Hořava-Lifshitz Gravity from Dynamical Newton-Cartan Geometry

Jelle Hartong
Université Libre de Bruxelles

Workshop on Holographic Methods for Strongly Coupled Systems GGI, Florence, April 14, 2015

In collaboration with Niels Obers
and based on
arXiv:1502.00228 (JH, Elias Kiritsis, Niels Obers)

Introduction

- Why Newton-Cartan geometry?
- In relativistic field theory it can be very useful to couple to a background geometry to compute EM tensors, study anomalies, Ward identities, etc.
- Background field methods for systems with NR symmetries requires NC geometry (with torsion) [talk by Niels Obers].
- Recent examples: Son's approach to the effective field theory for the FQHE [Son, 2013], [Geracie, Son, Wu, Wu, 2014] and NR hydrodynamics [Jensen, 2014].
- Torsional NC geometries occur in Lifshitz holography [Christensen, JH, Obers, Rollier, 2013], [Kiritsis, JH, Obers, 2014].

Outline Talk

- Newton-Cartan geometry: fields, connections, torsion, curvatures, etc.
- ADM decomposition: dictionary with HL gravity [Horava, 2008/9]
- Effective actions
- The local $U(1)$ of HL gravity [Horava, Melly-Thompson, 2010].
- Summary/Outlook

Newton-Cartan Geometry

- GR is a diff invariant theory whose tangent space invariance group is the Poincaré group.
- Newton-Cartan gravity is a diffeomorphism invariant theory on a manifold whose tangent space invariance group which is the Bargmann algebra: $H, P_{a}, G_{a}, J_{a b}$, N with N central and

$$
\left[H, G_{a}\right]=P_{a}, \quad\left[P_{a}, G_{b}\right]=N \delta_{a b}
$$

- NC geometry (with torsion) is the natural geometric framework for HL gravity.

From Poincaré to GR

- Local Poincaré: $P_{a}, M_{a b}$ (gauging):

$$
\begin{aligned}
\mathcal{A}_{\mu} & =P_{a} e_{\mu}^{a}+\frac{1}{2} M_{a b} \omega_{\mu}{ }^{a b} \\
\mathcal{F}_{\mu \nu} & =\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}+\left[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right]=P_{a} R_{\mu \nu}{ }^{a}(P)+\frac{1}{2} M_{a b} R_{\mu \nu}{ }^{a b}(M) \\
\delta \mathcal{A}_{\mu} & =\partial_{\mu} \Lambda+\left[\mathcal{A}_{\mu}, \Lambda\right], \quad \Lambda=\xi^{\mu} \mathcal{A}_{\mu}+\Sigma, \quad \Sigma=\frac{1}{2} M_{a b} \lambda^{a b} \\
\bar{\delta} \mathcal{A}_{\mu} & =\delta \mathcal{A}_{\mu}-\xi^{\nu} \mathcal{F}_{\mu \nu}=\mathcal{L}_{\xi} \mathcal{A}_{\mu}+\partial_{\mu} \Sigma+\left[\mathcal{A}_{\mu}, \Sigma\right]
\end{aligned}
$$

- ∇_{μ} defined via VP : $\mathcal{D}_{\mu} e_{\nu}^{a}=\partial_{\mu} e_{\nu}^{a}-\Gamma_{\mu \nu}^{\rho} e_{\rho}^{a}-\omega_{\mu}{ }^{a}{ }_{b} e_{\nu}^{b}=0$
- Lorentz invariant $g_{\mu \nu}=\eta_{a b} e_{\mu}^{a} e_{\nu}^{b}$. Affine $\Gamma_{\mu \nu}^{\rho}: \nabla_{\mu} g_{\nu \rho}=0$.
- $R_{\mu \nu}{ }^{a}(P)=2 \Gamma_{[\mu \nu]}^{\rho}=$ torsion
- $R_{\mu \nu}{ }^{a b}(M)=$ Riemann curvature 2-form

