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Introduction

• Why Newton–Cartan geometry?

• In relativistic field theory it can be very useful to couple
to a background geometry to compute EM tensors,
study anomalies, Ward identities, etc.

• Background field methods for systems with NR
symmetries requires NC geometry (with torsion) [talk by

Niels Obers].

• Recent examples: Son’s approach to the effective field
theory for the FQHE [Son, 2013], [Geracie, Son, Wu, Wu, 2014] and
NR hydrodynamics [Jensen, 2014].

• Torsional NC geometries occur in Lifshitz holography
[Christensen, JH, Obers, Rollier, 2013], [Kiritsis, JH, Obers, 2014].
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Outline Talk

• Newton–Cartan geometry: fields, connections, torsion,
curvatures, etc.

• ADM decomposition: dictionary with HL gravity [Horava,

2008/9]

• Effective actions

• The local U(1) of HL gravity [Horava, Melby-Thompson, 2010].

• Summary/Outlook
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Newton–Cartan Geometry

• GR is a diff invariant theory whose tangent space
invariance group is the Poincaré group.

• Newton–Cartan gravity is a diffeomorphism invariant
theory on a manifold whose tangent space invariance
group which is the Bargmann algebra: H, Pa, Ga, Jab,
N with N central and

[H,Ga] = Pa , [Pa, Gb] = Nδab

• NC geometry (with torsion) is the natural geometric
framework for HL gravity.

Hořava–Lifshitz Gravity from Dynamical Newton–Cartan Geometry – p. 4/16



From Poincaré to GR

• Local Poincaré: Pa, Mab (gauging):

Aµ = Pae
a
µ +

1

2
Mabωµ

ab

Fµν = ∂µAν − ∂νAµ + [Aµ ,Aν ] = PaRµν
a(P ) +

1

2
MabRµν

ab(M)

δAµ = ∂µΛ + [Aµ ,Λ] , Λ = ξµAµ + Σ , Σ =
1

2
Mabλ

ab

δ̄Aµ = δAµ − ξνFµν = LξAµ + ∂µΣ + [Aµ ,Σ]

• ∇µ defined via VP : Dµe
a
ν = ∂µe

a
ν − Γρ

µνe
a
ρ − ωµ

a
be

b
ν = 0

• Lorentz invariant gµν = ηabe
a
µe

b
ν . Affine Γρ

µν : ∇µgνρ = 0.

• Rµν
a(P ) = 2Γρ

[µν] = torsion

• Rµν
ab(M) = Riemann curvature 2-form
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Gauging Bargmann I

• Gauging Bargmann [Andringa, Bergshoeff, Panda, de Roo, 2011] H,
Pa, Ga, Jab, N (a is a spatial index):

Aµ = Hτµ + Pae
a
µ +GaΩµ

a +
1

2
JabΩµ

ab +Nmµ

Fµν = HRµν(H) + PaRµν
a(P ) +GaRµν

a(G) +
1

2
JabRµν

ab(J) +NRµν(N)

δAµ = ∂µΛ + [Aµ ,Λ] , Λ = ξµAµ + Σ , Σ = Gaλ
a +

1

2
Jabλ

ab +Nσ

δ̄Aµ = δAµ − ξνFµν = LξAµ + ∂µΣ + [Aµ ,Σ]

• Vielbein postulates (introduction of Γρ
µν):

Dµτν = ∂µτν − Γρ
µντρ = 0

Dµe
a
ν = ∂µe

a
ν − Γρ

µνe
a
ρ − Ωµ

aτν − Ωµ
a
be

b
ν = 0
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Gauging Bargmann II

• Inverse vielbeins: vµ and eµa via

vµτµ = −1 , vµeaµ = 0 , eµaτµ = 0 , eµae
b
µ = δba .

• Metric: hµν = δabeµae
ν
b and τµ

• Γρ
µν is affine and inert under G, J , N .

• Ωµ
ab = Ωµ

[ab] so that ∇µh
νρ = 0. Also ∇µτν = 0.

• Torsion: 2Γρ

[µν] = −vρRµν(H) + eρaRµν
a(P )

• Curvature: [∇µ ,∇ν ]Xσ = Rµνσ
ρXρ − 2Γρ

[µν]∇ρXσ

• where via VPs: Rµνσ
ρ = eρaτσRµν

a(G)− eσae
ρ
bRµν

ab(J)
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Affine Connection I

• The most general metric compatible Γρ
µν :

Γρ
µν = −vρ∂µτν +

1

2
hρσ (∂µhνσ + ∂νhµσ − ∂σhµν)

+
1

2
hρσ (τµKσν + τνKσµ + Lσµν)

where hµν = δabe
a
µe

b
ν (not G invariant) and Kµν = −Kνµ,

Lσµν = −Lνµσ are arbitrary.

