Hořava–Lifshitz Gravity from Dynamical Newton–Cartan Geometry

Jelle Hartong

Université Libre de Bruxelles

Workshop on Holographic Methods for Strongly Coupled Systems GGI, Florence, April 14, 2015

> In collaboration with Niels Obers and based on arXiv:1502.00228 (JH, Elias Kiritsis, Niels Obers)

Introduction

- Why Newton–Cartan geometry?
- In relativistic field theory it can be very useful to couple to a background geometry to compute EM tensors, study anomalies, Ward identities, etc.
- Background field methods for systems with NR symmetries requires NC geometry (with torsion) [talk by Niels Obers].
- Recent examples: Son's approach to the effective field theory for the FQHE [Son, 2013], [Geracie, Son, Wu, Wu, 2014] and NR hydrodynamics [Jensen, 2014].
- Torsional NC geometries occur in Lifshitz holography [Christensen, JH, Obers, Rollier, 2013], [Kiritsis, JH, Obers, 2014].

Outline Talk

- Newton–Cartan geometry: fields, connections, torsion, curvatures, etc.
- ADM decomposition: dictionary with HL gravity [Horava, 2008/9]
- Effective actions
- The local U(1) of HL gravity [Horava, Melby-Thompson, 2010].
- Summary/Outlook

Newton–Cartan Geometry

- GR is a diff invariant theory whose tangent space invariance group is the Poincaré group.
- Newton–Cartan gravity is a diffeomorphism invariant theory on a manifold whose tangent space invariance group which is the Bargmann algebra: *H*, *P_a*, *G_a*, *J_{ab}*, *N* with *N* central and

$$[H, G_a] = P_a , \qquad [P_a, G_b] = N\delta_{ab}$$

• NC geometry (with torsion) is the natural geometric framework for HL gravity.

From Poincaré to GR

• Local Poincaré:
$$P_a$$
, M_{ab} (gauging):
 $\mathcal{A}_{\mu} = P_a e^a_{\mu} + \frac{1}{2} M_{ab} \omega_{\mu}{}^{ab}$
 $\mathcal{F}_{\mu\nu} = \partial_{\mu} \mathcal{A}_{\nu} - \partial_{\nu} \mathcal{A}_{\mu} + [\mathcal{A}_{\mu}, \mathcal{A}_{\nu}] = P_a R_{\mu\nu}{}^a (P) + \frac{1}{2} M_{ab} R_{\mu\nu}{}^{ab} (M)$
 $\delta \mathcal{A}_{\mu} = \partial_{\mu} \Lambda + [\mathcal{A}_{\mu}, \Lambda], \qquad \Lambda = \xi^{\mu} \mathcal{A}_{\mu} + \Sigma, \qquad \Sigma = \frac{1}{2} M_{ab} \lambda^{ab}$
 $\bar{\delta} \mathcal{A}_{\mu} = \delta \mathcal{A}_{\mu} - \xi^{\nu} \mathcal{F}_{\mu\nu} = \mathcal{L}_{\xi} \mathcal{A}_{\mu} + \partial_{\mu} \Sigma + [\mathcal{A}_{\mu}, \Sigma]$

- ∇_{μ} defined via VP : $\mathcal{D}_{\mu}e^{a}_{\nu} = \partial_{\mu}e^{a}_{\nu} \Gamma^{\rho}_{\mu\nu}e^{a}_{\rho} \omega_{\mu}{}^{a}{}_{b}e^{b}_{\nu} = 0$
- Lorentz invariant $g_{\mu\nu} = \eta_{ab} e^a_{\mu} e^b_{\nu}$. Affine $\Gamma^{\rho}_{\mu\nu}$: $\nabla_{\mu} g_{\nu\rho} = 0$.

