The South Pole Acoustic Test Setup Pressure and shear wave speed vs. depth

Freija Descamps IceCube Acoustic Neutrino Detection working group

Rome, 26 June 2008

ARENA 2008

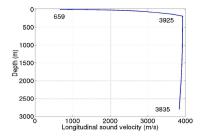
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

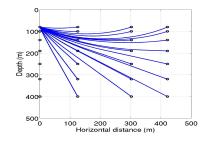
Outline

Introduction SPATS goals Previous results

Sound speed results Methodology Shear waves Sound speed results

Conclusions and outlook


Freija Descamps


3 ×

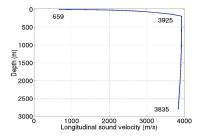
• What are the acoustic properties of the South Pole ice in the 1-100kHz region?

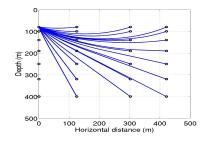
- What are the acoustic properties of the South Pole ice in the 1-100kHz region?
- Noise
- Attenuation length
- Sound speed

Speed-of-sound profile at South Pole

Neutrino astronomers

- What is the sound speed gradient?
- What is the resulting refraction?
 - \rightarrow pointing resolution
 - \rightarrow background-event rejection




- Assumed T-profile:
- \rightarrow predicted v_s profile

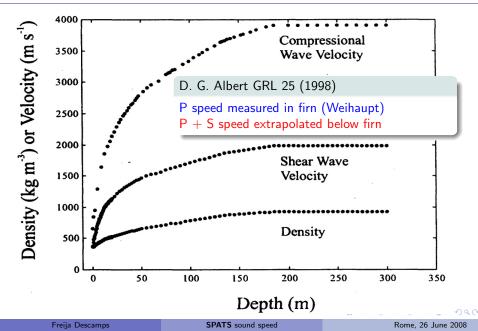
★ ∃ ▶ ★

- \rightarrow ray tracing for
- source @-80m

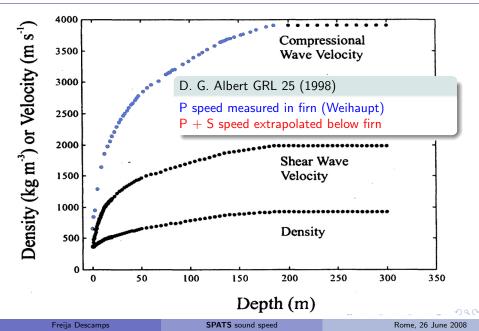
Speed-of-sound profile at South Pole

Neutrino astronomers

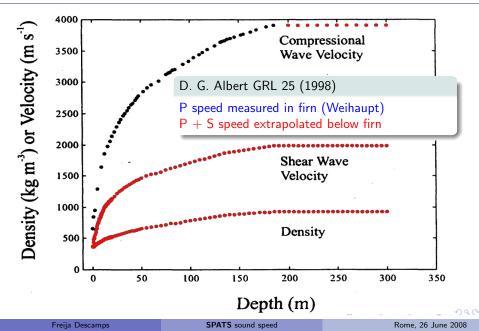
- What is the sound speed gradient?
- What is the resulting refraction?
 - \rightarrow pointing resolution
 - \rightarrow background-event rejection

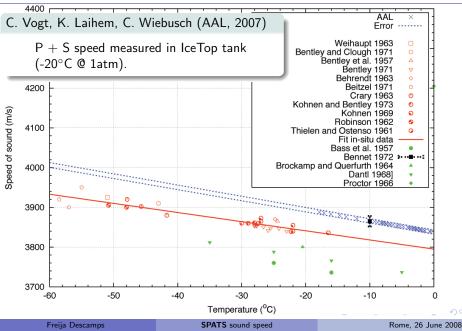

Glaciologists

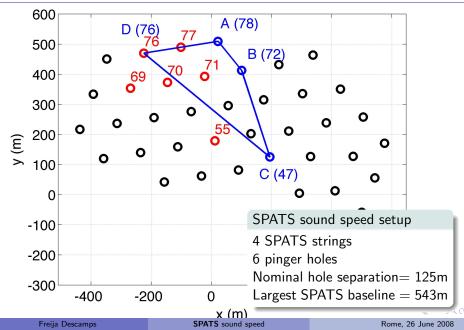
- How do natural seismic signal propagate?
- Ice Tomography: map ice-flow
- SPRESSO scientists have already expressed interest in our results_

