Superconformal Quantum Mechanics and Emerging Holographic QCD

Guy F. de Téramond
Universidad de Costa Rica

Gauge/Gravity Duality 2015
The Galileo Galilei Institute for Theoretical Physics

Florence, 13-17 April 2015

Quest for a semiclassical approximation to describe bound states in QCD

1 Semiclassical approximation to QCD in the Light-Front (LF): Reduction of QCD LF Hamiltonian leads to a relativistic LF wave equation, where complexities from strong interactions are incorporated in effective potential U

2 Construction of LF potential U: Since the LF semiclassical approach leads to a one-dim QFT, it is natural to extend conformal QM to the light front since it gives important insights into the confinement mechanism and the emergence of a mass scale

3 Correspondence between equations of motion for arbitrary spin in AdS space and relativistic LF boundstate equations in physical space-time: Embedding of LF wave equations in AdS leads to extension of LF potential U to arbitrary integer spin

4 Superconformal extension of conformal QM to describe baryons in complete analogy to mesons
5 Superconformal connection between mesons and baryons: Supersymmetry is broken since the ground state, the pion, is massless (in the chiral limit) and is not paired.

Hadronic triality

(1)
$4-\operatorname{dim}$ Light -
Front Dynamics

(2)

Conformal and Superconformal Quantum Mechanics
[de Alfaro, Fubini and Furlan (1976, Fubini and Rabinovici (1984)]
Isomorphism $\operatorname{Conf}\left(R^{1}\right) \sim S O(2,1) \sim \mathrm{AdS}_{2}$

(1) Semiclassical approximation to QCD in the light front

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

- Dirac Forms of Relativistic Dynamics [Dirac (1949)]

- (a) Instant form $x^{0}=0, \quad$ (b) Front form $x^{0}+x^{3}=0$,
(c) Point Form $x^{2}=\kappa^{2}$
- LF eigenvalue equation $P_{\mu} P^{\mu}|\phi\rangle=M^{2}|\phi\rangle$ is a LF wave equation for ϕ

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right) \phi(\zeta)=M^{2} \phi(\zeta)
$$

- Invariant variable in impact space $\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} \quad(N$ partons: LF cluster decomposition)
- Critical value $L=0$ corresponds to lowest possible stable solution: ground state of the LF Hamiltonian
- Relativistic and frame-independent LF Schrödinger equation: U is instantaneous in LF time and comprises all interactions, including those with higher Fock states.

(2) Conformal quantum mechanics and light-front dynamics

[S. J. Brodsky, GdT and H.G. Dosch, PLB 729, 3 (2014)]

- Incorporate in 1-dim effective QFT the conformal symmetry of 4-dim QCD Lagrangian in the limit of massless quarks: Conformal QM [V. de Alfaro, S. Fubini and G. Furlan, Nuovo Cim. A 34, 569 (1976)]
- Conformal Hamiltonian:

$$
H=\frac{1}{2}\left(p^{2}+\frac{g}{x^{2}}\right)
$$

g dimensionless: Casimir operator of the representation

- Schrödinger picture: $p=-i \partial_{x}$

$$
H=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}\right)
$$

- QM evolution

$$
H|\psi(t)\rangle=i \frac{d}{d t}|\psi(t)\rangle
$$

H is one of the generators of the conformal group $\operatorname{Conf}\left(R^{1}\right)$. The two additional generators are:

- Dilatation: $D=-\frac{1}{4}(p x+x p)$
- Special conformal transformations: $K=\frac{1}{2} x^{2}$
- H, D and K close the conformal algebra

$$
[H, D]=i H, \quad[H, K]=2 i D, \quad[K, D]=-i K
$$

- dAFF construct a new generator G as a superposition of the 3 generators of $\operatorname{Conf}\left(R^{1}\right)$

$$
G=u H+v D+w K
$$

and introduce new time variable τ

$$
d \tau=\frac{d t}{u+v t+w t^{2}}
$$

- Find usual quantum mechanical evolution for time τ

$$
\begin{gathered}
G|\psi(\tau)\rangle=i \frac{d}{d \tau}|\psi(\tau)\rangle \quad H|\psi(t)\rangle=i \frac{d}{d t}|\psi(t)\rangle \\
G=\frac{1}{2} u\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}\right)+\frac{i}{4} v\left(x \frac{d}{d x}+\frac{d}{d x} x\right)+\frac{1}{2} w x^{2} .
\end{gathered}
$$

