Cubic vertices for Maxwell-like higher spins

New Frontiers in Theoretical Physics XXXV Convegno Nazionale di Fisica Teorica May 17-20, 2016 - GGI, Firenze

Gabriele Lo Monaco
(University of Pisa)

In collaboration with Dario Francia and Karapet Mkrtchyan

Plan of the talk

- Higher Spins \& the interaction problem
- Construction of consistent vertices
- The Maxwell-Like case
- Conclusions

Higher Spins \& the interaction problem

MODERN FIELDTHEORIES

Main theories of modern physics can be identified according to the spin of the involved particles:

MODERN FIELDTHEORIES

Main theories of modern physics can be identified according to the spin of the involved particles:

MODERN FIELDTHEORIES

Main theories of modern physics can be identified according to the spin of the involved particles:

MODERN FIELDTHEORIES

Main theories of modern physics can be identified according to the spin of the involved particles:

MODERN FIELDTHEORIES

Main theories of modern physics can be identified according to the spin of the involved particles:

WHY NOT HIGHER SPINS (HS: SPIN S>2)?

Higher spins

- Unitary irreps of the Poincaré group (covariantly, via symmetric tensors, $\varphi_{\mu_{1} \ldots \mu_{s}}$)
- Predicted by (super-)strings
- Consistent free Lagrangian theories (Fronsdal Lagrangian, [1978]):

$$
\mathcal{L}=\frac{1}{2}\left\{\varphi \mathcal{F}-\frac{s(s-1)}{2} \varphi^{\prime} \mathcal{F}^{\prime}\right\}, \quad \mathcal{F}=\square \varphi-\partial \partial \cdot \varphi+\partial^{2} \varphi
$$

(Some) No-Go Theorems

- Weinberg theorem (1964): studying soft-particle emission, forbids couplings $s-s-s^{\prime}$ with $s^{\prime}>2$.
- Weinberg-Witten-Porrati theorem [1980-2008]: forbids massless higher spins interacting with ordinary gravity $(s-s-2)$.
- Coleman-Mandula theorem [1967]: admits at most a susy extension of the Poincaré algebra. (Maldacena-Zhiboedov [20I I-20I 2]: sort of Coleman-Mandula for AdS/CFT)

(Some) No-Go Theorems

- Weinberg theorem (1964): studying soft-particle emission, forbids couplings $s-s-s^{\prime}$ with $s^{\prime}>2$.
- Weinberg-Witten-Porrati theorem [1980-2008]: forbids massless higher spins interacting with ordinary gravity ($s-s-2$).
- Coleman-Mandula theorem [1967]: admits at most a susy extension of the Poincaré algebra. (Maldacena-Zhiboedov [20II-20I2]: sort of Coleman-Mandula for AdS/CFT)

Non-minimal couplings

Cubic vertices [Bengtsson-Bengtsson-Brink 1983 and several more]

- Every no-go theorem rests on (strong) hypothesis that might be relaxed
- Interaction vertices: may still be possible if they are subleading at low energy (to address Weinberg's theorem)
- At any rate, knowledge of HS interactions relevant to study mechanisms for HS symmetry breaking
- An important result: the Metsaev bound [1997-2006] constrains the overall number of derivatives in a CUBIC vertex

Cubic vertices [Bengtsson-Bengtsson-Brink 1983 and several more]

- Every no-go theorem rests on (strong) hypothesis that might be relaxed
- Interaction vertices: may still be possible if they are subleading at low energy (to address Weinberg's theorem)
- At any rate, knowledge of HS interactions relevant to study mechanisms for HS symmetry breaking
- An important result: the Metsaev bound [1997-2006] constrains the overall number of derivatives in a CUBIC vertex

Construction of consistent vertices

Noether procedure [Berends-Burgers-Van Dam 1985]

- If we want to build up interactions for massless particles, we need to keep gauge invariance
- Starting point: free theory (action S_{0} and free transformation δ_{0})
- Perturbative expansion:

