass of $\nu_{\it s}$

Assume

- $ightharpoonup m_{
 u,
 m active} = 0.06$ eV (minimal for Normal Hierarchy)
- ▶ $0 \le m_s/\text{eV} \le 3.5$
- \triangleright 0 < $\triangle N_{\rm eff}$ < 3

Parameters

In the following we will study the Universe evolution considering a $\Lambda CDM + r_{0.002} + \nu_s$ model with 9 free parameters:

$$\{\omega_{CDM}, \omega_b, \theta_s, \tau, \ln(10^{10}A_s), n_s\} + r_{0.002} + \{\Delta N_{\text{eff}}, m_s\}$$

 ω_{CDM} - CDM density today ω_b - baryon density today θ_s - angular sound horizon τ - optical depth to reionization $\ln(10^{10}A_s)$ - amplitude and n_s tilt of the primordial power spectrum

 $r_{0.002}$ - tensor to scalar ratio at 0.002 Mpc $^{-1}$

 $\Delta \textit{N}_{
m eff}$ effective number of $\nu_{\it s}$ $m_{\it s}$ physical mass of $\nu_{\it s}$

Assume:

- $ightharpoonup m_{
 u,
 m active} = 0.06$ eV (minimal for Normal Hierarchy)
- ▶ $0 \le m_s/\text{eV} \le 3.5$
- $ightharpoonup 0 < \Delta N_{\rm eff} < 3$

MCMC with CosmoMC with different cosmological data:

- ▶ Planck: Planck TT spectra
- ▶ WP: WMAP 9-year polarization data.
- high-\ell spectra from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT).
- ► BICEP2 B-modes autocorrelation power spectrum.
- LSS: WiggleZ Dark Energy Survey matter power spectrum at 4 different redshifts
- H_0 : $H_0 = 73.8 \pm 2.4 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$, using Cepheids and SN Ia.
- ▶ *CFHTLens*: the CFHTLens 2D cosmic shear correlation function (from redshifts and shapes of 4.2 million galaxies with 0.2 < z < 1.3).
- PSZ: 189 galaxy clusters identified through the Sunayev Zel'Dovich effect from Planck SZ catalogue.

SBL data included as a prior on m_s .

MCMC with CosmoMC with different cosmological data:

- ▶ *Planck*: Planck TT spectra
- WP: WMAP 9-year polarization data.
- ► high-ℓ spectra from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT).
- ▶ *BICEP2* B-modes autocorrelation power spectrum.
- LSS: WiggleZ Dark Energy Survey matter power spectrum at 4 different redshifts.
- ► H_0 : $H_0 = 73.8 \pm 2.4 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$, using Cepheids and SN Ia.
- ▶ *CFHTLens*: the CFHTLens 2D cosmic shear correlation function (from redshifts and shapes of 4.2 million galaxies with 0.2 < z < 1.3).
- ▶ *PSZ*: 189 galaxy clusters identified through the Sunayev Zel'Dovich effect from Planck SZ catalogue.

SBL data included as a prior on m_s .

MCMC with CosmoMC with different cosmological data:

- ▶ Planck: Planck TT spectra
- ▶ WP: WMAP 9-year polarization data.
- ▶ $high-\ell$ spectra from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT).
- ▶ BICEP2 B-modes autocorrelation power spectrum.
- LSS: WiggleZ Dark Energy Survey matter power spectrum at 4 different redshifts.
- ► H_0 : $H_0 = 73.8 \pm 2.4 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$, using Cepheids and SN Ia.
- ▶ *CFHTLens*: the CFHTLens 2D cosmic shear correlation function (from redshifts and shapes of 4.2 million galaxies with 0.2 < z < 1.3).
- ▶ *PSZ*: 189 galaxy clusters identified through the Sunayev Zel'Dovich effect from Planck SZ catalogue.

SBL data included as a prior on m_s .

MCMC with CosmoMC with different cosmological data:

- ▶ Planck: Planck TT spectra
- ▶ WP: WMAP 9-year polarization data.
- ▶ $high-\ell$ spectra from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT).
- ▶ BICEP2 B-modes autocorrelation power spectrum.
- LSS: WiggleZ Dark Energy Survey matter power spectrum at 4 different redshifts.
- ► H_0 : $H_0 = 73.8 \pm 2.4 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$, using Cepheids and SN Ia.
- ▶ *CFHTLens*: the CFHTLens 2D cosmic shear correlation function (from redshifts and shapes of 4.2 million galaxies with 0.2 < z < 1.3).
- ▶ *PSZ*: 189 galaxy clusters identified through the Sunayev Zel'Dovich effect from Planck SZ catalogue.