- Operator G is compact for $4 u w-v^{2}>0$, but action remains conformal invariant!
- Emergence of scale: Since the generators of $\operatorname{Conf}\left(R^{1}\right) \sim S O(2,1)$ have different dimensions a scale appears in the new Hamiltonian G, which according to dAFF may play a fundamental role

Connection to light-front dynamics

- Compare the dAFF Hamiltonian G

$$
G=\frac{1}{2} u\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}\right)+\frac{i}{4} v\left(x \frac{d}{d x}+\frac{d}{d x} x\right)+\frac{1}{2} w x^{2} .
$$

with the LF Hamiltonian $H_{L F}$

$$
H_{L F}=-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)
$$

and identify dAFF variable x with LF invariant variable ζ

- Choose $u=2, \quad v=0$
- Casimir operator from LF kinematical constraints: $g=L^{2}-\frac{1}{4}$
- $w=2 \lambda^{2}$ fixes the LF potential to harmonic oscillator in the LF plane $\lambda^{2} \zeta^{2}$

$$
U \sim \lambda^{2} \zeta^{2}
$$

- One can perform a level shift by adding an arbitrary constant to LF potential U : Not true for baryons !

(3) Higher integer-spin wave equations in AdS space

[GdT, H.G. Dosch and S. J. Brodsky, PRD 87, 075004 (2013)]

- Description of higher spin modes in AdS space (Frondsal, Fradkin, Vasiliev, Metsaev ...)
- Integer spin- J in AdS conveniently described by tensor field $\Phi_{N_{1} \cdots N_{J}}$ with effective action

$$
\begin{aligned}
& S_{e f f}=\int d^{d} x d z \sqrt{|g|} e^{\varphi(z)} g^{N_{1} N_{1}^{\prime}} \cdots g^{N_{J} N_{J}^{\prime}}\left(g^{M M^{\prime}} D_{M} \Phi_{N_{1} \ldots N_{J}}^{*} D_{M^{\prime}} \Phi_{N_{1}^{\prime} \ldots N_{J}^{\prime}}\right. \\
&\left.-\mu_{e f f}^{2}(z) \Phi_{N_{1} \ldots N_{J}}^{*} \Phi_{N_{1}^{\prime} \ldots N_{J}^{\prime}}\right)
\end{aligned}
$$

D_{M} is the covariant derivative which includes affine connection and dilaton $\varphi(z)$ effectively breaks maximal symmetry of AdS_{d+1}

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(d x_{\mu} d x^{\mu}-d z^{2}\right)
$$

- Effective mass $\mu_{\text {eff }}(z)$ is determined by precise mapping to light-front physics
- Non-trivial geometry of pure AdS encodes the kinematics and additional deformations of AdS encode the dynamics, including confinement
- Physical hadron has plane-wave and polarization indices along $3+1$ physical coordinates and a profile wavefunction $\Phi(z)$ along holographic variable z

$$
\Phi_{P}(x, z)_{\mu_{1} \cdots \mu_{J}}=e^{i P \cdot x} \Phi(z)_{\mu_{1} \cdots \mu_{J}}, \quad \Phi_{z \mu_{2} \cdots \mu_{J}}=\cdots=\Phi_{\mu_{1} \mu_{2} \cdots z}=0
$$

with four-momentum P_{μ} and invariant hadronic mass $P_{\mu} P^{\mu}=M^{2}$

- Variation of the action gives AdS wave equation for spin- J field $\Phi(z)_{\nu_{1} \cdots \nu_{J}}=\Phi_{J}(z) \epsilon_{\nu_{1} \cdots \nu_{J}}(P)$