•
$$R_{\mu\nu}{}^{a}(P) = 2\Gamma^{\rho}_{[\mu\nu]} =$$
torsion

• $R_{\mu\nu}{}^{ab}(M) =$ Riemann curvature 2-form

Gauging Bargmann I

• Gauging Bargmann [Andringa, Bergshoeff, Panda, de Roo, 2011] H, P_a , G_a , J_{ab} , N (a is a spatial index):

$$\mathcal{A}_{\mu} = H\tau_{\mu} + P_{a}e_{\mu}^{a} + G_{a}\Omega_{\mu}{}^{a} + \frac{1}{2}J_{ab}\Omega_{\mu}{}^{ab} + Nm_{\mu}$$

$$\mathcal{F}_{\mu\nu} = HR_{\mu\nu}(H) + P_{a}R_{\mu\nu}{}^{a}(P) + G_{a}R_{\mu\nu}{}^{a}(G) + \frac{1}{2}J_{ab}R_{\mu\nu}{}^{ab}(J) + NR_{\mu\nu}(N)$$

$$\delta\mathcal{A}_{\mu} = \partial_{\mu}\Lambda + [\mathcal{A}_{\mu},\Lambda], \quad \Lambda = \xi^{\mu}\mathcal{A}_{\mu} + \Sigma, \quad \Sigma = G_{a}\lambda^{a} + \frac{1}{2}J_{ab}\lambda^{ab} + N\sigma$$

$$\bar{\delta}\mathcal{A}_{\mu} = \delta\mathcal{A}_{\mu} - \xi^{\nu}\mathcal{F}_{\mu\nu} = \mathcal{L}_{\xi}\mathcal{A}_{\mu} + \partial_{\mu}\Sigma + [\mathcal{A}_{\mu},\Sigma]$$

• Vielbein postulates (introduction of $\Gamma^{\rho}_{\mu\nu}$):

$$\mathcal{D}_{\mu}\tau_{\nu} = \partial_{\mu}\tau_{\nu} - \Gamma^{\rho}_{\mu\nu}\tau_{\rho} = 0$$

$$\mathcal{D}_{\mu}e^{a}_{\nu} = \partial_{\mu}e^{a}_{\nu} - \Gamma^{\rho}_{\mu\nu}e^{a}_{\rho} - \Omega_{\mu}{}^{a}\tau_{\nu} - \Omega_{\mu}{}^{a}{}_{b}e^{b}_{\nu} = 0$$

Gauging Bargmann II

• Inverse vielbeins: v^{μ} and e^{μ}_{a} via

$$v^{\mu}\tau_{\mu} = -1$$
, $v^{\mu}e^{a}_{\mu} = 0$, $e^{\mu}_{a}\tau_{\mu} = 0$, $e^{\mu}_{a}e^{b}_{\mu} = \delta^{b}_{a}$.

- Metric: $h^{\mu\nu} = \delta^{ab} e^{\mu}_{a} e^{\nu}_{b}$ and τ_{μ}
- $\Gamma^{\rho}_{\mu\nu}$ is affine and inert under G, J, N.
- $\Omega_{\mu}{}^{ab} = \Omega_{\mu}{}^{[ab]}$ so that $\nabla_{\mu}h^{\nu\rho} = 0$. Also $\nabla_{\mu}\tau_{\nu} = 0$.
- Torsion: $2\Gamma^{\rho}_{[\mu\nu]} = -v^{\rho}R_{\mu\nu}(H) + e^{\rho}_{a}R_{\mu\nu}{}^{a}(P)$
- Curvature: $[\nabla_{\mu}, \nabla_{\nu}]X_{\sigma} = R_{\mu\nu\sigma}{}^{\rho}X_{\rho} 2\Gamma^{\rho}_{[\mu\nu]}\nabla_{\rho}X_{\sigma}$
- where via VPs: $R_{\mu\nu\sigma}{}^{\rho} = e^{\rho}_{a}\tau_{\sigma}R_{\mu\nu}{}^{a}(G) e_{\sigma a}e^{\rho}_{b}R_{\mu\nu}{}^{ab}(J)$

Affine Connection I

• The most general metric compatible $\Gamma^{\rho}_{\mu\nu}$:

$$\Gamma^{\rho}_{\mu\nu} = -v^{\rho}\partial_{\mu}\tau_{\nu} + \frac{1}{2}h^{\rho\sigma}\left(\partial_{\mu}h_{\nu\sigma} + \partial_{\nu}h_{\mu\sigma} - \partial_{\sigma}h_{\mu\nu}\right) + \frac{1}{2}h^{\rho\sigma}\left(\tau_{\mu}K_{\sigma\nu} + \tau_{\nu}K_{\sigma\mu} + L_{\sigma\mu\nu}\right)$$

where $h_{\mu\nu} = \delta_{ab} e^a_{\mu} e^b_{\nu}$ (not *G* invariant) and $K_{\mu\nu} = -K_{\nu\mu}$, $L_{\sigma\mu\nu} = -L_{\nu\mu\sigma}$ are arbitrary.