Gauging Bargmann I

- Gauging Bargmann [Andringa, Bergshoeff, Panda, de Roo, 2011] H, $P_{a}, G_{a}, J_{a b}, N$ (a is a spatial index):
$\mathcal{A}_{\mu}=H \tau_{\mu}+P_{a} e_{\mu}^{a}+G_{a} \Omega_{\mu}{ }^{a}+\frac{1}{2} J_{a b} \Omega_{\mu}^{a b}+N m_{\mu}$
$\mathcal{F}_{\mu \nu}=H R_{\mu \nu}(H)+P_{a} R_{\mu \nu}{ }^{a}(P)+G_{a} R_{\mu \nu}{ }^{a}(G)+\frac{1}{2} J_{a b} R_{\mu \nu}{ }^{a b}(J)+N R_{\mu \nu}(N)$
$\delta \mathcal{A}_{\mu}=\partial_{\mu} \Lambda+\left[\mathcal{A}_{\mu}, \Lambda\right], \quad \Lambda=\xi^{\mu} \mathcal{A}_{\mu}+\Sigma, \quad \Sigma=G_{a} \lambda^{a}+\frac{1}{2} J_{a b} \lambda^{a b}+N \sigma$
$\bar{\delta} \mathcal{A}_{\mu}=\delta \mathcal{A}_{\mu}-\xi^{\nu} \mathcal{F}_{\mu \nu}=\mathcal{L}_{\xi} \mathcal{A}_{\mu}+\partial_{\mu} \Sigma+\left[\mathcal{A}_{\mu}, \Sigma\right]$
- Vielbein postulates (introduction of $\Gamma_{\mu \nu}^{\rho}$):

$$
\begin{aligned}
& \mathcal{D}_{\mu} \tau_{\nu}=\partial_{\mu} \tau_{\nu}-\Gamma_{\mu \nu}^{\rho} \tau_{\rho}=0 \\
& \mathcal{D}_{\mu} e_{\nu}^{a}=\partial_{\mu} e_{\nu}^{a}-\Gamma_{\mu \nu}^{\rho} e_{\rho}^{a}-\Omega_{\mu}{ }^{a} \tau_{\nu}-\Omega_{\mu}{ }^{a}{ }_{b} e_{\nu}^{b}=0
\end{aligned}
$$

Gauging Bargmann II

- Inverse vielbeins: v^{μ} and e_{a}^{μ} via

$$
v^{\mu} \tau_{\mu}=-1, \quad v^{\mu} e_{\mu}^{a}=0, \quad e_{a}^{\mu} \tau_{\mu}=0, \quad e_{a}^{\mu} e_{\mu}^{b}=\delta_{a}^{b}
$$

- Metric: $h^{\mu \nu}=\delta^{a b} e_{a}^{\mu} e_{b}^{\nu}$ and τ_{μ}
- $\Gamma_{\mu \nu}^{\rho}$ is affine and inert under G, J, N.
- $\Omega_{\mu}{ }^{a b}=\Omega_{\mu}{ }^{[a b]}$ so that $\nabla_{\mu} h^{\nu \rho}=0$. Also $\nabla_{\mu} \tau_{\nu}=0$.
- Torsion: $2 \Gamma_{[\mu \nu]}^{\rho}=-v^{\rho} R_{\mu \nu}(H)+e_{a}^{\rho} R_{\mu \nu}{ }^{a}(P)$
- Curvature: $\left[\nabla_{\mu}, \nabla_{\nu}\right] X_{\sigma}=R_{\mu \nu \sigma}^{\rho} X_{\rho}-2 \Gamma_{[\mu \nu]}^{\rho} \nabla_{\rho} X_{\sigma}$
- where via VPs: $R_{\mu \nu \sigma}{ }^{\rho}=e_{a}^{\rho} \tau_{\sigma} R_{\mu \nu}{ }^{a}(G)-e_{\sigma a} e_{b}^{\rho} R_{\mu \nu}{ }^{a b}(J)$

Affine Connection I

- The most general metric compatible $\Gamma_{\mu \nu}^{\rho}$:

$$
\begin{aligned}
\Gamma_{\mu \nu}^{\rho}= & -v^{\rho} \partial_{\mu} \tau_{\nu}+\frac{1}{2} h^{\rho \sigma}\left(\partial_{\mu} h_{\nu \sigma}+\partial_{\nu} h_{\mu \sigma}-\partial_{\sigma} h_{\mu \nu}\right) \\
& +\frac{1}{2} h^{\rho \sigma}\left(\tau_{\mu} K_{\sigma \nu}+\tau_{\nu} K_{\sigma \mu}+L_{\sigma \mu \nu}\right)
\end{aligned}
$$

where $h_{\mu \nu}=\delta_{a b} e_{\mu}^{a} e_{\nu}^{b}$ (not G invariant) and $K_{\mu \nu}=-K_{\nu \mu}$, $L_{\sigma \mu \nu}=-L_{\nu \mu \sigma}$ are arbitrary.