$$
\left[-\frac{z^{d-1-2 J}}{e^{\varphi(z)}} \partial_{z}\left(\frac{e^{\varphi}(z)}{z^{d-1-2 J}} \partial_{z}\right)+\left(\frac{m R}{z}\right)^{2}\right] \Phi_{J}=M^{2} \Phi_{J}
$$

with

$$
(m R)^{2}=\left(\mu_{e f f}(z) R\right)^{2}-J z \varphi^{\prime}(z)+J(d-J+1)
$$

and the kinematical constraints to eliminate the lower spin states $J-1, J-2, \cdots$

$$
\eta^{\mu \nu} P_{\mu} \epsilon_{\nu \nu_{2} \cdots \nu_{J}}=0, \quad \eta^{\mu \nu} \epsilon_{\mu \nu \nu_{3} \cdots \nu_{J}}=0
$$

- Kinematical constrains in the LF imply that m must be a constant
[See also: T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012)]

Light-front mapping

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

- Upon substitution $\Phi_{J}(z) \sim z^{(d-1) / 2-J} e^{-\varphi(z) / 2} \phi_{J}(z)$ and $z \rightarrow \zeta$ in AdS WE

$$
\left[-\frac{z^{d-1-2 J}}{e^{\varphi(z)}} \partial_{z}\left(\frac{e^{\varphi(z)}}{z^{d-1-2 J}} \partial_{z}\right)+\left(\frac{\mu R}{z}\right)^{2}\right] \Phi_{J}(z)=M^{2} \Phi_{J}(z)
$$

we find LFWE $\quad(d=4)$

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

with

$$
U(\zeta)=\frac{1}{2} \varphi^{\prime \prime}(\zeta)+\frac{1}{4} \varphi^{\prime}(\zeta)^{2}+\frac{2 J-3}{2 z} \varphi^{\prime}(\zeta)
$$

and $\quad(\mu R)^{2}=-(2-J)^{2}+L^{2}$

- Unmodified AdS equations correspond to the kinetic energy terms for the partons
- Effective confining potential $U(\zeta)$ corresponds to the IR modification of AdS space
- AdS Breitenlohner-Freedman bound $(\mu R)^{2} \geq-4$ equivalent to LF QM stability condition $L^{2} \geq 0$

Meson spectrum

- Dilaton profile in the dual gravity model determined from one-dim QFTh (dAFF)

$$
\varphi(z)=\lambda z^{2}, \quad \lambda^{2}=\frac{1}{2} w
$$

- Effective potential: $U=\lambda^{2} \zeta^{2}+2 \lambda(J-1)$
- LFWE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\lambda^{2} \zeta^{2}+2 \lambda(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)=1$

$$
\phi_{n, L}(\zeta)=|\lambda|^{(1+L) / 2} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-|\lambda| \zeta^{2} / 2} L_{n}^{L}\left(|\lambda| \zeta^{2}\right)
$$

- Eigenvalues for $\lambda>0$

$$
\mathcal{M}_{n, J, L}^{2}=4 \lambda\left(n+\frac{J+L}{2}\right)
$$

- Results are easily extended to light quarks
- $\lambda<0$ incompatible with LF constituent interpretation

Orbital and radial excitations for $\sqrt{\lambda}=0.59 \mathrm{GeV}$ (pseudoscalar) and 0.54 GeV (vector mesons)

(4) Superconformal quantum mechanics and light-front dynamics

[GdT, H.G. Dosch and S. J. Brodsky, Phys. Rev. D 91, 045040 (2015)]

- SUSY QM contains two fermionic generators Q and Q^{\dagger}, and a bosonic generator, the Hamiltonian H [E. Witten, NPB 188, 513 (1981)]
- Closure under the graded algebra $\operatorname{sl}(1 / 1)$:

$$
\begin{aligned}
& \frac{1}{2}\left\{Q, Q^{\dagger}\right\}=H \\
& \{Q, Q\}=\left\{Q^{\dagger}, Q^{\dagger}\right\}=0 \\
& {[Q, H]=\left[Q^{\dagger}, H\right]=0}
\end{aligned}
$$

