QCD critical point, fluctuations and hydrodynamics

M. Stephanov

QCD Phase Diagram (a theorist's view)

Outline

- Equilibrium
- Non-equilibrium

The key equation:

 $P(\sigma) \sim e^{S(\sigma)}$ (Einstein 1910)

The key equation:

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

The key equation:

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

■ At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \sigma^2 \rangle / V \rightarrow \infty$.

CLT?

The key equation:

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

• At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \sigma^2 \rangle / V \to \infty$.

CLT? σ is not a sum of ∞ many *uncorrelated* contributions: $\xi \to \infty$

Higher order cumulants

- Higher cumulants (shape of $P(\sigma)$) depend stronger on ξ . E.g., $\langle \sigma^2 \rangle \sim V \xi^2$ while $\langle \sigma^4 \rangle_c \sim V \xi^7$
- Higher moments also depend on which side of the CP we are.
 This dependence is also universal.
- Using Ising model variables:

Mapping Ising to QCD phase diagram

 $T \operatorname{vs} \mu_B$:

Mapping Ising to QCD phase diagram

 $T \operatorname{vs} \mu_B$:

● In QCD
$$(t, H) \rightarrow (\mu - \mu_{\rm CP}, T - T_{\rm CP})$$

Mapping Ising to QCD phase diagram

 $T \operatorname{vs} \mu_B$:

■ In QCD
$$(t, H) \rightarrow (\mu - \mu_{\rm CP}, T - T_{\rm CP})$$

$$\, \bullet \, \kappa_n(N) = N + \mathcal{O}(\kappa_n(\sigma))$$

Non-equilibrium physics is essential near the critical point.

Why ξ is finite

System expands and is out of equilibrium

Kibble-Zurek mechanism:

Critical slowing down means $\tau_{\text{relax}} \sim \xi^z$. Given $\tau_{\text{relax}} \lesssim \tau$ (expansion time scale): $\xi \lesssim \tau^{1/z}$, $z \approx 3$ (universal).

Why ξ is finite

System expands and is out of equilibrium

Kibble-Zurek mechanism:

Critical slowing down means $\tau_{\text{relax}} \sim \xi^z$. Given $\tau_{\text{relax}} \lesssim \tau$ (expansion time scale): $\xi \lesssim \tau^{1/z}$, $z \approx 3$ (universal).

M. Stephanov

QCD critical point, fluctuations and hydro

$\kappa_n \sim \xi^p$ and $\xi_{\max} \sim \tau^{1/z}$

Therefore, the magnitude of fluctuation signals is determined by non-equilibrium physics.

$\kappa_n \sim \xi^p$ and $\xi_{\max} \sim au^{1/z}$

- Therefore, the magnitude of fluctuation signals is determined by non-equilibrium physics.
- Logic so far:

Equilibrium fluctuations + a non-equilibrium effect (finite ξ)

 \longrightarrow Observable critical fluctuations

$\kappa_n \sim \xi^p$ and $\xi_{\max} \sim au^{1/z}$

- Therefore, the magnitude of fluctuation signals is determined by non-equilibrium physics.
- Logic so far:

Equilibrium fluctuations + a non-equilibrium effect (finite ξ)

→ Observable critical fluctuations

San we get critical fluctuations from hydrodynamics directly?

Hydrodynamics breaks down at CP

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} + p \Delta^{\mu\nu} + \tilde{T}^{\mu\nu}_{\text{visc}}$$

Hydrodynamics breaks down at CP

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} + p \Delta^{\mu\nu} + \tilde{T}^{\mu\nu}_{\text{visc}}$$

$$\tilde{T}^{\mu\nu}_{\rm visc} = -\zeta \Delta^{\mu\nu} (\nabla \cdot u) + \dots$$

Near CP gradient terms are dominated by $\zeta \sim \xi^3 \rightarrow \infty$ $(z - \alpha/\nu \approx 3)$.

Hydrodynamics breaks down at CP

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} + p \Delta^{\mu\nu} + \tilde{T}^{\mu\nu}_{\text{visc}}$$

$$\tilde{T}^{\mu\nu}_{\rm visc} = -\zeta \Delta^{\mu\nu} (\nabla \cdot u) + \dots$$

Near CP gradient terms are dominated by $\zeta \sim \xi^3 \rightarrow \infty$ $(z - \alpha/\nu \approx 3)$.