• Transformations of τ_{μ} , e^{a}_{μ} and m_{μ} :

 $\bar{\delta}\tau_{\mu} = \mathcal{L}_{\xi}\tau_{\mu}, \quad \bar{\delta}e^{a}_{\mu} = \mathcal{L}_{\xi}e^{a}_{\mu} + \lambda^{a}\tau_{\mu} + \lambda^{a}{}_{b}e^{b}_{\mu}, \quad \bar{\delta}m_{\mu} = \mathcal{L}_{\xi}m_{\mu} + \partial_{\mu}\sigma + \lambda_{a}e^{a}_{\mu}$

• Demanding local Galilean invariance ($\lambda_{\mu} = \lambda_{a} e_{\mu}^{a}$):

$$\delta_{G}K_{\sigma\mu} = \partial_{\sigma}\lambda_{\mu} - \partial_{\mu}\lambda_{\sigma}$$

$$\delta_{G}L_{\sigma\mu\nu} = \lambda_{\sigma}\left(\partial_{\mu}\tau_{\nu} - \partial_{\nu}\tau_{\mu}\right) - \lambda_{\mu}\left(\partial_{\nu}\tau_{\sigma} - \partial_{\sigma}\tau_{\nu}\right) - \lambda_{\nu}\left(\partial_{\mu}\tau_{\sigma} - \partial_{\sigma}\tau_{\mu}\right)$$

Affine Connection II

 Local Galilean invariance (Milne boosts in [Jensen, 2014]) realized by taking:

$$K_{\sigma\mu} = \partial_{\sigma}m_{\mu} - \partial_{\mu}m_{\sigma}$$

 $L_{\sigma\mu\nu} = m_{\sigma} \left(\partial_{\mu}\tau_{\nu} - \partial_{\nu}\tau_{\mu}\right) - m_{\mu} \left(\partial_{\nu}\tau_{\sigma} - \partial_{\sigma}\tau_{\nu}\right) - m_{\nu} \left(\partial_{\mu}\tau_{\sigma} - \partial_{\sigma}\tau_{\mu}\right)$

• The connection becomes:

$$\Gamma^{\rho}_{\mu\nu} = -\hat{v}^{\rho}\partial_{\mu}\tau_{\nu} + \frac{1}{2}h^{\rho\sigma}\left(\partial_{\mu}\bar{h}_{\nu\sigma} + \partial_{\nu}\bar{h}_{\mu\sigma} - \partial_{\sigma}\bar{h}_{\mu\nu}\right)$$

where $\hat{v}^{\mu} = v^{\mu} - h^{\mu\nu}m_{\nu}$ and $\bar{h}_{\mu\nu} = h_{\mu\nu} - \tau_{\mu}m_{\nu} - \tau_{\nu}m_{\mu}$ are *G* and *J* invariant.

• $\Gamma^{\rho}_{\mu\nu}$ is still not unique: can replace $\bar{h}_{\mu\nu}$ by $\bar{h}_{\mu\nu} + \alpha \tau_{\mu} \tau_{\nu} \tilde{\Phi}$ where $\tilde{\Phi} = -v^{\mu}m_{\mu} + \frac{1}{2}h^{\mu\nu}m_{\mu}m_{\nu}$ is *G*, *J* invariant. But the action will be independent of α .