Note: Since $\left[Q^{\dagger}, H\right]=0$ the states $|E\rangle$ and $Q^{\dagger}|E\rangle$ have identical eigenvalues E

- A simple realization is

$$
Q=\chi(i p+W), \quad Q^{\dagger}=\chi^{\dagger}(-i p+W)
$$

where χ and χ^{\dagger} are spinor operators with anticommutation relation

$$
\left\{\chi, \chi^{\dagger}\right\}=1
$$

- In a 2×2 Pauli-spin matrix representation: $\chi=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right), \quad \chi^{\dagger}=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right)$

$$
\left[\chi, \chi^{\dagger}\right]=\sigma_{3}
$$

- Following Fubini and Rabinovici consider a 1-dim QFT invariant under conformal and supersymmetric transformations [S. Fubini and E. Rabinovici, NPB 245, 17 (1984)]
- Conformal superpotential (f is dimensionless)

$$
W(x)=\frac{f}{x}
$$

- Thus 1-dim QFT representation of the operators

$$
Q=\chi\left(\frac{d}{d x}+\frac{f}{x}\right), \quad Q^{\dagger}=\chi^{\dagger}\left(-\frac{d}{d x}+\frac{f}{x}\right)
$$

- Conformal Hamiltonian $H=\frac{1}{2}\left\{Q, Q^{\dagger}\right\}$ in matrix form

$$
H=\frac{1}{2}\left(\begin{array}{cc}
-\frac{d^{2}}{d x^{2}}+\frac{f(f-1)}{x^{2}} & 0 \\
0 & -\frac{d^{2}}{d x^{2}}+\frac{f(f+1)}{x^{2}}
\end{array}\right)
$$

- Conformal graded-Lie algebra has in addition to Hamiltonian H and supercharges Q and Q^{\dagger}, a new operator S related to generator of conformal transformations K

$$
S=\chi x, \quad S^{\dagger}=\chi^{\dagger} x
$$

- Find enlarged algebra (Superconformal algebra of Haag, Lopuszanski and Sohnius (1974))

$$
\begin{aligned}
\frac{1}{2}\left\{Q, Q^{\dagger}\right\} & =H, \quad \frac{1}{2}\left\{S, S^{\dagger}\right\}=K \\
\frac{1}{2}\left\{Q, S^{\dagger}\right\} & =\frac{f}{2}+\frac{\sigma_{3}}{4}+i D \\
\frac{1}{2}\left\{Q^{\dagger}, S\right\} & =\frac{f}{2}+\frac{\sigma_{3}}{4}-i D
\end{aligned}
$$

where the operators

$$
\begin{aligned}
H & =\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{f^{2}-\sigma_{3} f}{x^{2}}\right) \\
D & =\frac{i}{4}\left(\frac{d}{d x} x+x \frac{d}{d x}\right) \\
K & =\frac{1}{2} x^{2}
\end{aligned}
$$

satisfy the conformal algebra

$$
[H, D]=i H, \quad[H, K]=2 i D, \quad[K, D]=-i K
$$

- Following F\&R define a supercharge R, a linear combination of the generators Q and S

$$
R=\sqrt{u} Q+\sqrt{w} S
$$

and consider the new generator $G=\frac{1}{2}\left\{R, R^{\dagger}\right\}$ which also closes under the graded algebra $s l(1 / 1)$

$$
\begin{array}{ll}
\frac{1}{2}\left\{R, R^{\dagger}\right\}=G & \frac{1}{2}\left\{Q, Q^{\dagger}\right\}=H \\
\{R, R\}=\left\{R^{\dagger}, R^{\dagger}\right\}=0 & \{Q, Q\}=\left\{Q^{\dagger}, Q^{\dagger}\right\}=0 \\
{[R, H]=\left[R^{\dagger}, H\right]=0} & {[Q, H]=\left[Q^{\dagger}, H\right]=0}
\end{array}
$$

