Studies of CP violation in the $B^0_s ightarrow J/\psi\phi$ decay

R. Magaña¹ on behalf of the **DØ Collaboration.**

¹Cinvestav, México

26th Rencontres de Physique de la Vallée d'Aoste Results and Perspectives in Particle Physics

CP Violation: What, Why, How?

- During the big-bang, matter and antimatter were produced in equal quantities
- Now we observe a matter dominated universe - What happened to the antimater?
- Theories of baryogenesis can address this asymmetry, but require several ingredients, one of which is **CP Violation (CPV)**

CP

Fundamental symmetry in which antiparticles behave exactly like particles in a mirror

CP Violation in the standard model

- Weak interactions are governed by mixing matrices (neutrino,quark) - which have complex phases.
- CKM phases means quark and antiquark coupling can be different: CP Violation
- Degree of CPV in the Standard Model is **far too small** to account for observed matter-antimatter asymetry.
- New physics models can significantly enhance size of CP violating phases.

Search for anomalous CPV is a sensitive probe of posible physics beyond the SM

Motivation

• The two flavor eigenstates, mix via the weak interaction.

$$\left| B_{s}^{H}
ight
angle =
ho \left| B_{s}^{0}
ight
angle - q \left| ar{B}_{s}^{0}
ight
angle$$

 $\left|B_{s}^{L}
ight
angle=
ho\left|B_{s}^{0}
ight
angle+q\left|ar{B}_{s}^{0}
ight
angle$

The mass eigenstates of the B⁰_s system have sizeable mass and decay width difference ΔM_s and ΔΓ_s

• The two vector mesons can have their spins transversely polarized with respect to their momentum and be either parallel $|\mathcal{P}_{||}\rangle$ or perpendicular to each other $|\mathcal{P}_{\perp}\rangle$. Alternatively, they can both be longitudinally polarized $|\mathcal{P}_{0}\rangle$.

CPV in Interference: $B_s^0 \rightarrow J/\psi \phi$

Same final state available to B_s^0 and \overline{B}_s^0

- Amplitudes interfere
- Final CPV phase is combination of mixing ϕ_s and decay ϕ_D phases:

$$\phi_{s}^{J/\psi\phi} = -2 rg\left(rac{-V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}
ight) = -2 eta_{s} pprox -0.04(SM)$$

Enhancements to the mixing phase will give same enhancement to $\phi_s^{J/\psi\phi}$

Event distribution

- $B_s \rightarrow J/\Psi \Phi$ admixture of CP-even/odd states
- Linear polarization eigenstates of the J/ψ and ϕ , provide a convenient basis for the analysis of the decay.
- Transversity basis

$$ec{\omega} = (\psi, heta, ec{arphi})$$
:

- CP-odd (l=1): A⊥
- CP-even (I=0,2): A₀, A_∥

DØ Detector

- Excellent muon detection to $|\eta| <$ 2.2, low punch-through
- Fiber and Silicon Tracker in 27 Solenoid

 Single and dimuon triggers

Event Selection

- We require two reconstructed muons of opposite charge.
- Form J/Ψ candidates
- Form Φ candiates from opposite charged tracks assuming the tracks are kaons.
- Form B_s candidates from J/Ψ and Φ candidates.
- Make cuts in the kinematic and the mass windows:
 - *P*_t(*K*[±]) > 0.4*GeV*
 - 2.84 < $M(\mu^+\mu^-)$ < 3.35GeV
 - 0.98 < M(K⁺K⁻) < 1.04GeV
 - 5.0 < $M(\mu^+\mu^-K^+K^-)$ < 5.8*GeV*
- With this loose selection we found approx. 5 million events.
- Remove IP biased triggers.

Background suppression

• BDT used to suppress background.

 Simple-Cut as in 2008 PRL, for cross-check and systematic uncertainties.

Optimizing selection

- Tight cuts implies better signal significance but fewer signal events
- Optimized selection cuts using toy Monte Carlo studies

Probability Distribution Function

$$\epsilon(\vec{\omega}) \times \left(\mathcal{B}_{s}(\lambda; t, \vec{\omega}) \frac{1-D}{2} + \overline{\mathcal{B}}_{s}(\lambda; t, \vec{\omega}) \frac{1+D}{2}\right) \otimes \mathcal{R}(t)$$

where:

- $\vec{\omega} = (\psi, \theta, \varphi) \text{angles}$
- D- initial flavor tagging dilution
- $\epsilon(\vec{\omega})$ acceptance
- R(t)-resolution.

$$\mathcal{B}_{s} = \left| \left[\sqrt{1 - F_{s}} g(\mu) \mathbf{A} + e^{-i\delta_{s}} \sqrt{F_{s}} h(\mu) \mathbf{B} \right] \times \hat{n} \right|^{2}$$

