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About me

About me
● In Virgo collaboration since 
1995. EGO staff since 2004.

● Working as Data Analyst
● Noise and data preprocessing
● Machine Learning ‘challenger’
● ML promoter in LIGO/Virgo 
collaboration

● Data analysis passionate (more 
on  www.elenacuoco.com)
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The Data

The Data ● Time series...
● Noisy time series

● Many channels recorded. 
Data Flux 40 MB/s

● O1 run GW channel: 
1.3TB

● GW Event to be 
identified in 2-3 mins
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 How many “trash” events?

LIGO L1 and H1 triggers rates
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That trash is our Glitches zoo

Time Frequency images
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 Gravitational Waves Signal
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Why Signals Classification?

Why Signals 
Classification ?

– In our time series most 
of the signals are due 
to  noise events. 

– If we are able to classify 
the noise events, we 
can clean the data in a 
fast and clear way. 

Machine learning approach for classificationMachine learning approach for classification
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What is Machine Learning?

 Arthur Samuel in 1959: “[Machine Learning 
is the] field of study that gives computers 
the ability to learn without being explicitly 

programmed.”
Machine Learning is on all our day by day 
lives: 

– Google search
– Facebook 
– Images recognition
– Bank accounting
– Shopping
– Travels
– ...and much more
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Machine Learning Flow
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Machine Learning approaches

Supervised
● Training Data set with 
labeled inputs.

● Let your algorithm learn 
from that

● Do predictions

Example: SVM, 
RandomForest,

Neural Net, etc..

Unsupervised
● Training Data set not 
labeled

● Let your algorithm  identify 
main pattern inside the 
data

● Do predictions

Example: Clustering, K-
Means,etc...
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Glitches Classification Strategy 
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Wavelet Detection Filter and ML

Wavelet Detection Filter and ML 

EXAMPLE OF GLITCHES DETECTION AND ML PIPELINE

Features
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Two more pipeline: PCAT and PC-LIB, LIGO collaboration

PCAT PC-LIB

Collaboration with Glasgow and Missisipi University
J.Powell, D. Trifirò, M. Cavaglia, E. Cuoco, H.K. Siong



Test on simulated data

● Strategy 
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A snapshot of simulation

aLIGO-like simulated noise with transient signals injected
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classes

Reduced features projections after labeling
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 PCAT, PC-LIB, WDF-ML comparison

– .

Classification methods for noise 
transients 

in advanced gravitational-wave 
detectors  

Class. Quant. Grav., 32 (21), pp. 
215012, 2015



 
Test on real data

● Strategy 
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 ER7 LIGO engineering run

ER7  LIGO engineering run
● Data from the 7th aLIGO engineering run (ER7), which 
began on the 3rd of June 2015 and finished on the 14th of 
June 2015. The average binary neutron star inspiral range 
for both Hanford and Livingston detectors in data analysis 
mode during ER7 was 50-60 Mpc.

● The total length of Livingston data analysed is about 87 
hours.

● The total length of Hanford data analysed is about 141 
hours.
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ER7 LIGO Hanford
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ER7 LIGO Livingston
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Results: Paper II

Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on 
Advanced LIGO data Class. and Quant. Grav, 34 (3) 2017 

LIGO Livingston

Pipeline Correct 
classification

Missed 
triggers

PCAT 95% 90

PC-LIB 98% 33

WDF-ML 97% 0

LIGO HanfordLIGO Hanford

PipelinePipeline Correct 
classification

Missed 
triggers

PCATPCAT 99% 120

PC-LIBPC-LIB 95% 6

WDF-MLWDF-ML 92% 0

 We conclude that our methods have a high efficiency in real non-stationary and 
non-Gaussian detector noise
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 What is Deep Learning?
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 Neural networks

http://www.asimovinstitute.org/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo
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Image Based Glitches Classification

Many approaches to data: we choose image classification of time 
frequency images
The architecture is based on Convolutional deep Neural Networks 
(CNNs).
CNNs are more complex than simple NNs but are optimized to catch 
features in images, so they are the best choice for image classification

In collaboration with Massimiliano Razzano (Pisa University)

M. Razzano courtesy
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 Gravity spy project

https://www.zooniverse.org/projects/zooniverse/gravity-spy

https://www.zooniverse.org/projects/zooniverse/gravity-spy
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Tests on Time-Frequency plot images 

Example: Blip glitches
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 Glitches Gallery
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 Glitches Gallery
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 O1 data set

Row 1 Row 2 Row 3 Row 4
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Glitch name # in H1 # in L1

Air compressor 55 3

Blip 1495 374

Chirp 34 32

Extremely Loud 266 188

Helix 3 276

Koi fish 580 250

Light Modulation 568 5

Low_frequency_burst 184 473

Low_frequency_lines 82 371

No_Glitch 117 64

None_of_the_above 57 31

Glitch name # in H1 # in L1

Paired doves 27 -

Power_line 274 179

Repeating blips 249 36

Scattered_light 393 66

Scratchy 95 259

Tomte 70 46

Violin_mode 179 -

Wandering_line 44 -

Whistle 2 303

 The O1 run spanned September 2015 through January 2016. 
It produced two detections that were reported by the LIGO-Virgo collaboration.
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Hardware details