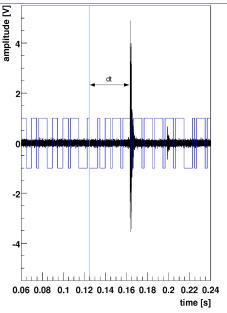

SPATS sound speed

- Model
- Assumed T-profile:
- \rightarrow predicted v_s profile
- \rightarrow ray tracing for
- source @-80m


Previous sound speed measurements at South Pole

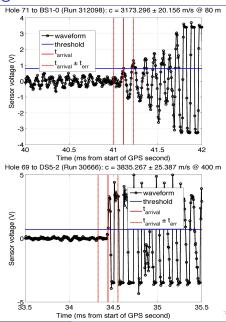

Previous sound speed measurements at South Pole


Previous sound speed measurements at South Pole


Lab and in-situ speed-of-sound measurements

SPATS: The retrievable pinger

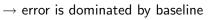
SPATS sound speed: methodology



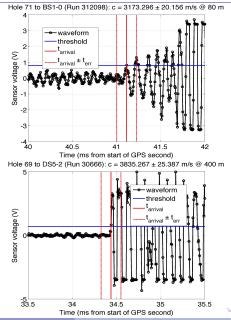
- Time from GPS second start to acoustic emission
- Automated determination of sensor pulse rising edge
- Measurement at all 9 SPATS instrumented depths (each using pinger + sensor at same depth)
- Fit for sound speed gradient in deep ice (250-500 m depth) gives radius of curvature
- All measurements currently for 125m horizontal distance

SPATS sound speed: error budget

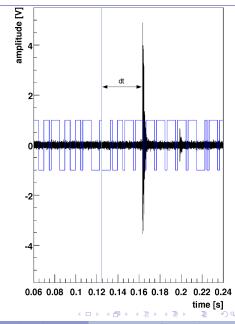
For 125 m baseline: 34 ms time-of-flight:


- $\delta t_{monostable} = \pm 0.1 \text{ ms} = 0.29\%$
- $\delta t_{arrival} = \pm 0.05 \text{ ms} = 0.15\%$
- $\delta r = \pm 0.5 \text{m} \sqrt{2} = \sim 0.57\%$
 - because two holes, each 0.5 m in any direction

SPATS sound speed: error budget


For 125 m baseline: 34 ms time-of-flight:

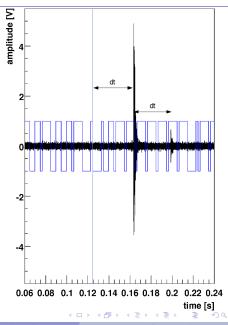
- $\delta t_{monostable} = \pm 0.1 \text{ ms} = 0.29\%$
- $\delta t_{arrival} = \pm 0.05 \text{ ms} = 0.15\%$
- $\delta r = \pm 0.5 \text{m} \sqrt{2} = \sim 0.57\%$
 - because two holes, each 0.5 m in any direction



 \Rightarrow Total error = 0.7% for 125 m baseline

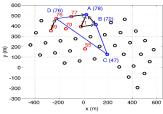
Best possible = 543 m $\rightarrow 0.1\%$ or 0.2%

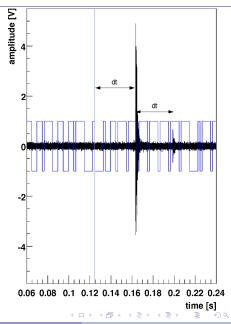
From both pinger and SPATS transmitter data:

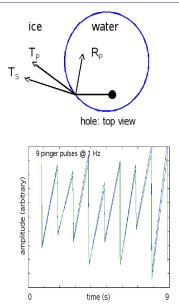


Freija Descamps

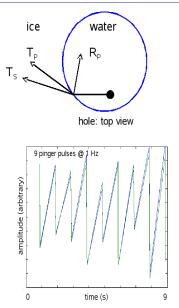
SPATS sound speed


From both pinger and SPATS transmitter data:


- afterpulse
- varying relative amplitude
- only present for <200m paths
- speed consistent with half of pressure wave speed ...