Noether procedure [Berends-Burgers-Van Dam 1985]

- If we want to build up interactions for massless particles, we need to keep gauge invariance
- Starting point: free theory (action S_{0} and free transformation δ_{0})
- Perturbative expansion:

$$
S=S_{0}+g S_{1}+g^{2} S_{2}+\ldots
$$

Noether procedure [Berends-Burgers-Van Dam 1985]

- If we want to build up interactions for massless particles, we need to keep gauge invariance
- Starting point: free theory (action S_{0} and free transformation δ_{0})
- Perturbative expansion:

$$
S=S_{0}+g S_{1}+g^{2} S_{2}+\ldots \quad \delta=\delta_{0}+g \delta_{1}+g^{2} \delta_{2}+\ldots
$$

Noether procedure [Berends-Burgers-Van Dam 1985]

- If we want to build up interactions for massless particles, we need to keep gauge invariance
- Starting point: free theory (action S_{0} and free transformation δ_{0})
- Perturbative expansion:

$$
S=S_{0}+g S_{1}+g^{2} S_{2}+\ldots \quad \delta=\delta_{0}+g \delta_{1}+g^{2} \delta_{2}+\ldots
$$

$$
\delta S=\left\{\begin{array}{l}
\frac{\delta S_{0}}{\delta \varphi} \delta_{0} \varphi=0 \\
\frac{\delta S_{1}}{\delta \varphi} \delta_{0} \varphi+\frac{\delta S_{0}}{\delta \varphi} \delta_{1} \varphi=0 \\
\vdots
\end{array}\right.
$$

Noether procedure [Berends-Burgers-Van Dam 1985]

- If we want to build up interactions for massless particles, we need to keep gauge invariance
- Starting point: free theory (action S_{0} and free transformation δ_{0})
- Perturbative expansion:

$$
S=S_{0}+g S_{1}+g^{2} S_{2}+\ldots \quad \delta=\delta_{0}+g \delta_{1}+g^{2} \delta_{2}+\ldots
$$

$$
\delta S=\left\{\begin{array}{l}
\frac{\delta S_{0}}{\delta \varphi} \delta_{0} \varphi=0 \\
\frac{\delta S_{1}}{\delta \varphi} \delta_{0} \varphi+\frac{\delta S_{0}}{\delta \varphi} \delta_{1} \varphi=0 \\
\vdots
\end{array}\right.
$$

Cubic Step

Cubic interactions

- We are looking for a Lagrangian deformation involving arbitrary spins:

$$
\mathcal{V}_{\text {cubic }}=\mathcal{L}_{1}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)
$$

- Cubic step:

$$
\frac{\delta S_{0}}{\delta \varphi_{i}} \delta_{1} \varphi_{i}+\frac{\delta S_{1}}{\delta \varphi_{i}} \delta_{0} \varphi_{i}=0
$$

Cubic interactions

- We are looking for a Lagrangian deformation involving arbitrary spins:

$$
\mathcal{V}_{\text {cubic }}=\mathcal{L}_{1}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)
$$

- Cubic step:

Off-shell terms: define the structure of the vertex

Cubic interactions

- We are looking for a Lagrangian deformation involving arbitrary spins:

$$
\mathcal{V}_{\text {cubic }}=\mathcal{L}_{1}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)
$$

- Cubic step:

On-shell terms: define the structure of the transformation

Off-shell terms: define the structure of the vertex

The Maxwell-Like case

Maxwell-Like Higher spins [Campoleonil:Fancia 2013]

- Free Lagrangian: $\quad \mathcal{L}=\frac{1}{2} \varphi \mathcal{M}(\varphi), \quad \mathcal{M}(\varphi)=\square \varphi-\partial \partial \cdot \varphi$
- Gauge invariance: $\quad \delta \varphi=\partial \epsilon, \quad \partial \cdot \epsilon=0$
\longleftarrow Differential constraint