- New QM evolution operator

$$
G=u H+w K+\frac{1}{2} \sqrt{u w}\left(2 f+\sigma_{3}\right)
$$

is compact for $u w>0$: Emergence of a scale since Q and S have different units

- Light-front extension of superconformal results follows from

$$
x \rightarrow \zeta, \quad f \rightarrow \nu+\frac{1}{2}, \quad \sigma_{3} \rightarrow \gamma_{5}, \quad 2 G \rightarrow H_{L F}
$$

- Obtain:

$$
H_{L F}=-\frac{d^{2}}{d \zeta^{2}}+\frac{\left(\nu+\frac{1}{2}\right)^{2}}{\zeta^{2}}-\frac{\nu+\frac{1}{2}}{\zeta^{2}} \gamma_{5}+\lambda^{2} \zeta^{2}+\lambda(2 \nu+1)+\lambda \gamma_{5}
$$

where coefficients u and w are fixed to $u=2$ and $w=2 \lambda^{2}$

- Take the 'square root' of the LF Hamiltonian $H_{L F}=\left\{R, R^{\dagger}\right\}$

$$
H_{L F} \psi=D_{L F}^{2} \psi=M^{2} \psi
$$

with the linear Dirac equation

$$
\left(D_{L F}-M\right) \psi=0
$$

- In a 2×2 component representation $\psi_{ \pm}$

$$
\begin{aligned}
-\frac{d}{d \zeta} \psi_{-}-\frac{\nu+\frac{1}{2}}{\zeta} \psi_{-}-\lambda \zeta \psi_{-} & =M \psi_{+} \\
\frac{d}{d \zeta} \psi_{+}-\frac{\nu+\frac{1}{2}}{\zeta} \psi_{+}-\lambda \zeta \psi_{+} & =M \psi_{-}
\end{aligned}
$$

where the chiral spinors are defined by $\psi_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi$

- Note: In a 4×4 Dirac-matrix representation the spinor operators χ and χ^{\dagger} satisfy the relations

$$
\left\{\chi, \chi^{\dagger}\right\}=1 \quad \text { and } \quad\left[\chi, \chi^{\dagger}\right]=\gamma_{5}
$$

(3) Higher half-integer spin wave equations in AdS space

[J. Polchinski and M. J. Strassler, JHEP 0305, 012 (2003)]
[GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[GdT, H.G. Dosch and S. J. Brodsky, PRD 87, 075004 (2013)]

- Important similarities between spectra of mesons and baryons: similar slope and spacing of orbital and radial excitations, similar multiplicity

Image credit: N. Evans

- Holographic embeddings in AdS also explains distinctive features, such as the absence of spin-orbit coupling for baryons
- Half-integer spin- J in AdS described by Rarita-Schwinger (RS) spinor field $\left[\Psi_{N_{1} \cdots N_{J-1 / 2}}\right]_{\alpha}$ with effective action ($J=T+1 / 2$)

$$
\begin{aligned}
S_{e f f}=\frac{1}{2} \int d^{d} x d z \sqrt{|g|} & g^{N_{1} N_{1}^{\prime} \cdots g^{N_{T} N_{T}^{\prime}}} \\
& {\left[\bar{\Psi}_{N_{1} \cdots N_{T}}\left(i \Gamma^{A} e_{A}^{M} D_{M}-\mu-\rho(z)\right) \Psi_{N_{1}^{\prime} \cdots N_{T}^{\prime}}+\text { h.c. }\right] }
\end{aligned}
$$

where covariant derivative D_{M} includes affine connection and spin connection

- e_{M}^{A} is the vielbein and Γ^{A} tangent space Dirac matrices $\left\{\Gamma^{A}, \Gamma^{B}\right\}=\eta^{A B}$
- Dilaton term does not lead to confinement: introduce effective interaction $\rho(z)$ in AdS Dirac equation [Z. Abidin and C. E. Carlson, Phys. Rev. D 79, 115003 (2009)]
- Baryons described by half-integer spin- J field in AdS

$$
\Psi_{\nu_{1} \cdots \nu_{J-1 / 2}}^{ \pm}(x, z)=e^{i P \cdot x} u_{\nu_{1} \cdots \nu_{J-1 / 2}}^{ \pm}(P) \Psi_{J}^{ \pm}(z)
$$

with invariant hadronic mass $P_{\mu} P^{\mu}=M^{2}$ and chiral spinors $u^{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{5}\right) u$ with polarization indices along physical coordinates