Torsion

- $\delta_N \Gamma^{\rho}_{\mu\nu} \neq 0$ will be fixed later.
- The affine connection has torsion: $2\hat{\Gamma}^{\rho}_{[\mu\nu]} = -\hat{v}^{\rho} \left(\partial_{\mu}\tau_{\nu} - \partial_{\nu}\tau_{\mu}\right).$
- We distinguish three cases :
 - No torsion: $\partial_{\mu}\tau_{\nu} \partial_{\nu}\tau_{\mu} = 0$ (NC geometry)
 - Twistless torsion: $\tau_{[\mu}\partial_{\nu}\tau_{\rho]} = 0$ (TTNC geometry)
 - \circ No constraint on au_{μ} (TNC geometry)
- Here: TTNC (which includes NC) geometry. Torsion measured by one vector a_{μ} because:

$$\partial_{\mu}\tau_{\nu} - \partial_{\nu}\tau_{\mu} = a_{\mu}\tau_{\nu} - a_{\nu}\tau_{\mu}, \qquad a_{\mu} = \hat{v}^{\rho} \left(\partial_{\rho}\tau_{\mu} - \partial_{\mu}\tau_{\rho}\right)$$

ADM Decomposition I

- Local Galilean invariant vielbeins: τ_{μ} , $\hat{e}^{a}_{\mu} = e^{a}_{\mu} \tau_{\mu}e^{\nu a}m_{\nu}$ and inverses: \hat{v}^{μ} and e^{μ}_{a} .
- Lorentzian metric: $g_{\mu\nu} = -\tau_{\mu}\tau_{\nu} + \hat{h}_{\mu\nu}$ where $\hat{h}_{\mu\nu} = \delta_{ab}\hat{e}^a_{\mu}\hat{e}^b_{\nu} = \bar{h}_{\mu\nu} + 2\tau_{\mu}\tau_{\nu}\tilde{\Phi}$

•
$$\hat{v}^{\mu} = g^{\mu\nu} \tau_{\nu}$$
 and $e^{\mu}_{a} = g^{\mu\nu} \hat{e}_{\nu a}$

- ADM: $ds^2 = -N^2 dt^2 + \gamma_{ij} (dx^i + N^i dt) (dx^j + N^j dt)$
- TTNC $\tau_{\mu} = \psi \partial_{\mu} \tau$ (τ is Khronon field of [Blas, Pujolas, Sibiryakov, 2010])
- Fix foliation $\tau = t$ this implies

$$\tau_t = N , \qquad \hat{h}_{ti} = \gamma_{ij} N^j , \qquad \hat{h}_{ij} = \gamma_{ij} , \qquad m_i = -N^{-1} \gamma_{ij} N^j$$

ADM Decomposition II

- Since $\tau_t = N$ it follows that
 - NC: $\partial_{\mu}\tau_{\nu} \partial_{\nu}\tau_{\mu} = 0$ is equivalent to N = N(t): projectable HL gravity
 - TTNC: N = N(t, x): non-projectable HL gravity, extra field (torsion) $a_i = N^{-1} \partial_i N$
- ADM decomposition becomes dynamical and is described by τ_{μ} (lapse), m_{μ} (shift) and $\hat{h}_{\mu\nu}$ (spatial metric on cst time slices).
- Actually $m_t = -\frac{1}{2N}\gamma_{ij}N^iN^j + N\tilde{\Phi}$ is an additional field (denoted by A in [Horava, Melby-Thompson, 2010]=HMT)
- Bargmann U(1): $\delta_N m_\mu = \partial_\mu \sigma$ is the U(1) discussed in HMT including χ appearing as $m_\mu - \partial_\mu \chi$.

Effective Actions I

- Extrinsic curvature: $\nabla_{\mu}\hat{v}^{\rho} = -h^{\rho\sigma}K_{\mu\sigma}$ where $K_{\mu\nu} = -\frac{1}{2}\mathcal{L}_{\hat{v}}\hat{h}_{\mu\nu}$
- Integration measure $e = \det(\tau_{\mu}, e^{a}_{\mu})$ is G, J, N invariant.
- Add terms (built out of tangent space invariants) to the action that are relevant or marginal (up to dilatation weight d + z)

invariant	$ au_{\mu}$	$\hat{h}_{\mu u}$	\hat{v}^{μ}	$h^{\mu u}$	e	$ ilde{\Phi}$	χ
dil. weight	-z	-2	z	2	-(z+d)	2(z-1)	z-2

 We work in 2+1 dimensions with 1 < z ≤ 2. Weight of each term is determined by number of h^{µν} and ŷ^µ.

