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Introduction

* Why Newton—Cartan geometry?

* |n relativistic field theory it can be very useful to couple
to a background geometry to compute EM tensors,
study anomalies, Ward identities, etc.

* Background field methods for systems with NR

symmetries requires NC geometry (with torsion) [talk by
Niels Obers].

* Recent examples: Son’s approach to the effective field
theory for the FQHE [son, 2013], [ceracie, Son, wu, wu, 2014] and
NR hydrodynamics [Jensen, 2014].

* Torsional NC geometries occur in Lifshitz holography

[Christensen, JH, Obers, Rollier, 2013, [Kiritsis, JH, Obers, 2014]. |
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Outline Talk

* Newton—Cartan geometry: fields, connections, torsion,
curvatures, etc.

* ADM decomposition: dictionary with HL gravity [Horava,
2008/9]

* Effective actions
* The local U(l) of HL gravity [Horava, Melby-Thompson, 2010].

* Summary/Outlook
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Newton—Cartan Geometry

* GR is a diff invariant theory whose tangent space
iInvariance group is the Poincaré group.

* Newton—Cartan gravity is a diffeomorphism invariant
theory on a manifold whose tangent space invariance
group which is the Bargmann algebra: H, P,, G,, Ju,
N with N central and

[HaGa]:Paa [PaaGb]:N5ab

* NC geometry (with torsion) is the natural geometric
framework for HL gravity.
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From Poincaré to GR

* Local Poincareé: P,, M, (gauging):

a 1 ab
A,u — Paeu + §Mawa

1
‘F/.U/ — aM.A]/ - ay.Aluj _|_ [.A'u ’ Ay] — PaRMVa(P) _|_ §MabRul/ab<M)
1
5"4,“ — aMA + [A,u ) A] ) A= fluA,u + 2 ) 2= §Mab)\ab

0A, = 0A,—&F, =LA, +0,X+[A,,Y]
* V, definedvia VP : D,el = 0, — T% €4 — w,%e;, =0

* Lorentz invariant g, = nabGZGV. Affine I, Vg, =0.

°* R, P) = QFﬁW] = torsion

* R,,*(M) = Riemann curvature 2-form
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Gauging Bargmann |

* Gauging Bargmann [Andringa, Bergshoeff, Panda, de Roo, 2011] /7,
P,, G., Ju, N (aIs a spatial index):

1
Ay = H7y, + FPoe, + Go8,° + §JabQMa’b + Nmy,

1 |
Fuo=HR,(H)+ P,R,"(P)+G.,R,“(G) + §JabRwab(J) + NR,, (N

1
0A, = A+ [A,,A], A=A+, T =G\ + §Jab)\“b + No
0A, =0A, — & F =LA, +0,5+[A,, T

* Vielbein postulates (introduction of I/ ):

— . —
a __ a TP 0 a,. a b __
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Gauging Bargmann Il

* Inverse vielbeins: v* and e* via

vir, = -1, v'e, =0, etT, =0, egez = 52.
* Metric: " = §* el and 7,
I, Is affine and inert under G, J, N.
* 0,9 =Q e so that V k" = 0. Also V7, = 0.
* Torsion: 2y , = —v”R,,(H) + e R, (P)
* Curvature: |V, ,V,| X, = R,,," X, — ZF[pW]VpXU

* where via VPs: R,,,” = ¢’7,R,,*(G) — e,q€) R, " (J)
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Affine Connection |

* The most general metric compatible T :

1
1 o
+§hp (7. Kor + K5y + Lopw)

where h,, = daete, (not G invariant) and K, = —K,,,
Ly = —L,,, are arbitrary.
* Transformations of 7, e} and m,,:
0Ty = LTy,  0€) = £§GZ+>\“TM+>\%GZ, omy, = Lemy+0,0+Aq€.

* Demanding local Galilean invariance (A, = A.¢}):
5@[(0” — (90)\M T a,u)\a
0¢Loyy = Ao (0,7 —0uT)) — Ay (OuTe — 05Ty) — Ay (0,7, — O05Ty)
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Affine Connection Il

* Local Galilean invariance (Milne boosts In [Jensen, 2014])
realized by taking:

Ky, = 0,my, —0,m,

Loy = me (0,1 —0,7,) — My (0,7 — 05Ty) — my (0,7, — O57y)

* The connection becomes:

. |
It, = —0°0,7, + §hp (0uhwe + Ovhpe — Oshy)
where ¢* = v* — h*m, and h,, = h,, — T,m, — 7,m,,
are G and J invariant.
e T, is still not unique: can replace h,,, by h,, + a7,7,®

where & = —vim,, + Lh*m,m, is G, J invariant. But
the action will be independent of «.
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Torsion

* onI', # 0 will be fixed later.