- Transformations of τ_{μ}, e_{μ}^{a} and m_{μ} :

$$
\bar{\delta} \tau_{\mu}=\mathcal{L}_{\xi} \tau_{\mu}, \quad \bar{\delta} e_{\mu}^{a}=\mathcal{L}_{\xi} e_{\mu}^{a}+\lambda^{a} \tau_{\mu}+\lambda^{a}{ }_{b} e_{\mu}^{b}, \quad \bar{\delta} m_{\mu}=\mathcal{L}_{\xi} m_{\mu}+\partial_{\mu} \sigma+\lambda_{a} e_{\mu}^{a}
$$

- Demanding local Galilean invariance ($\lambda_{\mu}=\lambda_{a} e_{\mu}^{a}$):

$$
\begin{aligned}
\delta_{G} K_{\sigma \mu} & =\partial_{\sigma} \lambda_{\mu}-\partial_{\mu} \lambda_{\sigma} \\
\delta_{G} L_{\sigma \mu \nu} & =\lambda_{\sigma}\left(\partial_{\mu} \tau_{\nu}-\partial_{\nu} \tau_{\mu}\right)-\lambda_{\mu}\left(\partial_{\nu} \tau_{\sigma}-\partial_{\sigma} \tau_{\nu}\right)-\lambda_{\nu}\left(\partial_{\mu} \tau_{\sigma}-\partial_{\sigma} \tau_{\mu}\right)
\end{aligned}
$$

Affine Connection II

- Local Galilean invariance (Milne boosts in [Jensen, 2014]) realized by taking:

$$
\begin{aligned}
K_{\sigma \mu} & =\partial_{\sigma} m_{\mu}-\partial_{\mu} m_{\sigma} \\
L_{\sigma \mu \nu} & =m_{\sigma}\left(\partial_{\mu} \tau_{\nu}-\partial_{\nu} \tau_{\mu}\right)-m_{\mu}\left(\partial_{\nu} \tau_{\sigma}-\partial_{\sigma} \tau_{\nu}\right)-m_{\nu}\left(\partial_{\mu} \tau_{\sigma}-\partial_{\sigma} \tau_{\mu}\right)
\end{aligned}
$$

- The connection becomes:

$$
\Gamma_{\mu \nu}^{\rho}=-\hat{v}^{\rho} \partial_{\mu} \tau_{\nu}+\frac{1}{2} h^{\rho \sigma}\left(\partial_{\mu} \bar{h}_{\nu \sigma}+\partial_{\nu} \bar{h}_{\mu \sigma}-\partial_{\sigma} \bar{h}_{\mu \nu}\right)
$$

where $\hat{v}^{\mu}=v^{\mu}-h^{\mu \nu} m_{\nu}$ and $\bar{h}_{\mu \nu}=h_{\mu \nu}-\tau_{\mu} m_{\nu}-\tau_{\nu} m_{\mu}$ are G and J invariant.

- $\Gamma_{\mu \nu}^{\rho}$ is still not unique: can replace $\bar{h}_{\mu \nu}$ by $\bar{h}_{\mu \nu}+\alpha \tau_{\mu} \tau_{\nu} \tilde{\Phi}$ where $\tilde{\Phi}=-v^{\mu} m_{\mu}+\frac{1}{2} h^{\mu \nu} m_{\mu} m_{\nu}$ is G, J invariant. But the action will be independent of α.