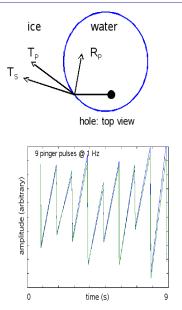

From both pinger and SPATS transmitter data:

- afterpulse
- varying relative amplitude
- only present for <200m paths
- speed consistent with half of pressure wave speed ...
- \Rightarrow Detection of shear waves with SPATS!



Freija Descamps

Mode conversion at water/ice interface:

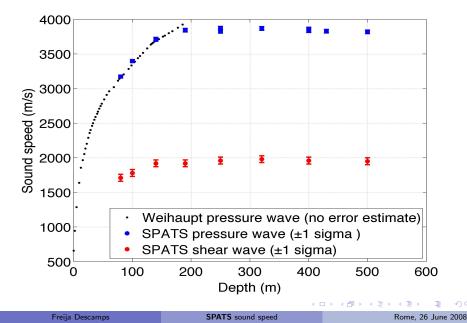

< ∃ >

Mode conversion at water/ice interface: Large incident angle:

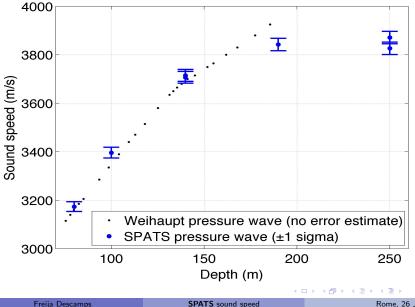
increase shear wave amplitude decrease pressure wave amplitude

- \rightarrow 3D calculation of $\theta_{\textit{incident}}$
- $\rightarrow \mathsf{T}_{P}(\theta_{i}), \mathsf{R}_{P}(\theta_{i}), \mathsf{T}_{S}(\theta_{i})$

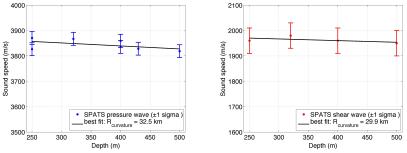
Mode conversion at water/ice interface: Large incident angle:


increase shear wave amplitude decrease pressure wave amplitude

- \rightarrow 3D calculation of $\theta_{\mathit{incident}}$
- $\rightarrow \mathsf{T}_{P}(\theta_{i}), \mathsf{R}_{P}(\theta_{i}), \mathsf{T}_{S}(\theta_{i})$


Anticorrelation P/S wave amplitudes:

 \rightarrow total energy is conserved?


 $v_{pressure}$ and v_{shear} vs. depth.

v_{pressure} consistent with previous result in firm

$v_{pressure}$ and v_{shear} constant [250m,500m]

consistent with no refraction, best fit gives slight refraction:

 \Rightarrow R_{curv} = 32.5km (P) and 29.9km (S)

For a 32.5 km radius:

100 m path deflects 0.154 m, 3 km path deflects 138 m

1 km path deflects 15.4 m \sim acoustic pancake width

Freija Descamps

SPATS sound speed

< A

- ₹ 🗦 🕨

SPATS pressure and shear waves

Sound speed results

Outlook

Freija Descamps

SPATS sound speed

SPATS pressure and shear waves

- SPATS pinger data: precise timing achieved
- Shear waves have been detected in SPATS emitters and pinger data.

Sound speed results

Outlook

SPATS pressure and shear waves

- SPATS pinger data: precise timing achieved
- Shear waves have been detected in SPATS emitters and pinger data.

Sound speed results

• Both P and S wave speeds have been mapped vs. depth in firn and bulk

First measurement of P speed in bulk ice First measurement of S speed in both firn and bulk ice

• Refraction is consistent with 0 between 250 and 500m depth.

Outlook

SPATS pressure and shear waves

- SPATS pinger data: precise timing achieved
- Shear waves have been detected in SPATS emitters and pinger data.

Sound speed results

• Both P and S wave speeds have been mapped vs. depth in firn and bulk

First measurement of P speed in bulk ice First measurement of S speed in both firn and bulk ice

• Refraction is consistent with 0 between 250 and 500m depth.

Outlook

• Precision can be improved:

Clock drift correction Larger baselines

• New pinger-runs with larger baselines 2008/2009 polar season