* The affine connection has torsion:
21, = =07 (Oury — OuTp).
* We distinguish three cases :
° No torsion: 90,7, — 9,7, = 0 (NC geometry)
° Twistless torsion: 7,0,7, = 0 (TTNC geometry)
> No constraint on 7, (TNC geometry)
* Here: TTNC (which includes NC) geometry. Torsion
measured by one vector a,, because:

_ _ _ N B
0Ty — 0T, = G, Ty — AT, a, = 0° (0,1, — 0,7,)
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ADM Decomposition |

* Local Galilean invariant vielbeins: 7, €, = e}, — 7,e"*m,
and inverses: ¢v* and e”.

* Lorentzian metric: g,, = —7,7, + h,, where

_ sasb T

° ot = g"T1, and e? = g"eé,,
* ADM: ds* = —N?dt* + 7;; (da" + N'dt) (dz? + N dt)
* TTNC 7, = ¥0,7 (7 Is Khronon field of [slas, Pujolas,

Sibiryakov, 2010])

* Fix foliation 7 = ¢ this implies

A

Tt — Na ;Lti — ,VZJN] ’ h@j — Yij » m; — —N_l’ijN]
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ADM Decomposition |l

* Since 7; = N It follows that
° NC: 9,7, — 0,7, = 0 is equivalentto N = N (¢):
projectable HL gravity
°© TTNC: N = N(t,x): non-projectable HL gravity,
extra field (torsion) a; = N~'0;N

* ADM decomposition becomes dynamical and is
described by 7, (lapse), m,, (shift) and BW (spatial
metric on cst time slices).

* Actually m; = —5%7;; N'N7 + N is an additional field
(denoted by A In [Horava, Melby-Thompson, 2010]=HMT)

e Bargmann U(1): éym, = 0,0 is the U(1) discussed in
HMT including x appearing as m, — 0, x.
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Effective Actions |

 Extrinsic curvature: V ,0” = —h* K,,, where
s
K,Lu/ — _§£@h,u1/

* Integration measure e = det (7,,¢%) is G, J, N

Invariant.

* Add terms (built out of tangent space invariants) to the
action that are relevant or marginal (up to dilatation

weight d + z)
invariant | 7, | hy, | 9% | B e O X
dil. weight | —2 | =2 | 2z | 2 | —(2+d) |2(z—1) | z2—2

* We work in 2+1 dimensions with 1 < z < 2. Weight of
each term is determined by number of A** and o*.
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* The possibilities are: v* (z), h* (2), 0*0" (22), h* 0P
(2 + 2), h**h*? (4). We make scalars out of them by
contracting with V,, and a,, (note that v#a,, = 0).

* |In 2+1 dimensions there IS one curvature invariant;
R = h* R,,,* (2) which is the Ricci curvature of -;,.

* Do not allow terms that break time reversal invariance.

* Two kinetic terms (the HL )\ parameter):

01V, 04V 0" 405V, 04V, 0 = C (BPR K 1 K o — A (R K ,)?)

* The potential term matches [Blas, Pujolas, Sibiryakov, 2010], [zhu,
Shu, Wu, Wang, 2010]
V = csha,a, + R+ 0,9 [65 (h’“’aﬂay)2 + cgh*a,a,V, (h"a,)
+c7V, (h**a,) V,, (B a,) + g R® + cgRV,, (W a,) + cioRh* a,a, ]
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Local U (1)

* TTNC identity (note A = 1):
oy (V, o'V 0" — V0"V, 07) = —Ro*0,0 + torsion terms .
* The additional field ® transforms as: y® = —4#0,0.

0 /d%6 {C (hﬂpthWKpa — (W Kw)” — éR) - V}

Is the U(1) invariant HMT action for projectable HL
gravity in 3D [Horava, Melby-Thompson, 2010].

* The non-projectable HMT action can only be made
U(1) invariant by adding a Stlckelberg scalar [HMT].
By replacing m,, by m,, — 0, x we reproduce precisely
all the terms of [zhu, Shu, wu, Wang, 2010].
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Summary/Outlook

* Dynamical (TT)NC geometry is exactly the same as
(non-)projectable HL gravity.

* What does this teach us about the ground state? Flat
NC space-time has different symmetries than
Minkowski space-time (see talk by Niels Obers).

* Y Is an essential part of the TNC geometry. Under
special circumstances it can drop out (e.g some HL
actions or Schrodinger scalar model).

* Black holes?, phase space formulation, etc.

* Gauging other NR symmetry groups: Schrodinger
space-times [Andrade, Keeler, Peach, Ross, 2014, [Armas, Blau, JH, in
progress| Or warped AdSs [Hofman, Rollier, 2014].
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