SBL data included as a prior on m_s .

MCMC with CosmoMC with different cosmological data:

- ▶ Planck: Planck TT spectra
- ▶ WP: WMAP 9-year polarization data.
- ▶ $high-\ell$ spectra from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT).
- ▶ BICEP2 B-modes autocorrelation power spectrum.
- LSS: WiggleZ Dark Energy Survey matter power spectrum at 4 different redshifts.
- ► H_0 : $H_0 = 73.8 \pm 2.4 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$, using Cepheids and SN Ia.
- ▶ *CFHTLens*: the CFHTLens 2D cosmic shear correlation function (from redshifts and shapes of 4.2 million galaxies with 0.2 < z < 1.3).
- PSZ: 189 galaxy clusters identified through the Sunayev Zel'Dovich effect from Planck SZ catalogue.

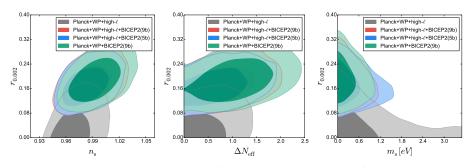
SBL data included as a prior on m_s .

MCMC with CosmoMC with different cosmological data:

- ▶ Planck: Planck TT spectra
- ▶ WP: WMAP 9-year polarization data.
- ▶ $high-\ell$ spectra from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT).
- ▶ BICEP2 B-modes autocorrelation power spectrum.
- LSS: WiggleZ Dark Energy Survey matter power spectrum at 4 different redshifts.
- ► H_0 : $H_0 = 73.8 \pm 2.4 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$, using Cepheids and SN Ia.
- ▶ *CFHTLens*: the CFHTLens 2D cosmic shear correlation function (from redshifts and shapes of 4.2 million galaxies with 0.2 < z < 1.3).
- ▶ *PSZ*: 189 galaxy clusters identified through the Sunayev Zel'Dovich effect from Planck SZ catalogue.

SBL data included as a prior on m_s .

Results - L

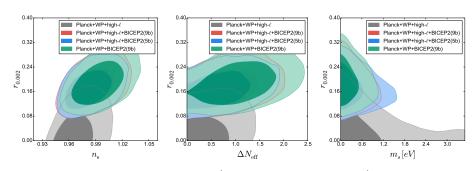


First tension: $r_{0.002}$ (with and without BICEP2) We must wait Planck 2014 data release, with polarization data

No significant variations using different CMB dataset:

- ► Planck+WP+high-ℓ+BICEP2(9b)
- ► Planck+WP+high-ℓ+BICEP2(5b)
- ► Planck+WP+BICEP2(9b)

Notice: $\Delta N_{\rm eff}$ larger with BICEP2 (indirect correlation with $r_{0.002}$ through $n_{\rm s}$)

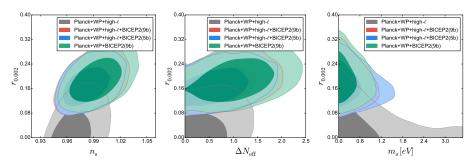


First tension: $r_{0.002}$ (with and without BICEP2) We must wait Planck 2014 data release, with polarization data

No significant variations using different CMB dataset:

- ► Planck+WP+high-ℓ+BICEP2(9b)
- ► Planck+WP+high-ℓ+BICEP2(5b)
- ► Planck+WP+BICEP2(9b)

Notice: ΔN_{eff} larger with BICEP2 (indirect correlation with $r_{0.002}$ through n_s)

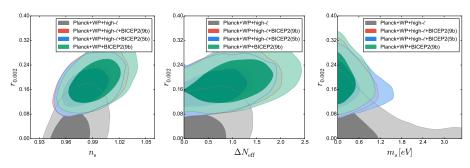


First tension: $r_{0.002}$ (with and without BICEP2) We must wait Planck 2014 data release, with polarization data

No significant variations using different CMB dataset:

- ► Planck+WP+high-ℓ+BICEP2(9b)
- ▶ Planck+WP+high- ℓ +BICEP2(5b)
- ► Planck+WP+BICEP2(9b)