- Variation of the AdS action leads to Dirac equation $\left(V(z)=\frac{R}{z} \rho(z)\right)$

$$
\begin{aligned}
& {\left[-\frac{d}{d z}-\frac{\mu R}{z}-V(z)\right] \Psi^{-}=M \Psi^{+}} \\
& {\left[\frac{d}{d z}-\frac{\mu R}{z}-V(z)\right] \Psi^{+}=M \Psi^{-}}
\end{aligned}
$$

and the Rarita-Schwinger condition in physical space-time

$$
\gamma^{\nu} \Psi_{\nu \nu_{2} \ldots \nu_{T}}=0
$$

- Compare AdS Dirac equation for spin J

$$
\begin{aligned}
-\frac{d}{d z} \Psi_{J}^{-}-\frac{\mu R}{z} \Psi_{J}^{-}-V(z) \Psi_{J}^{-} & =M \Psi_{J}^{+} \\
\frac{d}{d z} \Psi_{J}^{+}-\frac{\mu R}{z} \Psi_{J}^{+}-V(z) \Psi_{J}^{+} & =M \Psi_{J}^{-}
\end{aligned}
$$

with LF SUSY Dirac equation

$$
\begin{aligned}
-\frac{d}{d \zeta} \psi_{-}-\frac{\nu+\frac{1}{2}}{\zeta} \psi_{-}-\lambda \zeta \psi_{-} & =M \psi_{+} \\
\frac{d}{d \zeta} \psi_{+}-\frac{\nu+\frac{1}{2}}{\zeta} \psi_{+}-\lambda \zeta \psi_{+} & =M \psi_{-}
\end{aligned}
$$

- Identifying holographic variable z with invariant LF variable ζ, map AdS into LF Dirac eq. $\Psi_{J} \rightarrow \psi$
- AdS mass is related to parameter ν by $\quad \mu R=\nu+\frac{1}{2} \quad$ and

$$
V(\zeta)=\lambda \zeta
$$

a J-independent potential - No spin-orbit coupling along a given trajectory!

Baryon spectrum

- $\ln 2 \times 2$ block-matrix form

$$
H_{L F}=\left(\begin{array}{cc}
-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 \nu^{2}}{4 \zeta^{2}}+\lambda^{2} \zeta^{2}+2 \lambda(\nu+1) & 0 \\
0 & -\frac{d^{2}}{d \zeta^{2}}-\frac{1-4(\nu+1)^{2}}{4 \zeta^{2}}+\lambda^{2} \zeta^{2}+2 \lambda \nu
\end{array}\right)
$$

- The light-front eigenvalue equation $H_{L F}|\psi\rangle=M^{2}|\psi\rangle$ has eigenfunctions

$$
\begin{aligned}
& \psi_{+}(\zeta) \sim \zeta^{\frac{1}{2}+\nu} e^{-\lambda \zeta^{2} / 2} L_{n}^{\nu}\left(\lambda \zeta^{2}\right) \\
& \psi_{-}(\zeta) \sim \zeta^{\frac{3}{2}+\nu} e^{-\lambda \zeta^{2} / 2} L_{n}^{\nu+1}\left(\lambda \zeta^{2}\right)
\end{aligned}
$$

and eigenvalues

$$
M^{2}=4 \lambda(n+\nu+1)
$$

identical for both plus and minus eigenfunctions

- In contrast with mesons, we observe in the light-baryon spectrum a spin- J degeneracy for states with the same orbital angular momentum
[See also: T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012)]
- Lowest possible state $n=0$ and $\nu=0$: orbital excitations $\nu=0,1,2 \cdots=L$

$$
M^{2}=4 \lambda(n+L+1)
$$

- L is the relative LF angular momentum between the active quark and spectator cluster
- In general ν depends on internal spin and parity