Maxwell-Like Higher spins [Campoleonifirancia 2013]

- Free Lagrangian: $\quad \mathcal{L}=\frac{1}{2} \varphi \mathcal{M}(\varphi), \quad \mathcal{M}(\varphi)=\square \varphi-\partial \partial \cdot \varphi$
- Gauge invariance: $\quad \delta \varphi=\partial \epsilon, \quad \partial \cdot \epsilon=0 \quad$ Differential constraint

Simpler Lagrangian w.r.t. Fronsdal

Reducible spectrum:
$\operatorname{spin} s, s-2, \ldots, 1$ or 0

Building Maxwell-like cubic vertices

$$
\frac{\delta S_{0}}{\delta \varphi_{i}} \delta_{1} \varphi_{i}+\frac{\delta S_{1}}{\delta \varphi_{i}} \delta_{0} \varphi_{i}=0
$$

Building Maxwell-like cubic vertices

$$
\frac{\delta S_{0}}{\delta \varphi_{i}} \delta_{1} \varphi_{i}+\frac{\delta S_{1}}{\delta \varphi_{i}} \delta_{0} \varphi_{i}=0
$$

- Remaining terms:

$$
\partial \cdot \partial \cdot \varphi_{j} \mathcal{C}_{1}\left(\varphi_{i}, \epsilon_{k}\right), \quad j, k \neq i
$$

Building Maxwell-like cubic vertices

$$
\frac{\delta S_{0}}{\delta \varphi_{i}} \delta_{1} \varphi_{i}+\frac{\delta S_{1}}{\delta \varphi_{i}} \delta_{0} \varphi_{i}=0
$$

- Remaining terms:

$$
\partial \cdot \partial \cdot \varphi_{j} \mathcal{C}_{1}\left(\varphi_{i}, \epsilon_{k}\right), \quad j, k \neq i
$$

On-shell terms; but it is impossible to extract in a local way the equations of motion

Modified Noether procedure

- Quadratic step: $\quad \frac{\delta S_{0}}{\delta \varphi_{j}} \delta_{0} \varphi_{j} \sim \int \partial \cdot \epsilon_{j} \partial \cdot \partial \cdot \varphi_{j} \longleftarrow \quad \begin{gathered}\text { The same double-divergence } \\ \text { term! }\end{gathered}$

Modified Noether procedure

- Quadratic step:

$$
\frac{\delta S_{0}}{\delta \varphi_{j}} \delta_{0} \varphi_{j} \sim \int \partial \cdot \epsilon_{j} \partial \cdot \partial \cdot \varphi_{j} \longleftarrow \quad \begin{gathered}
\text { The same double-divergence } \\
\text { term! }
\end{gathered}
$$

Link with the cubic step:
Deformation of the constraint:

$$
\partial \cdot \epsilon_{j} \sim \mathcal{C}\left(\varphi_{i}, \epsilon_{k}\right), \quad j, k \neq i
$$

Modified Noether procedure

- Quadratic step:

$$
\frac{\delta S_{0}}{\delta \varphi_{j}} \delta_{0} \varphi_{j} \sim \int \partial \cdot \epsilon_{j} \partial \cdot \partial \cdot \varphi_{j} \longleftarrow
$$

The same double-divergence term!

Link with the cubic step:
Deformation of the constraint:
$\partial \cdot \epsilon_{j} \sim \mathcal{C}\left(\varphi_{i}, \epsilon_{k}\right), \quad j, k \neq i$

- Example: 2-2-2 vertex
$\partial \cdot \epsilon=0 \rightarrow \underbrace{\left(\eta_{\mu \nu}+h_{\mu \nu}\right)}_{g_{\mu \nu}} \partial^{\mu} \epsilon^{\nu}=0$
Constraint of unimodular gravity [e.g. Alvarez-Boas-Garriga-Veldaguer 2006]: information about the geometry