Notice: ΔN_{eff} larger with BICEP2 (indirect correlation with $r_{0.002}$ through n_s)

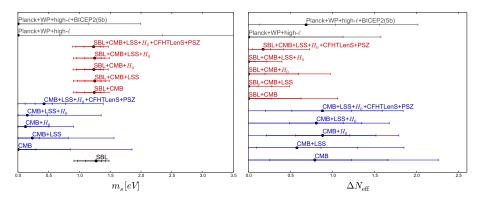


First tension: $r_{0.002}$ (with and without BICEP2) We must wait Planck 2014 data release, with polarization data

No significant variations using different CMB dataset:

- ► Planck+WP+high-ℓ+BICEP2(9b)
- ▶ Planck+WP+high- ℓ +BICEP2(5b)
- ► Planck+WP+BICEP2(9b)

Notice: $\Delta N_{\rm eff}$ larger with BICEP2 (indirect correlation with $r_{0.002}$ through n_s)

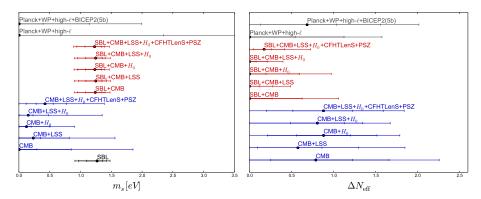


Second tension: m_s vs $\Delta N_{\rm eff}$ (with and without SBL)

Notice: small $\Delta N_{
m eff}$ if $m_s \sim 1$ eV

 $\Rightarrow
u_s$ cannot be fully thermalized, $\Delta \mathit{N}_{ ext{eff}} \ll 1
ightarrow \mathit{T}_s \ll \mathit{T}_{\iota}$

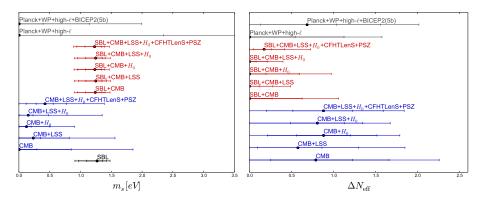
Notice: CFHTLenS and PSZ data give a preference (> 2σ) for m_s > 0, but $m_s\sim 0.5$ eV and lower than 1 eV at > 2σ



Second tension: m_s vs $\Delta N_{\rm eff}$ (with and without SBL)

Notice: small $\Delta N_{\rm eff}$ if $m_s\sim 1$ eV $\Rightarrow \nu_s$ cannot be fully thermalized, $\Delta N_{\rm eff}\ll 1 \to T_s\ll 7$

Notice: CFHTLenS and PSZ data give a preference ($>2\sigma$) for $m_s>0$, but $m_s\sim0.5$ eV and lower than 1 eV at $>2\sigma$

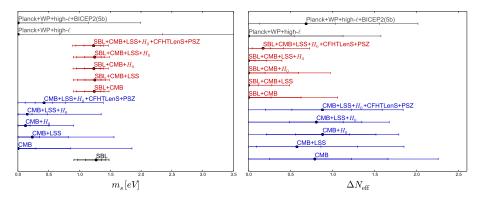


Second tension: m_s vs $\Delta N_{\rm eff}$ (with and without SBL)

Notice: small $\Delta \textit{N}_{\rm eff}$ if $\textit{m}_{\textit{s}} \sim 1$ eV

 $\Rightarrow
u_s$ cannot be fully thermalized, $\Delta N_{
m eff} \ll 1 o \mathcal{T}_s \ll \mathcal{T}_{
u}$

Notice: CFHTLenS and PSZ data give a preference (> 2σ) for m_s > 0, but $m_s \sim 0.5$ eV and lower than 1 eV at > 2σ

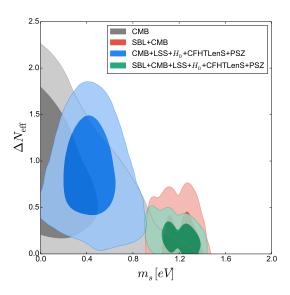


Second tension: m_s vs $\Delta N_{\rm eff}$ (with and without SBL)

Notice: small $\Delta N_{
m eff}$ if $m_s \sim 1$ eV

 $\Rightarrow
u_{s}$ cannot be fully thermalized, $\Delta N_{
m eff} \ll 1 o T_{s} \ll T_{
u}$