The assignment

	$S=\frac{1}{2}$	$S=\frac{3}{2}$
$\mathrm{P}=+$	$\nu=L$	$\nu=L+\frac{1}{2}$
$\mathrm{P}=-$	$\nu=L+\frac{1}{2}$	$\nu=L+1$

describes the full light baryon orbital and radial excitation spectrum

$S U(6)$	S	L	n	Baryon State
56	$\frac{1}{2}$	0	0	$N \frac{1}{2}+(940)$
	$\frac{3}{2}$	0	0	$\Delta \frac{3}{2}+(1232)$
56	$\frac{1}{2}$	0	1	$N \frac{1}{2}+{ }^{+}(1440)$
	$\frac{3}{2}$	0	1	$\Delta \frac{3}{2}+(1600)$
70	$\frac{1}{2}$	1	0	$N \frac{1}{2}^{-}(1535) N \frac{3}{2}^{-}(1520)$
	$\frac{3}{2}$	1	0	$N \frac{1}{2}^{-}(1650) N \frac{3}{2}^{-}{ }^{(1700) ~} N \frac{5}{2}^{-}{ }^{(1675)}$
	$\frac{1}{2}$	1	0	$\Delta \frac{1}{2}^{-}{ }^{(1620)} \Delta \frac{3}{2}^{-}{ }^{(1700)}$
56	$\frac{1}{2}$	0	2	$N \frac{1}{2}+{ }^{(1710)}$
	$\frac{1}{2}$	2	0	$N \frac{3}{2}^{+}{ }^{(1720) ~} N \frac{5}{2}^{+}(1680)$
	$\frac{3}{2}$	2	0	
70	$\frac{3}{2}$	1	1	$N \frac{1}{2}^{-} \quad N \frac{3}{2}^{-}(1875) N \frac{5}{2}^{-}$
	$\frac{3}{2}$	1	1	$\Delta \frac{5}{2}^{-}(1930)$
56	$\frac{1}{2}$	2	1	$N \frac{3}{2}^{+}(1900) N \frac{5}{2}^{+}$
70	$\frac{1}{2}$	3	0	$N \frac{5}{2}^{-} \quad N \frac{7}{2}^{-}$
	$\frac{3}{2}$	3	0	$N \frac{3}{2}^{-} \quad N \frac{5}{2}^{-} \quad N \frac{7}{2}^{-}{ }^{(2190)} N \frac{9}{2}^{-}$(2250)
	$\frac{1}{2}$	3	0	$\Delta \frac{5}{2}^{-} \quad \Delta \frac{7}{2}-$
56	$\frac{1}{2}$	4	0	$N \frac{7}{2}+\quad N \frac{9}{2}+{ }^{+}(2220)$
	$\frac{3}{2}$	4	0	$\Delta \frac{5}{2}^{+} \quad \Delta \frac{7}{2}+\quad \Delta \frac{9}{2}+\quad \Delta \frac{11}{2}+{ }_{(2420)}$
70	$\frac{1}{2}$	5	0	$N \frac{9}{2}-\quad N \frac{11}{2}-$
	$\frac{3}{2}$	5	0	$N \frac{7}{2}^{-} \quad N \frac{9}{2}^{-} \quad N \frac{11}{2}^{-}(2600) N \frac{13}{2}^{-}$

Baryon orbital and radial excitations for $\sqrt{\lambda}=0.49 \mathrm{GeV}$ (nucleons) and 0.51 GeV (Deltas)

(5) Superconformal baryon-meson symmetry and LF holographic QCD

[H.G. Dosch, GdT, and S. J. Brodsky, Phys. Rev. D 91, 085016 (2015)]

