

Machine Learning for Gravitational Wave signals classification in LIGO and Virgo

Elena Cuoco European Gravitational Observatory www.elenacuoco.com @elenacuoco

About me

- In Virgo collaboration since 1995. EGO staff since 2004.
- Working as Data Analyst
- Noise and data preprocessing
- Machine Learning 'challenger'
- ML *promoter* in LIGO/Virgo collaboration
- Data analysis passionate (more on www.elenacuoco.com)

((O)) - Contents

LIGO and Virgo Data

>Our problem: Signals classification

Machine Learning
 Our problem: Tests and Results

Deep Learning
Our problem: Tests and Results

Software & Hardware solution

>What next

LIGO and Virgo Data

- Our problem: Signals classification
- Machine Learning
 - Our problem: Tests and Results
- Deep Learning
 - Our problem: Tests and Results
- Software & Hardware solution
- ≻What next

((O)) The Data

• Time series...

- <u>Noisy time series</u>
- Many channels recorded. Data Flux 40 MB/s
- <u>O1 run GW channel:</u> <u>1.3TB</u>
- GW Event to be identified in 2-3 mins

LIGO and Virgo Data

>Our problem: Signals classification

- Machine Learning
 - Our problem: Tests and Results
- Deep Learning
 - Our problem: Tests and Results
- Software & Hardware solution
- ≻What next

How many "trash" events?

That trash is our Glitches zoo

Time Frequency images

Gravitational Waves Signal

Why Signals Classification ?

- In our time series most of the signals are due to noise events.
- If we are able to classify the noise events, we can clean the data in a fast and clear way.

Machine learning approach for classification

LIGO and Virgo Data

>Our problem: Signals classification

Machine Learning

Our problem: Tests and Results

Deep Learning

Our problem: Tests and Results

Software & Hardware solution

≻What next

Arthur Samuel in 1959: "[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed."

Machine Learning is on all our day by day lives:

- Google search
- Facebook
- Images recognition
- Bank accounting
- Shopping
- Travels
- ...and much more

Supervised

((O))

• Training Data set with labeled inputs.

Machine Learning approaches

- Let your algorithm learn from that
- Do predictions

Example<mark>: SVM,</mark> RandomForest,

Neural Net, etc..

Unsupervised

- Training Data set not labeled
- Let your algorithm identify main pattern inside the data
- Do predictions

Example: Clustering, K-Means,etc...

LIGO and Virgo Data

>Our problem: Signals classification

Machine LearningOur problem: Tests and Results

Deep LearningOur problem: Tests and Results

Software & Hardware solution

What next

Glitches Classification Strategy

Training Process

EXAMPLE OF GLITCHES DETECTION AND ML PIPELINE

Wavelet Detection Filter and ML

Two more pipeline: PCAT and PC-LIB, LIGO collaboration

Collaboration with Glasgow and Missisipi University J.Powell, D. Trifirò, M. Cavaglia, E. Cuoco, H.K. Siong

CCR workshop, L.N.G.S. 22-26 Maggio

((O))

18

Test on simulated data

aLIGO-like simulated noise with transient signals injected

WDF-ML is able to cluster the 3 main classes

	SG	G
PCAT Type 1	99%	0%
PCAT Type 2	1%	100%
LIB Type 1	99.9%	5%
LIB Type 2	0.1%	95%
WDF Type 0	99.5%	2.4%
WDF Type 1	0.3%	46.1%
WDF Type 2	0.2%	51.5%

	SG	RD
PCAT Type 1	1.1%	97.4%
PCAT Type 2	98.9%	2.5%
LIB Type 1	97.8%	4.8%
LIB Type 2	2.2%	95.2%
WDF-ML Type 0	8.7%	100%
WDF-ML Type 1	48.0%	0%
WDF-ML Type 2	43.3%	0%