Input layer: RGB images (32x32 or 64x64)

4 convolutional layers + 2  pooling layers + 1 fully connected layer

Output layer: N-sized layer of probability to belong to a class (N= 
number of classes)

About 6.8 M parameters to fit 

Developed in Python + CUDA-optimized libraries

Training phase depends on the number of images in the training 
datasets (here is ~hours on a desktop+GPU)

Training is done once→  then classification is very fast (~1-10ms per 
image)

GPU Nvidia GeForce 780GTX ti (2.8k cores, 3 Gb RAM) 
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Test and Results

Results 
Classes not balanced (i.e. not the same number of images per 
each class) --> Possible bias introduced
It’s a well known problem in DL, we cured it with 2 strategies 
to make balanced classes:

Image duplication 
Image augmentation (i.e. duplicate images introducing small 
distortions)

Accuracy in the order of ≈98-99% on multiclass classification
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Sample results 
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Sample results (wrong classification) 

Here the problem is the poor contrast

Here the problem is the zoom on the image
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 Hardware and Software

Hardware
● CPUs
● Clusters
● GPUs

Software(c++, python, 
java, scala)

It depends on the problem we have to face
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 Why GPUs? 

– Image analysis is high computer power demanding. 
GPU are optimal for matrix computation

–  A lot of new python library and easy to use tutorial 
– @PI department 

GeForce 780GTX 

– @EGO TeslaK40C 12GB (thanks to G. Attardi) 

GPU-accelerated computing is the use of a graphics processing unit (GPU) 
together with a CPU to accelerate deep learning, analytics, and engineering 
application  (from NVIDIA website)  https://developer.nvidia.com/

https://developer.nvidia.com/
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 What if we have many glitches to classify?

Data

Hardware

Software

– Pandas DataFrame is not well 
suited for large data set, while 
very good for data study

– Spark DataFrame (from Spark 
2.0 on) are very easy to use and 
very efficiently manage memory

– ML spark library contains 
many ML algorithm

– Spark can be used standalone 
mode or cluster mode

Matrix: 
1183747 X 4265 
~14.3Gb

I7 core with 16Gb RAM

Using Pandas: PC completely freezed 
...having read about Apache Spark...I gave a trial
PySpark: Full data processed in few minutes!

I participate to kaggle competition (http://www.kaggle.com)
Personal experience : First approach to apache spark and pyspark 

http://www.kaggle.com/
https://www.elenacuoco.com/2016/08/28/pyspark-first-approaches-ml-classification/
https://www.kaggle.com/competitions
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How to deal with Big Data?

Google Map Reduce framework (Hadoop)

DISKS
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How to deal with Big Data?

Apache Spark: use memory instead of disk and lazy computation

Caltech Edx Spark course
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Apache Spark for ML

Spark Overview
● Apache Spark is a fast and general-purpose cluster 
computing system. 

● It provides high-level APIs in Java, Scala, Python and R, and 
an optimized engine that supports general execution graphs. 

● It also supports a rich set of higher-level tools including 
Spark SQL for SQL and structured data processing, MLlib 
for machine learning, GraphX for graph processing, and 
Spark Streaming.

 

Scalable, efficient analysis of Big Data
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How to deal with Big Data?

Benchmarks
Caltech Edx Spark course

Spark wins CloudSort Benchmark as the most efficient engine 
Apache Spark won the 2016 CloudSort Benchmark 

http://sortbenchmark.org/


Machine Learning Algorithms   
(MLA) LIGO Virgo collaboration 

informal group

● Strategy 
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MLA LIGO Virgo collaborations

Activities & what we talk 
about...

– Transversal group 
(Detchar, Detection, 
Control,...)

– We started regular 
meetings each 2 weeks.

– F2F meeting planned at 
next LVC

– Genetic programming
– Images classification
– DeepLearning
– Dictionary learning
– Continous waves 

analysis approach
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What next

Test of these architectures (Distributed Deep 
Learning with Apache Spark and Keras) (with 
L. Rei)

Setup of in-time machine for glitches 
classification

ML pipeline based on spark 

Work with new labeled data set for Virgo as 
benchmark 



CCR workshop, L.N.G.S. 22-26 Maggio Elena Cuoco, VIR-0346A-17

55

Thanks for you attentions!

Copyright for the images and icons
– https://img.clipartfest.com/
– https://www.toptal.com/
– http://www.asimovinstitute.org/nreural-network-zo

o
– https://www.edx.org/school/caltechx

https://img.clipartfest.com/
https://www.toptal.com/
http://www.asimovinstitute.org/nreural-network-zoo
http://www.asimovinstitute.org/nreural-network-zoo
https://www.edx.org/school/caltechx
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