When $k \sim \xi^{-3}$ hydrodynamics breaks down, i.e., while $k \ll \xi^{-1}$ still.

(For simplicity, measure dim-ful quantities in units of T.)

Why does it break at so small k?

Critical slowing down and bulk viscosity

Bulk viscosity is the effect of system taking time to adjust to local equilibrium (Khalatnikov-Landau).

$$p_{
m hydro} = p_{
m equilibrium} - \zeta \, oldsymbol{
abla} \cdot oldsymbol{v}$$

$\nabla \cdot v$ – expansion rate

$$\zeta \sim \tau_{\rm relaxation} \sim \xi^3$$

Critical slowing down and bulk viscosity

Bulk viscosity is the effect of system taking time to adjust to local equilibrium (Khalatnikov-Landau).

$$p_{
m hydro} = p_{
m equilibrium} - \zeta \, oldsymbol{
abla} \cdot oldsymbol{v}$$

 $\nabla \cdot v$ – expansion rate

 $\zeta \sim \tau_{\rm relaxation} \sim \xi^3$

Hydrodynamics breaks down because of large relaxation time (critical slowing down).

Similar to breakdown of an effective theory due to a low-energy mode which should not have been integrated out.

9 There is a critically slow mode ϕ with relaxation time $\tau_{\phi} \sim \xi^3$.

- Interval a critically slow mode ϕ with relaxation time $\tau_{\phi} \sim \xi^3$.
- To extend the range of hydro extend hydro by the slow mode.

(MS-Yin 1704.07396, in preparation)

- Interval a critically slow mode ϕ with relaxation time $\tau_{\phi} \sim \xi^3$.
- To extend the range of hydro extend hydro by the slow mode.

(MS-Yin 1704.07396, in preparation)

• "Hydro+" has two competing limits, $k \to 0$ and $\xi \to \infty$;

or competing rates $\Gamma_{\phi} \sim \xi^{-3} \rightarrow 0$ and $\Gamma_{\text{hydro}} \sim k \rightarrow 0$.

- Interval a critically slow mode ϕ with relaxation time $\tau_{\phi} \sim \xi^3$.
- To extend the range of hydro extend hydro by the slow mode.

(MS-Yin 1704.07396, in preparation)

• "Hydro+" has two competing limits, $k \to 0$ and $\xi \to \infty$;

or competing rates $\Gamma_{\phi} \sim \xi^{-3} \rightarrow 0$ and $\Gamma_{hydro} \sim k \rightarrow 0$.

■ Regime I: $\Gamma_{\phi} \gg \Gamma_{\text{hydro}}$ – ordinary hydro ($\zeta \sim \xi^3 \rightarrow \infty$ at CP).

- Interval the second second
- To extend the range of hydro extend hydro by the slow mode.

(MS-Yin 1704.07396, in preparation)

• "Hydro+" has two competing limits, $k \to 0$ and $\xi \to \infty$;

or competing rates $\Gamma_{\phi} \sim \xi^{-3} \rightarrow 0$ and $\Gamma_{hydro} \sim k \rightarrow 0$.

■ Regime I: $\Gamma_{\phi} \gg \Gamma_{hydro}$ – ordinary hydro ($\zeta \sim \xi^3 \rightarrow \infty$ at CP).

Crossover occurs when $\Gamma_{\rm hydro} \sim \Gamma_{\phi}$, or $k \sim \xi^{-3}$.

Solution Regime II: $k > \xi^{-3}$ – "Hydro+" regime.

Advantages/motivation of Hydro+

Extends the range of validity of "vanilla" hydro near CP to length/time scales shorter than O(ξ³).

- Extends the range of validity of "vanilla" hydro near CP to length/time scales shorter than O(ξ³).
- No kinetic coefficients diverging as ξ³.
 (Since noise ~ ζ, also the noise is not large.)