	SG	G	RD
PCAT Type 1	15.5%	0%	13.6%
PCAT Type 2	36.8%	0%	41.4%
PCAT Type 3	14.2%	0%	13.0%
PCAT Type 4	9.1%	0%	13.0%
PCAT Type 5	0.8%	0%	0.3%
РСАТ Туре б	21.8%	0%	17.2%
PCAT Type 7	1.8%	100%	1.5%
LIB Type 1	39.5%	4.9%	23.8%
LIB Type 2	17.3%	88.3%	23.2%
LIB Type 3	43.3%	6.8%	53.0%
WDF-ML Type 0	89.5%	9.6%	86.9%
WDF-ML Type 1	5.9%	49.7%	7.0%
WDF-ML Type 2	4.6%	40.7%	6.1%

Classification methods for noise transients

in advanced gravitational-wave detectors

Class. Quant. Grav., 32 (21), pp. 215012, 2015

Elena Cuoco, VIR-0346A-17

Test on real data

ER7 LIGO engineering run

- Data from the 7th aLIGO engineering run (ER7), which began on the 3rd of June 2015 and finished on the 14th of June 2015. The average binary neutron star inspiral range for both Hanford and Livingston detectors in data analysis mode during ER7 was 50-60 Mpc.
- The total length of Livingston data analysed is about 87 hours.
- The total length of Hanford data analysed is about 141 hours.

ER7 LIGO Hanford

CCR workshop, L.N.G.S. 22-26 Maggio

ER7 LIGO Livingston

Elena Cuoco, VIR-0346A-17

	LIGO Hanford		l	LIGO Livingstor	า
Pipeline	Correct classification	Missed triggers	Pipeline	Correct classification	Misseo trigger
PCAT	99%	120	PCAT	95%	90
PC-LIB	95%	6	PC-LIB	98%	33
WDF-ML	92%	0	WDF-ML	97%	0

We conclude that our methods have a high efficiency in real non-stationary and non-Gaussian detector noise

Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data Class. and Quant. Grav, 34 (3) 2017

LIGO and Virgo Data

>Our problem: Signals classification

Machine LearningOur problem: Tests and Results

Deep Learning

Our problem: Tests and Results

Software & Hardware solution

What next

What is Deep Learning?

Neural networks

http://www.asimovinstitute.org/neural-network-zoo/

LIGO and Virgo Data

>Our problem: Signals classification

Machine LearningOur problem: Tests and Results

Deep LearningOur problem: Tests and Results

Software & Hardware solution

What next

In collaboration with Massimiliano Razzano (Pisa University)

- Many approaches to data: we choose image classification of time frequency images
- The architecture is based on Convolutional deep Neural Networks (CNNs).
- CNNs are more complex than simple NNs but are optimized to catch features in images, so they are the best choice for image classification

GRAVITY SPY STATISTICS

https://www.zooniverse.org/projects/zooniverse/gravity-spy

CCR workshop, L.N.G.S. 22-26 Maggio

Example: Blip glitches

Glitches Gallery

35

CCR workshop, L.N.G.S. 22-26 Maggio

Glitches Gallery

36

CCR workshop, L.N.G.S. 22-26 Maggio

Elena Cuoco, VIR-0346A-17

The O1 run spanned September 2015 through January 2016. It produced two detections that were reported by the LIGO-Virgo collaboration.

Glitch name	# in H1	# in L1	Glitch name	# in H1	# in L1
Air compressor	55	3	Paired doves	27	-
Blip	1495	374	Power_line	274	179
Chirp	34	32			
Extremely Loud	266	188	Repeating blips	249	36
Helix	3	276	Scattered_light	393	66
Koi fish	580	250	Scratchy	95	259
Light Modulation	568	5	Tomte	70	46
Low_frequency_burst	184	473	Violin modo	170	
Low frequency lines	82	371	violini_mode	119	
	02	011	Wandering line	44	_
No_Glitch	117	64			
None_of_the_above	57	31	Whistle	2	303

GPU Nvidia GeForce 780GTX ti (2.8k cores, 3 Gb RAM)

- Input layer: RGB images (32x32 or 64x64)
- 4 convolutional layers + 2 pooling layers + 1 fully connected layer
- Output layer: N-sized layer of probability to belong to a class (N= number of classes)
- About 6.8 M parameters to fit
- Developed in Python + CUDA-optimized libraries
- Training phase depends on the number of images in the training datasets (here is ~hours on a desktop+GPU)
- Training is done once → then classification is very fast (~1-10ms per image)