Notice: CFHTLenS and PSZ data give a preference (> 2σ) for m_s > 0, but $m_s \sim 0.5$ eV and lower than 1 eV at > 2σ

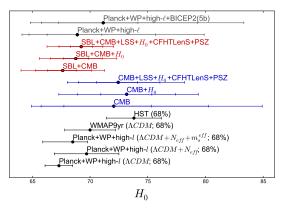


2D marginalized posterior distribution for $\Delta N_{\rm eff}$, m_s

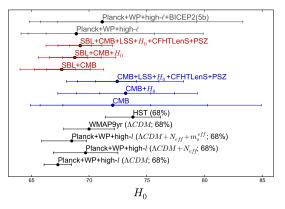
Comparison:

- CMB only
- complete dataset

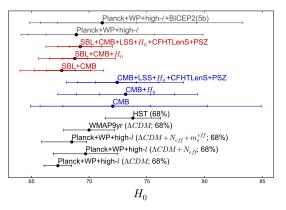
with and without SBL data



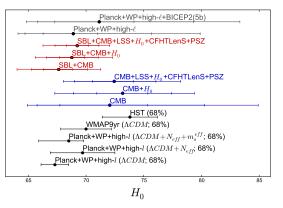
- ▶ Planck vs local measurements
- lacktriangle value inferred from CMB highly model-dependent: correlation with $N_{
 m eff}$
 - ⇒ higher values if BICEP2 included (higher N_{eff})
 ⇒ smaller values if SBL included (smaller N_{eff})



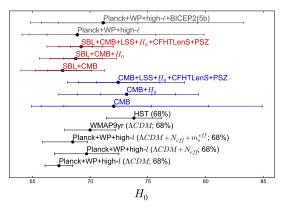
- Planck vs local measurements
- lacktriangle value inferred from CMB highly model-dependent: correlation with $N_{
 m eff}$
 - ⇒ higher values if BICEP2 included (higher N_{eff})
 ⇒ smaller values if SBL included (smaller N_{eff})



- Planck vs local measurements
- lacktriangle value inferred from CMB highly model-dependent: correlation with $N_{
 m eff}$
 - \Rightarrow higher values if BICEP2 included (higher $N_{
 m eff}$)
 - \Rightarrow smaller values if SBL included (smaller $N_{
 m eff}$)



- Planck vs local measurements
- ightharpoonup value inferred from CMB highly model-dependent: correlation with $N_{
 m eff}$
 - \Rightarrow higher values if BICEP2 included (higher $N_{\rm eff}$)
 - \Rightarrow smaller values if SBL included (smaller $N_{\rm eff}$)



- Planck vs local measurements
- lacktriangle value inferred from CMB highly model-dependent: correlation with $N_{
 m eff}$
 - \Rightarrow higher values if BICEP2 included (higher N_{eff})
 - \Rightarrow smaller values if SBL included (smaller N_{eff})

Proposed solution for solve the encountered tensions:

 ν_s can decay - lifetime τ_s comparable with Age of the Universe t_U

Decay products belong to the sterile sector \Rightarrow very weak interaction, invisible

Effective number of ν_s : $N_s(t) = \Delta N_{\rm eff} \cdot e^{-t/\tau_s}$ τ_s assumed to be constant (no energy dependent)

Decay products have negligible mass: they can be accounted as radiation with effective number $N_{dp}(t) = \Delta N_{\rm eff} \cdot (1-e^{-t/\tau_s})$

Energy distribution of the invisible decay products neglected for simplicity.

- initial radiation domination very short
- final Λ domination largest part of ν_s has decayed

Proposed solution for solve the encountered tensions:

 u_s can decay - lifetime au_s comparable with Age of the Universe t_U

Decay products belong to the sterile sector \Rightarrow very weak interaction, invisible

Effective number of ν_s : $N_s(t) = \Delta N_{\rm eff} \cdot e^{-t/\tau_s}$ τ_s assumed to be constant (no energy dependent)

Decay products have negligible mass: they can be accounted as radiation with effective number $N_{dp}(t)=\Delta N_{\rm eff}\cdot (1-e^{-t/ au_{\rm s}})$

Energy distribution of the invisible decay products neglected for simplicity.