- Previous application: positive and negative chirality components of baryons related by supercharge R

$$
R^{\dagger}\left|\psi_{+}\right\rangle=\left|\psi_{-}\right\rangle
$$

with identical eigenvalue M^{2} since $[R, G]=\left[R^{\dagger}, G\right]=0$

- Conventionally supersymmetry relates fermions and bosons

$$
\left.\left.\left.\left.R^{\dagger} \mid \text { Baryon }\right\rangle=\mid \text { Meson }\right\rangle \text { or } \quad \mathrm{R} \mid \text { Meson }\right\rangle=\mid \text { Baryon }\right\rangle
$$

- If $|\phi\rangle_{M}$ is a meson state with eigenvalue $M^{2}, G|\phi\rangle_{M}=M^{2}|\phi\rangle_{M}$, then there exists also a baryonic state $R|\phi\rangle_{M}=|\phi\rangle_{B}$ with the same eigenvalue M^{2} :

$$
G|\phi\rangle_{B}=G R|\phi\rangle_{M}=R G|\phi\rangle_{M}=M^{2}|\phi\rangle_{B}
$$

- For a zero eigenvalue M^{2} we can have the trivial solution

$$
\left|\phi\left(M^{2}=0\right)\right\rangle_{B}=0
$$

Special role played by the pion as a unique state of zero energy: same role as the unique vacuum state in supersymmetric quantum field theory

Superpartner of the nucleon trajectory
 $$
|\phi\rangle=\binom{\phi_{\text {Baryon }}}{\phi_{\text {Meson }}}
$$

- Compare superconformal equations with LFH nucleon (leading twist) and pion wave equations:

$$
\begin{gathered}
\left(-\frac{d^{2}}{d x^{2}}+\lambda^{2} x^{2}+2 \lambda f+\lambda+\frac{4\left(f-\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \phi_{\text {Baryon }}=M^{2} \phi_{\text {Baryon }} \\
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{B}^{2} \zeta^{2}+2 \lambda_{B}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{L_{B}}^{+}=M^{2} \psi_{L_{B}}^{+} \\
\left(-\frac{d^{2}}{d x^{2}}+\lambda^{2} x^{2}+2 \lambda f-\lambda+\frac{4\left(f+\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \phi_{\text {Meson }}=M^{2} \phi_{\text {Meson }} \\
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{M}^{2} \zeta^{2}+2 \lambda_{M}\left(L_{M}-1\right)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \psi_{L_{M}}=M^{2} \psi_{L_{M}}
\end{gathered}
$$

- Find: $\lambda=\lambda_{M}=\lambda_{B}, \quad f=L_{B}+\frac{1}{2}=L_{M}-\frac{1}{2} \quad \Rightarrow \quad L_{M}=L_{B}+1$
- The LF angular momentum L_{M} of the meson is by one unit larger than its baryonic partner
- Identical confinement mechanism for mesons and baryons: introduction of a scale inside the algebra
- Equality $\lambda_{M} \simeq \lambda_{B}$ dictated by SCQM
- Constant term in LF potential for mesons from SCQM: pion is massless in the chiral limit !
- Should be regarded as a zero order approximation: Phenomenologically:

$$
\begin{array}{ll}
\sqrt{\lambda_{N}}=0.49 \mathrm{GeV} & \sqrt{\lambda_{\pi}}=0.59 \mathrm{GeV} \\
\sqrt{\lambda_{\Delta}}=0.51 \mathrm{GeV} & \sqrt{\lambda_{\rho}}=0.54 \mathrm{GeV}
\end{array}
$$

- For the $\rho-\Delta$ no complete SCQM-LFHQCD correspondence: Spectra agree, wave functions differ (Source of the problem: half-integer twist of Δ)

Superconformal meson-nucleon partners: solid line corresponds to $\sqrt{\lambda}=0.53 \mathrm{GeV}$

PRELIMINARY

Supersymmetry of strange mesons and baryons

PRELIMINARY

Supersymmetry of charmed mesons and baryons

PRELIMINARY

Supersymmetry of beautiful mesons and baryons

Thanks!

For a review: S. J. Brodsky, GdT, H. G. Dosch and J. Erlich, arXiv:1407.8131 [hep-ph] To appear in Physics Reports