- The possibilities are:
 v^μ (z), *h*^{μν} (2),
 v^μ *v*^ν (2z), *h*^{μν} *v*^ρ
 (2 + z), *h*^{μν} *h*^{ρσ} (4). We make scalars out of them by
 contracting with ∇_μ and *a_μ* (note that
 v^μ *a_μ* = 0).
- In 2+1 dimensions there is one curvature invariant: $\mathcal{R} = h^{\mu\nu} R_{\rho\mu\nu}^{\rho}$ (2) which is the Ricci curvature of γ_{ij} .
- Do not allow terms that break time reversal invariance.
- Two kinetic terms (the HL λ parameter):

 $c_1 \nabla_\nu \hat{v}^\mu \nabla_\mu \hat{v}^\nu + c_2 \nabla_\mu \hat{v}^\mu \nabla_\nu \hat{v}^\nu = C \left(h^{\mu\rho} h^{\nu\sigma} K_{\mu\nu} K_{\rho\sigma} - \lambda \left(h^{\mu\nu} K_{\mu\nu} \right)^2 \right)$

• The potential term matches [Blas, Pujolas, Sibiryakov, 2010], [Zhu, Shu, Wu, Wang, 2010]

 $\mathcal{V} = c_3 h^{\mu\nu} a_{\mu} a_{\nu} + c_4 \mathcal{R} + \delta_{z,2} \left[c_5 \left(h^{\mu\nu} a_{\mu} a_{\nu} \right)^2 + c_6 h^{\mu\rho} a_{\mu} a_{\rho} \nabla_{\nu} \left(h^{\nu\sigma} a_{\sigma} \right) \right. \\ \left. + c_7 \nabla_{\nu} \left(h^{\mu\rho} a_{\rho} \right) \nabla_{\mu} \left(h^{\nu\sigma} a_{\sigma} \right) + c_8 \mathcal{R}^2 + c_9 \mathcal{R} \nabla_{\mu} \left(h^{\mu\nu} a_{\nu} \right) + c_{10} \mathcal{R} h^{\mu\nu} a_{\mu} a_{\nu} \right]$

Local U(1)

• TTNC identity (note $\lambda = 1$):

 $\delta_N \left(\nabla_\nu \hat{v}^\mu \nabla_\mu \hat{v}^\nu - \nabla_\mu \hat{v}^\mu \nabla_\nu \hat{v}^\nu \right) = -\mathcal{R} \hat{v}^\mu \partial_\mu \sigma + \text{torsion terms} \,,$

• The additional field $\tilde{\Phi}$ transforms as: $\delta_N \tilde{\Phi} = -\hat{v}^{\mu} \partial_{\mu} \sigma$.

$$S = \int d^3x e \left[C \left(h^{\mu\rho} h^{\nu\sigma} K_{\mu\nu} K_{\rho\sigma} - (h^{\mu\nu} K_{\mu\nu})^2 - \tilde{\Phi} \mathcal{R} \right) - \mathcal{V} \right]$$

Is the U(1) invariant HMT action for projectable HL gravity in 3D [Horava, Melby-Thompson, 2010].

The non-projectable HMT action can only be made U(1) invariant by adding a Stückelberg scalar [HMT].
 By replacing m_μ by m_μ - ∂_μχ we reproduce precisely all the terms of [Zhu, Shu, Wu, Wang, 2010].

Summary/Outlook

- Dynamical (TT)NC geometry is exactly the same as (non-)projectable HL gravity.
- What does this teach us about the ground state? Flat NC space-time has different symmetries than Minkowski space-time (see talk by Niels Obers).
- χ is an essential part of the TNC geometry. Under special circumstances it can drop out (e.g some HL actions or Schrödinger scalar model).
- Black holes?, phase space formulation, etc.
- Gauging other NR symmetry groups: Schrödinger space-times [Andrade, Keeler, Peach, Ross, 2014], [Armas, Blau, JH, in progress] Or warped AdS₃ [Hofman, Rollier, 2014].