Torsion

- $\delta_{N} \Gamma_{\mu \nu}^{\rho} \neq 0$ will be fixed later.
- The affine connection has torsion:
$2 \hat{\Gamma}_{[\mu \nu]}^{\rho}=-\hat{v}^{\rho}\left(\partial_{\mu} \tau_{\nu}-\partial_{\nu} \tau_{\mu}\right)$.
- We distinguish three cases :
- No torsion: $\partial_{\mu} \tau_{\nu}-\partial_{\nu} \tau_{\mu}=0$ (NC geometry)
- Twistless torsion: $\tau_{[\mu} \partial_{\nu} \tau_{\rho]}=0$ (TTNC geometry)
- No constraint on τ_{μ} (TNC geometry)
- Here: TTNC (which includes NC) geometry. Torsion measured by one vector a_{μ} because:

$$
\partial_{\mu} \tau_{\nu}-\partial_{\nu} \tau_{\mu}=a_{\mu} \tau_{\nu}-a_{\nu} \tau_{\mu}, \quad a_{\mu}=\hat{v}^{\rho}\left(\partial_{\rho} \tau_{\mu}-\partial_{\mu} \tau_{\rho}\right)
$$

ADM Decomposition I

- Local Galilean invariant vielbeins: $\tau_{\mu}, \hat{e}_{\mu}^{a}=e_{\mu}^{a}-\tau_{\mu} e^{\nu a} m_{\nu}$ and inverses: \hat{v}^{μ} and e_{a}^{μ}.
- Lorentzian metric: $g_{\mu \nu}=-\tau_{\mu} \tau_{\nu}+\hat{h}_{\mu \nu}$ where $\hat{h}_{\mu \nu}=\delta_{a b} \hat{e}_{\mu}^{a} \hat{e}_{\nu}^{b}=\bar{h}_{\mu \nu}+2 \tau_{\mu} \tau_{\nu} \tilde{\Phi}$
- $\hat{v}^{\mu}=g^{\mu \nu} \tau_{\nu}$ and $e_{a}^{\mu}=g^{\mu \nu} \hat{e}_{\nu a}$
- ADM: $d s^{2}=-N^{2} d t^{2}+\gamma_{i j}\left(d x^{i}+N^{i} d t\right)\left(d x^{j}+N^{j} d t\right)$
- TTNC $\tau_{\mu}=\psi \partial_{\mu} \tau(\tau$ is Khronon field of [Blas, Pujolas,

Sibiryakov, 2010])

- Fix foliation $\tau=t$ this implies
$\tau_{t}=N$,
$\hat{h}_{t i}=\gamma_{i j} N^{j}$,
$\hat{h}_{i j}=\gamma_{i j}$,
$m_{i}=-N^{-1} \gamma_{i j} N^{j}$

ADM Decomposition II

- Since $\tau_{t}=N$ it follows that
- NC: $\partial_{\mu} \tau_{\nu}-\partial_{\nu} \tau_{\mu}=0$ is equivalent to $N=N(t)$: projectable HL gravity
- TTNC: $N=N(t, x)$: non-projectable HL gravity, extra field (torsion) $a_{i}=N^{-1} \partial_{i} N$
- ADM decomposition becomes dynamical and is described by τ_{μ} (lapse), m_{μ} (shift) and $\hat{h}_{\mu \nu}$ (spatial metric on cst time slices).
- Actually $m_{t}=-\frac{1}{2 N} \gamma_{i j} N^{i} N^{j}+N \tilde{\Phi}$ is an additional field (denoted by A in [Horava, Melby-Thompson, 2010]=HMT)
- Bargmann $U(1): \delta_{N} m_{\mu}=\partial_{\mu} \sigma$ is the $U(1)$ discussed in HMT including χ appearing as $m_{\mu}-\partial_{\mu} \chi$.

Effective Actions I

- Extrinsic curvature: $\nabla_{\mu} \hat{v}^{\rho}=-h^{\rho \sigma} K_{\mu \sigma}$ where $K_{\mu \nu}=-\frac{1}{2} \mathcal{L}_{\hat{v}} \hat{h}_{\mu \nu}$
- Integration measure $e=\operatorname{det}\left(\tau_{\mu}, e_{\mu}^{a}\right)$ is G, J, N invariant.
- Add terms (built out of tangent space invariants) to the action that are relevant or marginal (up to dilatation weight $d+z$)

invariant	τ_{μ}	$\hat{h}_{\mu \nu}$	\hat{v}^{μ}	$h^{\mu \nu}$	e	$\tilde{\Phi}$	χ
dil. weight	$-z$	-2	z	2	$-(z+d)$	$2(z-1)$	$z-2$