The general result

- The vertex:

$$
\mathcal{L}_{1}=\mathcal{L}^{T T}+\mathcal{L}^{\mathcal{D}}+\mathcal{L}^{\mathcal{D D}}+\mathcal{L}^{\mathcal{D D D}}
$$

$$
\begin{aligned}
& \mathcal{L}^{T T}=\sum_{n_{i}} K_{n_{i}} \int d^{D} \mu T\left(n_{1}, n_{2}, n_{3} \mid Q_{12}, Q_{23}, Q_{31}\right) \varphi_{1}\left(a, x_{1}\right) \varphi_{2}\left(b, x_{2}\right) \varphi_{3}\left(c, x_{3}\right) \\
& \mathcal{C}^{\mathcal{D}}=\sum_{n_{i}} K_{n_{i}} \int d^{D} \mu\left\{\frac{s_{1} n_{1}}{2} T\left(n_{1}-1, n_{2}, n_{3} \mid Q_{i j}\right) \mathcal{D}_{1}\left(a, x_{1}\right) \varphi_{2}\left(b, x_{2}\right) \varphi_{3}\left(c, x_{3}\right)\right. \\
& \frac{s_{2} n_{2}}{2} T\left(n_{1}, n_{2}-1, n_{3} \mid Q_{i j}\right) \varphi_{1}\left(a, x_{1}\right) \mathcal{D}_{2}\left(b, x_{2}\right) \varphi_{3}\left(c, x_{3}\right) \\
& \frac{s_{3} n_{3}}{2} T\left(n_{1}, n_{2}, n_{3}-1 \mid Q_{i j}\right) \varphi_{1}\left(a, x_{1}\right) \varphi_{2}\left(b, x_{2}\right) \mathcal{D}_{3}\left(c, x_{3}\right) \\
& \mathcal{L}^{\mathcal{D D}}=\sum_{n_{i}} K_{n_{i}} \int d^{D} \mu\left\{\frac{s_{1} s_{2} n_{1} n_{2}}{2} T\left(n_{1}-1, n_{2}-1, n_{3} \mid Q_{i j}\right) \mathcal{D}_{1}\left(a, x_{1}\right) \mathcal{D}_{2}\left(b, x_{2}\right) \varphi_{3}\left(c, x_{3}\right)+\right. \\
& \frac{s_{2} s_{3} n_{2} n_{3}}{2} T\left(n_{1}, n_{2}-1, n_{3}-1 \mid Q_{i j}\right) \varphi_{1}\left(a, x_{1}\right) \mathcal{D}_{2}\left(b, x_{2}\right) \mathcal{D}_{3}\left(c, x_{3}\right)+ \\
& \left.\frac{s_{3} s_{1} n_{3} n_{1}}{2} T\left(n_{1}-1, n_{2}, n_{3}-1 \mid Q_{i j}\right) \mathcal{D}_{1}\left(a, x_{1}\right) \varphi_{2}\left(b, x_{2}\right) \mathcal{D}_{3}\left(c, x_{3}\right)\right\} \\
& \mathcal{L}^{\mathcal{D D D}}=\sum_{n_{i}} K_{n_{i}} \int d^{D} \mu \frac{s_{1} s_{2} s_{3} n_{1} n_{2} n_{3}}{2} T\left(n_{k}-1 \mid Q_{i j}\right) \mathcal{D}_{1}\left(a, x_{1}\right) \mathcal{D}_{2}\left(b, x_{2}\right) \mathcal{D}_{3}\left(c, x_{3}\right)
\end{aligned}
$$