- initial radiation domination very short
- final Λ domination largest part of ν_s has decayed

Proposed solution for solve the encountered tensions: ν_s can decay - lifetime τ_s comparable with Age of the Universe t_U

Decay products belong to the sterile sector \Rightarrow very weak interaction, invisible

Effective number of ν_s : $N_s(t) = \Delta N_{\rm eff} \cdot e^{-t/\tau_s}$ τ_s assumed to be constant (no energy dependent

Decay products have negligible mass: they can be accounted as radiation with effective number $N_{dp}(t) = \Delta N_{\rm eff} \cdot (1 - e^{-t/\tau_s})$

- initial radiation domination very short
- final Λ domination largest part of ν_s has decayed

Proposed solution for solve the encountered tensions: ν_s can decay - lifetime τ_s comparable with Age of the Universe t_U

Decay products belong to the sterile sector ⇒ very weak interaction, invisible

Effective number of ν_s : $N_s(t) = \Delta N_{\rm eff} \cdot e^{-t/\tau_s}$ τ_s assumed to be constant (no energy dependent).

Decay products have negligible mass: they can be accounted as radiation with effective number $N_{dp}(t) = \Delta N_{\text{eff}} \cdot (1 - e^{-t/\tau_s})$ Energy distribution of the invisible decay products neglected for simplicity.

- initial radiation domination very short
- final Λ domination largest part of ν_s has decayed

Proposed solution for solve the encountered tensions: ν_s can decay - lifetime τ_s comparable with Age of the Universe t_U

Decay products belong to the sterile sector \Rightarrow very weak interaction, invisible

Effective number of ν_s : $N_s(t) = \Delta N_{\rm eff} \cdot e^{-t/\tau_s}$ τ_s assumed to be constant (no energy dependent).

Decay products have negligible mass: they can be accounted as radiation with effective number $N_{dp}(t)=\Delta N_{\rm eff}\cdot (1-e^{-t/ au_s})$

Energy distribution of the invisible decay products neglected for simplicity.

- initial radiation domination very short
- final Λ domination largest part of ν_s has decayed

Proposed solution for solve the encountered tensions:

 u_{s} can decay - lifetime au_{s} comparable with Age of the Universe t_{U}

Decay products belong to the sterile sector \Rightarrow very weak interaction, invisible

Effective number of ν_s : $N_s(t) = \Delta N_{\rm eff} \cdot e^{-t/\tau_s}$

 au_{s} assumed to be constant (no energy dependent).

Decay products have negligible mass: they can be accounted as radiation with effective number $N_{dp}(t) = \Delta N_{\rm eff} \cdot (1 - e^{-t/\tau_{\rm s}})$

Energy distribution of the invisible decay products neglected for simplicity.

- initial radiation domination very short
- ▶ final Λ domination largest part of ν_s has decayed

Proposed solution for solve the encountered tensions: ν_s can decay - lifetime τ_s comparable with Age of the Universe t_U

Decay products belong to the sterile sector \Rightarrow very weak interaction, invisible

Effective number of ν_s : $N_s(t) = \Delta N_{\rm eff} \cdot e^{-t/\tau_s}$ τ_s assumed to be constant (no energy dependent).

Decay products have negligible mass: they can be accounted as radiation with effective number $N_{dp}(t) = \Delta N_{\rm eff} \cdot (1-e^{-t/\tau_s})$

Energy distribution of the invisible decay products neglected for simplicity.

- initial radiation domination very short
- final Λ domination largest part of ν_s has decayed

Proposed solution for solve the encountered tensions:

 u_{s} can decay - lifetime au_{s} comparable with Age of the Universe t_{U}

Decay products belong to the sterile sector ⇒ very weak interaction, invisible

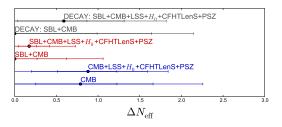
Effective number of ν_s : $N_s(t) = \Delta N_{\rm eff} \cdot e^{-t/\tau_s}$

 τ_{s} assumed to be constant (no energy dependent).

Decay products have negligible mass: they can be accounted as radiation with effective number $N_{dp}(t) = \Delta N_{\rm eff} \cdot (1 - e^{-t/\tau_s})$

Energy distribution of the invisible decay products neglected for simplicity.

