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Introduction
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Interest: = as Probe of High-p Symmetry Energy
B-A Li PRL88(02)192701: S(p > pg) = N/Ppsp, = ©~ /7t
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Introduction
oe

Simulations of Heavy-lon Collisions

Separation of time and distance scales:

Short scales reduced to negligible extent with outcomes of
events treated probabilistically

Long scales treated explicitly and deterministically

Cut-off scales: t ~ 1fm/c, r < 1fm
Primarily binary collision processes
Equation of state: if there is an optical potential affecting a

particle, that particle impacts the interaction parts of
thermodynamic functions.
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Low-E pion production: N+N-N+A, A+— N+7x
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A in =N Interactions

m—p scattering cross sections
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General Issues
oeo

Inelastic NN Interactions
Decomposition of inelastic NN cross section
Weil et al EPJA48(12)111
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General Issues
ooe

A in Transport

Ambiguity in deciding on time of = production

PD&Pratt PRC53(96)249

Different perspectives
yield different A lifetimes
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4 Needed for thermodynamics 1/T'(p) 7; AT ConSiStent W|th
3 — fireball model most often

Naive constant 1/T'y

used, but yields
unphysically long-lived A
= close to threshold.

§ - = Need to transition to
2 —  direct 3-ptcle production?
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General Issues
[ le]

7 vs Baryon Optical Potentials
A+—N+r UA;UN+U7T

‘Conservation’ of potential consistent with the quark
perspective. Also also greatly facilitates calculations of process
kinematics as thresholds in kinetic energy stay put.
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General Issues
[ le]

7 vs Baryon Optical Potentials
A+—N+r UA;UN+U7T

‘Conservation’ of potential consistent with the quark
perspective. Also also greatly facilitates calculations of process
kinematics as thresholds in kinetic energy stay put.

Ferini et al NPA762(05)147: U, = 0 & U = Uy employed in
most models, including IBUU.

pBUU: U dependent on conserved quantities, density of baryon
number and isospin - = end up with potentials that depend on
isospin & symmetry energy
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General Issues
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Symmetry-Energy Derived = Potential
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General Issues
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Technical Differences between Calculations
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General Issues
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Pions Probe System at High-p!
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7 test the maximal densities reached and collective motion then
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Charged-= Yields, Theory & Expt
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Pions as Probe of High-p Symmetry Energy
B-A Li PRL88(02)192701: S(p > pg) = N/Bpsp, = ©~ /7t
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Charged-= Yields, Theory & Expt
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Dedicated Experimental Efforts
SAMURAI-TPC Collaboration (8 countries and 43
researchers): comparisons of near-threshold 7~ and = and
als,\?srgﬁ/?\;l)gatrg]l_ and fk)él(\l'\j ellJt RIKEN, Japan. /

, Texas P e
Western Michigan U, U of Notre Dame @
GSI, Daresbury Lab, INFN/LNS ]
U of Budapest, SUBATECH, GANIL
China IAE, Brazil, RIKEN, Rikkyo U
Tohoku U, Kyoto U

AT-TPC Collaboration (US & France)
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Charged-= Yields, Theory & Expt
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Interpretation of FOPI Data

Reisdorf et al NPA781(07)459
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Charged-= Yields, Theory & Expt
0000000

Net 7 Yields and U(p, p) in pBUU
Reisdorf et al NPA781(07)459
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Charged-= Yields, Theory & Expt
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7 Yields Reproduced with Softened U(p)
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Inferior Description of Midrapidity Flow Anisotropy
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Charged-= Yields, Theory & Expt
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FOPI 7~ /=" Reproduced by pBUU

...irrespectively of U(p), right panel

Left panel: discrepancies in the literature - correlation vs
anticorrelation of S(p > pg) with 7= /7.
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Charged-= Yields, Theory & Expt
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FOPI 7~ /=" Reproduced by pBUU
...irrespectively of Sini(p) = So (p/po)”:
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Charged-= Yields, Theory & Expt
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Original Idea Still Correct for High-E =’s
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n/p Ratio in pBUU at p > po

changes with the supranormal symmetry energy:
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Charged-= Yields, Theory & Expt
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Why Differences for Net = Ratios?
In pBUU isospin-driven 7+ optical potential
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NPA728(03)135; Prassa et al NPA789(07)311 and Song&Ko @é

PRC91(15)014901. Virtually none there in pBUU!
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Conclusions
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Conclusions

@ Pions probe high-p matter, net density, n/p-ratio, collective
flow there! ... U(p)
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@ Uncertainties in the near-threshold 7 production:
A lifetime, m & A optical potentials, in-medium rates.
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Conclusions

@ Pions probe high-p matter, net density, n/p-ratio, collective
flow there! ... U(p)

@ Uncertainties in the near-threshold 7 production:
A lifetime, m & A optical potentials, in-medium rates.

@ pBUU reproduces FOPI 7~ /=, irrespectively of details in
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@ High-energy = /=~ ratio more robust than ratio of net
yields. Sensitivity to the dependence of effective masses
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@ Azimuthal dependence of =™ /7~ ratio?
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