The general result

- The deformed transformation:

$$
\begin{aligned}
\delta \varphi_{1}\left(a, x_{1}\right)=\sum_{n_{i}} \frac{k s_{1}!}{2 Q_{23}!}\{ & +\left.n_{2} s_{2}\left[\left(\partial_{b} \nabla_{3}\right)^{n_{2}-1}\left(a \nabla_{2}\right)^{n_{1}}\left(\partial_{c} \nabla_{1}\right)^{n_{3}}\left(\partial_{b} \partial_{c}\right)^{Q_{23}} \epsilon_{2}\left(b, x_{2}\right) \varphi\left(c, x_{3}\right)\right]\right|_{b, c=a}+ \\
& -\left.n_{3} s_{3}\left[\left(\partial_{b} \nabla_{3}\right)^{n_{2}}\left(a \nabla_{2}\right)^{n_{1}}\left(\partial_{c} \nabla_{1}\right)^{n_{3}-1}\left(\partial_{b} \partial_{c}\right)^{Q_{23}} \varphi_{2}\left(b, x_{2}\right) \epsilon\left(c, x_{3}\right)\right]\right|_{b, c=a}+ \\
& \left.+\left.n_{2} s_{2} n_{3} s_{3}\left[\left(\partial_{b} \nabla_{3}\right)^{n_{2}-1}\left(a \nabla_{2}\right)^{n_{1}}\left(\partial_{c} \nabla_{1}\right)^{n_{3}-1}\left(\partial_{b} \partial_{c}\right)^{Q_{23}} \epsilon_{2}\left(b, x_{2}\right) \mathcal{D}_{3}\left(c, x_{3}\right)\right]\right|_{b, c=a}\right\}
\end{aligned}
$$

- Deformation of the constraint:

$$
\begin{aligned}
\partial \cdot \epsilon_{1}\left(a, x_{1}\right)=\sum_{n_{i}} \frac{2 k n_{1} s_{3}}{\left(s_{1}-2\right)!Q_{23}!}\{ & -\left.\left[\left(\partial_{b} \nabla_{3}\right)^{n_{2}}\left(a \nabla_{2}\right)^{n_{1}-1}\left(\partial_{c} \nabla_{1}\right)^{n_{3}}\left(\partial_{b} \partial_{c}\right)^{Q_{23}} \varphi_{2}\left(b, x_{2}\right) \epsilon_{3}\left(c, x_{3}\right)\right]\right|_{b, c=a}+ \\
& \left.+\left.\frac{n_{2} s_{2}}{2}\left[\left(\partial_{b} \nabla_{3}\right)^{n_{2}-1}\left(a \nabla_{2}\right)^{n_{1}-1}\left(\partial_{c} \nabla_{1}\right)^{n_{3}-1}\left(\partial_{b} \partial_{c}\right)^{Q_{23}} \mathcal{D}_{2}\left(b, x_{2}\right) \epsilon_{3}\left(c, x_{3}\right)\right]\right|_{b, c=a}\right\}
\end{aligned}
$$

Vertices and spectrum

Diagonalization of the spectrum:
Possibility to truncate to the irreducible case: $\varphi^{\prime}=0, \epsilon^{\prime}=0$

Vertices and spectrum

Two possibilities

Diagonalization of the spectrum:

Simultaneous study of more vertices: fixes the relative coefficients

Possibility to truncate to the irreducible case: $\varphi^{\prime}=0, \epsilon^{\prime}=0$

Vertices and spectrum

Two possibilities

Diagonalization of the spectrum:

Simultaneous study of more vertices: fixes the relative coefficients

Possibility to truncate to the irreducible case: $\varphi^{\prime}=0, \epsilon^{\prime}=0$

Relation to Fronsdal and its algebraic constraint

Conclusions

Conclusions

- Maxwell-like HS alternative (simpler?) to Fronsdal: propagate a reducible spectrum. Possibility to truncate and get a single propagating particle
- The construction of consistent vertices needs a modified Noether procedure: the fundamental feature is the deformation of the differential constraint. It may help to unconver the underlying geometry
- The reducible spectrum allows to deal simultaneously with more vertices, with fixed relative coefficients
- The spectrum of the would-be full theory would not obviously match with that of known Vasiliev's theories
- As an exercise, why not investigating deformations of Fronsdal'a algebraic constraints?

Thank you for your kind attention