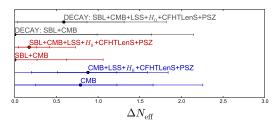
- initial radiation domination very short
- final Λ domination largest part of ν_s has decayed



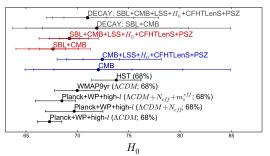
$$\Delta \textit{N}_{
m eff} = 1$$
 is allowed

*H*₀ compatible with local measurements (HST)

With sterile neutrino decay, $\Delta N_{\rm eff}$ and H_0 are at the same level than the ones without SBL prior

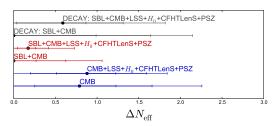


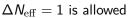
 $\Delta \textit{N}_{\rm eff} = 1$ is allowed

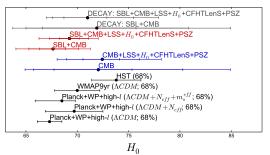


 H_0 compatible with local measurements (HST)

With sterile neutrino decay, $\Delta N_{\rm eff}$ and H_0 are at the same level than the ones without SBL prior



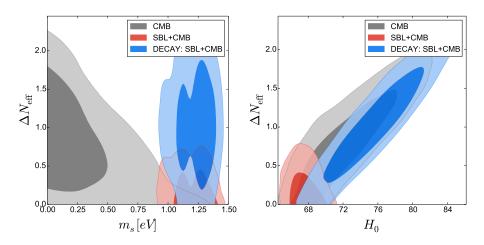




 H_0 compatible with local measurements (HST)

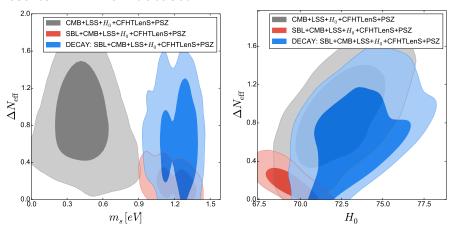
With sterile neutrino decay, $\Delta N_{\rm eff}$ and H_0 are at the same level than the ones without SBL prior

Results - II - CMB only



High $\Delta N_{\rm eff}$ even with SBL mass Correlation between $\Delta N_{\rm eff}$ and H_0 recovered

Results - III - full dataset

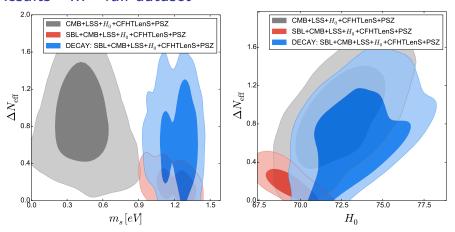


 $\Omega_{
u_s}$ can explain cluster data since it is related both to m_s and $\Delta N_{
m eff}$: $\Omega_{
u_s} \propto N_s(t)^{3/4} m_s$

Correlation between $\Delta N_{\rm eff}$ and H_0 recovered

Shape in $\Delta N_{
m eff}-H_0$ plot due to volume effects in the Bayesian analysis

Results - III - full dataset



 Ω_{ν_s} can explain cluster data since it is related both to m_s and $\Delta N_{\rm eff}$: $\Omega_{\nu_s} \propto N_s(t)^{3/4} m_s$

Correlation between $\Delta N_{\rm eff}$ and H_0 recovered

Shape in $\Delta N_{\rm eff} - H_0$ plot due to volume effects in the Bayesian analysis

Thank you for the attention!

Further details:

[Archidiacono, Fornengo, Gariazzo, Giunti, Hannestad, Laveder, arxiv:1404.1794] [Gariazzo, Giunti, Laveder, arxiv:1404.6160]

Correlation between $r_{0.002}$ and $\Delta N_{\rm eff}$

BICEP2: higher $r_{0.002}$ that correspond to more large-scale fluctuations.

Primordial power spectrum:

$$\mathcal{P}_k = A_s (k/k_0)^{n_s-1}$$

 k_0 pivot scale, A_s amplitude, n_s tilt

Higher $r_{0.002}$ can be compensated with an increase of $n_s o$ decrease of large-scale fluctuations

Increase of
$$n_s o$$
 increase of small-scale fluctuations $(k \gg k_0)$

Effect can be compensated with an increase of $N_{\rm eff} o$ decrease of small-scale fluctuations due to free streaming of relativistic particles