Results

- Classes not balanced (i.e. not the same number of images per each class) --> Possible bias introduced
- It's a well known problem in DL, we cured it with 2 strategies to make balanced classes:
 - Image duplication
 - Image augmentation (i.e. duplicate images introducing small distortions)

Accuracy in the order of $\approx 98-99\%$ on multiclass classification

Sample results

40

41

Here the problem is the zoom on the image

Here the problem is the poor contrast

LIGO and Virgo Data

>Our problem: Signals classification

Machine LearningOur problem: Tests and Results

Deep LearningOur problem: Tests and Results

Software & Hardware solution

What next

Hardware

- CPUs
- Clusters
- GPUs

It depends on the problem we have to face

Why GPUs?

GPU-accelerated computing is the use of a graphics processing unit (GPU) together with a CPU to accelerate deep learning, analytics, and engineering application (from NVIDIA website) https://developer.nvidia.com/

- Image analysis is high computer power demanding.
 GPU are optimal for matrix computation
- A lot of new python library and easy to use tutorial
- @PI department

GeForce 780GTX

- @EGO TeslaK40C 12GB (thanks to G. Attardi)

LIGO and Virgo Data

>Our problem: Signals classification

Machine LearningOur problem: Tests and Results

Deep LearningOur problem: Tests and Results

Software & Hardware solution

>What next

How to deal with big data

I participate to **kaggle** competition (http://www.kaggle.com) Personal experience : First approach to apache spark and pyspark

Matrix: 1183747 X 4265 ~14.3Gb

Hardware

I7 core with 16Gb RAM

Software

Using Pandas: PC completely freezed ...having read about Apache Spark...I gave a trial PySpark: Full data processed in few minutes!

- Pandas DataFrame is not well suited for large data set, while very good for data study
- Spark DataFrame (from Spark
 2.0 on) are very easy to use and very efficiently manage memory
- ML spark library contains many ML algorithm
- Spark can be used standalone mode or cluster mode

Google Map Reduce framework (Hadoop)

Apache Spark: use memory instead of disk and lazy computation

In-Memory Data Sharing

Scalable, efficient analysis of Big Data

Spark Overview

- Apache Spark is a fast and general-purpose cluster computing system.
- It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs.
- It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming.

Benchmarks

Spark wins CloudSort Benchmark as the most efficient engine Apache Spark won the 2016 CloudSort Benchmark

First Public Cloud Petabyte Sort (2014)

	Hadoop MR Record	Spark Record	Spark 1 PB
Data Size	102.5 TB	100 TB	1000 TB
Elapsed Time	72 mins	23 mins	234 mins
# Nodes	2100	206	190
# Cores	50400 physical	6592 virtualized	6080 virtualized
Cluster disk throughput	3150 GB/s (est.)	618 GB/s	570 GB/s
Sort Benchmark Daytona Rules	Yes	Yes	No
Network	dedicated data center, 10Gbps	virtualized (EC2) 10Gbps network	virtualized (EC2) 10Gbps network
Sort rate	1.42 TB/min	4.27 TB/min	4.27 TB/min
Sort rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min

Daytona Gray 100 TB sort benchmark record (tied for 1st place)

http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

Machine Learning Algorithms (MLA) LIGO Virgo collaboration informal group

MLA LIGO Virgo collaborations

Activities & what we talk about...

- Transversal group
 (Detchar, Detection, Control,...)
- We started regular meetings each 2 weeks.
- F2F meeting planned at next LVC

- Genetic programming
- Images classification
- DeepLearning
- Dictionary learning
- Continous waves analysis approach

- Test of these architectures (Distributed Deep Learning with Apache Spark and Keras) (*with L. Rei*)
- Setup of in-time machine for glitches classification
- ML pipeline based on spark
- Work with new labeled data set for Virgo as benchmark

Copyright for the images and icons

- https://img.clipartfest.com/
- https://www.toptal.com/
- http://www.asimovinstitute.org/nreural-network-zo
 o
- https://www.edx.org/school/caltechx