- We work in $2+1$ dimensions with $1<z \leq 2$. Weight of each term is determined by number of $h^{\mu \nu}$ and \hat{v}^{μ}.
- The possibilities are: $\hat{v}^{\mu}(z), h^{\mu \nu}(2), \hat{v}^{\mu} \hat{v}^{\nu}(2 z), h^{\mu \nu} \hat{v}^{\rho}$ $(2+z), h^{\mu \nu} h^{\rho \sigma}(4)$. We make scalars out of them by contracting with ∇_{μ} and a_{μ} (note that $\hat{v}^{\mu} a_{\mu}=0$).
- In 2+1 dimensions there is one curvature invariant: $\mathcal{R}=h^{\mu \nu} R_{\rho \mu \nu}{ }^{\rho}(2)$ which is the Ricci curvature of $\gamma_{i j}$.
- Do not allow terms that break time reversal invariance.
- Two kinetic terms (the HL λ parameter):

$$
c_{1} \nabla_{\nu} \hat{v}^{\mu} \nabla_{\mu} \hat{v}^{\nu}+c_{2} \nabla_{\mu} \hat{v}^{\mu} \nabla_{\nu} \hat{v}^{\nu}=C\left(h^{\mu \rho} h^{\nu \sigma} K_{\mu \nu} K_{\rho \sigma}-\lambda\left(h^{\mu \nu} K_{\mu \nu}\right)^{2}\right)
$$

- The potential term matches [Blas, Pujolas, Sibiryakov, 2010], [Zhu, Shu, Wu, Wang, 2010]

$$
\begin{aligned}
& \mathcal{V}=c_{3} h^{\mu \nu} a_{\mu} a_{\nu}+c_{4} \mathcal{R}+\delta_{z, 2}\left[c_{5}\left(h^{\mu \nu} a_{\mu} a_{\nu}\right)^{2}+c_{6} h^{\mu \rho} a_{\mu} a_{\rho} \nabla_{\nu}\left(h^{\nu \sigma} a_{\sigma}\right)\right. \\
& \left.+c_{7} \nabla_{\nu}\left(h^{\mu \rho} a_{\rho}\right) \nabla_{\mu}\left(h^{\nu \sigma} a_{\sigma}\right)+c_{8} \mathcal{R}^{2}+c_{9} \mathcal{R} \nabla_{\mu}\left(h^{\mu \nu} a_{\nu}\right)+c_{10} \mathcal{R} h^{\mu \nu} a_{\mu} a_{\nu}\right]
\end{aligned}
$$

Local $U(1)$

- TTNC identity (note $\lambda=1$):
$\delta_{N}\left(\nabla_{\nu} \hat{v}^{\mu} \nabla_{\mu} \hat{v}^{\nu}-\nabla_{\mu} \hat{\nu}^{\mu} \nabla_{\nu} \hat{v}^{\nu}\right)=-\mathcal{R} \hat{v}^{\mu} \partial_{\mu} \sigma+$ torsion terms,
- The additional field $\tilde{\Phi}$ transforms as: $\delta_{N} \tilde{\Phi}=-\hat{v}^{\mu} \partial_{\mu} \sigma$.

$$
S=\int d^{3} x e\left[C\left(h^{\mu \rho} h^{\nu \sigma} K_{\mu \nu} K_{\rho \sigma}-\left(h^{\mu \nu} K_{\mu \nu}\right)^{2}-\tilde{\Phi} \mathcal{R}\right)-\mathcal{V}\right]
$$

Is the $U(1)$ invariant HMT action for projectable HL gravity in 3D [Horava, Melloy-Thompson, 2010].

- The non-projectable HMT action can only be made $U(1)$ invariant by adding a Stückelberg scalar [HMT]. By replacing m_{μ} by $m_{\mu}-\partial_{\mu} \chi$ we reproduce precisely all the terms of [Zhu, Shu, Wu, Wang, 2010].

Summary/Outlook

- Dynamical (TT)NC geometry is exactly the same as (non-)projectable HL gravity.
- What does this teach us about the ground state? Flat NC space-time has different symmetries than Minkowski space-time (see talk by Niels Obers).
- χ is an essential part of the TNC geometry. Under special circumstances it can drop out (e.g some HL actions or Schrödinger scalar model).
- Black holes?, phase space formulation, etc.
- Gauging other NR symmetry groups: Schrödinger space-times [Andrade, Keeler, Peach, Ross, 2014], [Armas, Blau, JH, in progress] or warped AdS_{3} [Hofman, Rollier, 2014].