- A(λ; t, ω) P-Wave
- $\mathbf{B}(\lambda; \mathbf{t}, \omega) S$ -Wave.
- $\lambda = (\tau_s, \Delta\Gamma_s, \phi_s^{J/\Psi\phi}, |\mathbf{A}_0|^2, |\mathbf{A}_{\perp}|^2, \mathbf{F}_s, \delta_s, \delta_{\parallel}, \delta_{\perp}, \Delta m_s)$

Real Measurables

- Two constraints:
- $\Delta m_s \equiv 17.77 \pm 0.12$
- $\cos(\delta_{\perp}) < 0$

Parameter	Definition	
$ A_0 ^2$	$\mathcal P$ -wave amplitude squared	
$ A_{\parallel} ^2$	$\mathcal P$ -wave amplitude squared	
$\overline{ au}_{s}$ (ps)	B_s^0 mean lifetime	
$\Delta\Gamma_s$ (ps ⁻¹)	Heavy-light decay width difference	
F_S	$K^+K^- S$ -wave fraction	
$\phi_{s}^{J/\psi\phi}$	CP-violating phase	
$\delta_{ }$	$\arg(A_{\parallel}/A_0)$	
$\delta_{\perp}^{"}$	$\arg(A_{\perp}/A_0)$	
δ_s	$\arg(A_s/A_0)$	

Acceptance, Resolution and Flavor Tagging

- Data selection criteria were applied to flat MC
- 2D $cos(\theta), \phi$ acceptance

- Event-by-Event resolution width
- Distribution of proper decay time resolution
 - MC Dots
 - Data Crosses

- Opposite Flavor tagging using:
 - Muon
 - Electron
 - Jet Charge

d

Data: $B^0 \rightarrow \mu^* D^{20}$ (IIa)

Data: Weighted Ave

Uncertainty

0.8

 $B^0 \rightarrow u^* D^{10} (IIb)$

Maximum Likelihood Fit

R. Magaña (DØ/ Cinvestav)

CP Violation on $B_S \rightarrow J/\psi\phi$

Maximum Likelihood Fit (Signal Enriched)

R. Magaña (DØ/ Cinvestav)

Fit Results

Parameter	BDT Sample	Simple Cut Sample
$\overline{ au}_{s}$	1.426 ^{+0.035} _{-0.032} ps	1.444 ^{+0.041} _{-0.033} ps
$\Delta\Gamma_s$	$0.129^{+0.076}_{-0.053} \ \mathrm{ps^{-1}}$	$0.179^{+0.059}_{-0.060} \ \mathrm{ps^{-1}}$
$\phi_{s}^{J/\Psi\Phi}$	$-0.49^{+0.48}_{-0.40}$	$-0.56\substack{+0.36\\-0.32}$
$ A_0 ^2$	$0.552\substack{+0.016\\-0.017}$	0.565 ± 0.017
$ A_{\parallel} ^2$	$0.219\substack{+0.020\\-0.021}$	$0.249^{+0.021}_{-0.022}$
δ_{\parallel}	-3.15 ± 0.27	-3.15 ± 0.19
$\cos(\delta_{\perp}-\delta_{s})$	-0.06 ± 0.24	$-0.20^{+0.26}_{-0.027}$
$F_{S}(eff)$	0.146 ± 0.035	0.176 ± 0.036

Independent determination of *F*_s

- The invariant mass distribution of B⁰_s candidates with ct > 0.02 cm in two slices of M(K⁺K⁻)
- Gaussian Signal
- First order polynomial + $B^0 \rightarrow J/\Psi K^*$ reflection template from MC background.
- $F_s = 0.12 \pm 0.03$

Markov Chain technique

- Since φ_s is very correlated with ΔΓ_s we want to know how the likelihood depends on these variables.
- We can't simply make a grid in the parameters because we have many parameters.
- We use the Metropolis-Hasting algorithm to obtain a random sample of the likelihood.
- Finally we use this sample to obtain contours and combine systematics.

Systematic Uncertainties

- Acceptance systematic from differences between BDT and Simple-cut samples
- Variation in resolution parameters
 - Random variations in the resolution parameters
- Different widths of Φ
 - Different resolution for the Φ mass, important since s-wave is around 15%
- Variation OST calibration curve
- Markov Chain technique for contours and systematics

$B_s^0 ightarrow J/\Psi \Phi$ Result

Summary

- Measurement of B_s^0 mixing parameters, polarization amplitudes and phases in the $B_s^0 \rightarrow J/\Psi \Phi$ analysis using $8 f b^{-1}$ data sample.
- Inclusion of K⁺K⁻ s-wave
- Multivariate selection and toy Monte Carlo optimization
- Bayesian confidence regions using Markov Chain
- Published 02/22/2012: Phys. Rev. D85, 032006.