Ingredients of "Hydro+"

Nonequilibrium entropy, or quasistatic EOS:

 $s^*(\varepsilon, n, \phi)$

Equilibrium entropy is the maximum of s^* :

$$s(\varepsilon, n) = \max_{\phi} s^*(\varepsilon, n, \phi)$$

Ingredients of "Hydro+"

Nonequilibrium entropy, or quasistatic EOS:

 $s^*(\varepsilon, n, \phi)$

Equilibrium entropy is the maximum of s^* :

$$s(\varepsilon, n) = \max_{\phi} s^*(\varepsilon, n, \phi)$$

The 6th equation (constrained by 2nd law):

$$(u \cdot \partial)\phi = -\gamma_{\phi}\pi - G_{\phi}(\partial \cdot u), \quad \text{where } \pi = \frac{\partial s^*}{\partial \phi}$$

Linearized Hydro+ has 4 longitudinal modes (sound×2 + density + ϕ). In addition to the usual c_s , D, etc. Hydro+ has two more parameters

$$\Delta c^2 = c_*^2 - c_s^2$$
 and $\Gamma = \Gamma_{\phi}$.

The sound velocities are different in Regime I ($c_s k \ll \Gamma$) and II:

$$c_s^2 = \left(\frac{\partial p}{\partial \varepsilon}\right)_{s/n,\pi=0}$$
 and $c_*^2 = \left(\frac{\partial p^*}{\partial \varepsilon}\right)_{s/n,\phi}$

The bulk viscosity receives large contribution from the slow mode given by Landau-Khalatnikov formula

$$\Delta \zeta = w \Delta c^2 / \Gamma$$

Modes

Modes

Modes

Understanding the microscopic origin of the slow mode:

The fluctuations around equilibrium are controlled by the entropy functional $P \sim e^{S}$.

Near the critical point convenient to "rotate" the basis of variables to "Ising"-like critical variables \mathcal{E} and \mathcal{M} .

$$\delta \mathcal{S}[\delta \mathcal{E}, \delta \mathcal{M}] = \left[\frac{1}{2} a_{\mathcal{M}} (\delta \mathcal{M})^2 + \frac{1}{2} a_{\mathcal{E}} (\delta \mathcal{E})^2 + b \, \delta \mathcal{E} \, \delta \mathcal{M}^2 + \dots\right] \,.$$

Since $a_{\mathcal{M}} \ll a_{\mathcal{E}}$ fluctuations of \mathcal{M} are large and are slow to equilibrate.

Their magnitude is related to the slow relaxation mode ϕ .

Separate "hard" $k > \xi^{-1}$ and "soft" $k \ll \xi^{-1}$ modes.

The new variable, "mode distribution function":

$$n_{\mathcal{M}}(t, \boldsymbol{x}, \boldsymbol{Q}) = \int_{\boldsymbol{y}} \langle \, \delta \mathcal{M}(t, \boldsymbol{x} + \boldsymbol{y}/2) \, \delta \mathcal{M}(t, \boldsymbol{x} - \boldsymbol{y}/2) \, \rangle \, e^{-i\boldsymbol{Q}\cdot\boldsymbol{y}}$$

The additional mode distribution function relaxation equation:

$$(u \cdot \partial)n_{\mathcal{M}}(t, \boldsymbol{x}, \boldsymbol{Q}) = 2\Gamma_{\mathcal{M}}(\boldsymbol{Q}) \left[a_{\mathcal{M}}^{-1} - n_{\mathcal{M}}(t, \boldsymbol{x}, \boldsymbol{Q})\right]$$

where $\Gamma_{\mathcal{M}}(\boldsymbol{Q})$ is known from model H (Kawasaki).

Simple model. Bjorken expansion.

Simple model. Bjorken expansion.

QCD critical point, fluctuations and hydro

A fundamental question for Heavy-Ion collision experiments: Is there a critical point on the boundary between QGP and hadron gas phases?

Theoretical framework is needed – the goal for CLLABORATION .

- Large (non-gaussian) fluctuations universal signature of a critical point.
- In H.I.C., the magnitude of the signatures is controlled by dynamical non-equilibrium effects. The physics of the interplay of critical and dynamical phenomena can be captured by hydrodynamics with a critically slow mode(s) – Hydro+.