• Transformations of τµ, eaµ and mµ:

δ̄τµ = Lξτµ , δ̄eaµ = Lξe
a
µ+λ

aτµ+λ
a
be

b
µ , δ̄mµ = Lξmµ+∂µσ+λae

a
µ

• Demanding local Galilean invariance (λµ = λae
a
µ):

δGKσµ = ∂σλµ − ∂µλσ

δGLσµν = λσ (∂µτν − ∂ντµ)− λµ (∂ντσ − ∂στν)− λν (∂µτσ − ∂στµ)
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Affine Connection II

• Local Galilean invariance (Milne boosts in [Jensen, 2014])
realized by taking:

Kσµ = ∂σmµ − ∂µmσ

Lσµν = mσ (∂µτν − ∂ντµ)−mµ (∂ντσ − ∂στν)−mν (∂µτσ − ∂στµ)

• The connection becomes:

Γρ
µν = −v̂ρ∂µτν +

1

2
hρσ

(

∂µh̄νσ + ∂ν h̄µσ − ∂σh̄µν
)

where v̂µ = vµ − hµνmν and h̄µν = hµν − τµmν − τνmµ

are G and J invariant.

• Γρ
µν is still not unique: can replace h̄µν by h̄µν + ατµτνΦ̃

where Φ̃ = −vµmµ +
1
2
hµνmµmν is G, J invariant. But

the action will be independent of α.
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Torsion

• δNΓ
ρ
µν 6= 0 will be fixed later.

• The affine connection has torsion:
2Γ̂ρ

[µν] = −v̂ρ (∂µτν − ∂ντµ).

• We distinguish three cases :

◦ No torsion: ∂µτν − ∂ντµ = 0 (NC geometry)

◦ Twistless torsion: τ[µ∂ντρ] = 0 (TTNC geometry)

◦ No constraint on τµ (TNC geometry)

• Here: TTNC (which includes NC) geometry. Torsion
measured by one vector aµ because:

∂µτν − ∂ντµ = aµτν − aντµ , aµ = v̂ρ (∂ρτµ − ∂µτρ)
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ADM Decomposition I

• Local Galilean invariant vielbeins: τµ, êaµ = eaµ − τµe
νamν

and inverses: v̂µ and eµa .

• Lorentzian metric: gµν = −τµτν + ĥµν where
ĥµν = δabê

a
µê

b
ν = h̄µν + 2τµτνΦ̃

• v̂µ = gµντν and eµa = gµν êνa

• ADM: ds2 = −N 2dt2 + γij (dx
i +N idt) (dxj +N jdt)

• TTNC τµ = ψ∂µτ (τ is Khronon field of [Blas, Pujolas,

Sibiryakov, 2010])

• Fix foliation τ = t this implies

τt = N , ĥti = γijN
j , ĥij = γij , mi = −N−1γijN

j
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ADM Decomposition II

• Since τt = N it follows that

◦ NC: ∂µτν − ∂ντµ = 0 is equivalent to N = N(t):
projectable HL gravity

◦ TTNC: N = N(t, x): non-projectable HL gravity,
extra field (torsion) ai = N−1∂iN

• ADM decomposition becomes dynamical and is
described by τµ (lapse), mµ (shift) and ĥµν (spatial
metric on cst time slices).

• Actually mt = − 1
2N
γijN

iN j +N Φ̃ is an additional field
(denoted by A in [Horava, Melby-Thompson, 2010]=HMT)

• Bargmann U(1): δNmµ = ∂µσ is the U(1) discussed in
HMT including χ appearing as mµ − ∂µχ.
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Effective Actions I

• Extrinsic curvature: ∇µv̂
ρ = −hρσKµσ where

Kµν = −1
2
Lv̂ĥµν

• Integration measure e = det
(

τµ, e
a
µ

)

is G, J , N
invariant.

• Add terms (built out of tangent space invariants) to the
action that are relevant or marginal (up to dilatation
weight d+ z)

invariant τµ ĥµν v̂µ hµν e Φ̃ χ

dil. weight −z −2 z 2 −(z + d) 2(z − 1) z − 2

• We work in 2+1 dimensions with 1 < z ≤ 2. Weight of
each term is determined by number of hµν and v̂µ.
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• The possibilities are: v̂µ (z), hµν (2), v̂µv̂ν (2z), hµν v̂ρ

(2 + z), hµνhρσ (4). We make scalars out of them by
contracting with ∇µ and aµ (note that v̂µaµ = 0).

• In 2+1 dimensions there is one curvature invariant:
R = hµνRρµν

ρ (2) which is the Ricci curvature of γij.

• Do not allow terms that break time reversal invariance.

• Two kinetic terms (the HL λ parameter):

c1∇ν v̂
µ∇µv̂

ν+c2∇µv̂
µ∇ν v̂

ν = C
(

hµρhνσKµνKρσ − λ (hµνKµν)
2)

• The potential term matches [Blas, Pujolas, Sibiryakov, 2010], [Zhu,

Shu, Wu, Wang, 2010]

V = c3h
µνaµaν + c4R+ δz,2

[

c5 (h
µνaµaν)

2 + c6h
µρaµaρ∇ν (h

νσaσ)

+c7∇ν (h
µρaρ)∇µ (h

νσaσ) + c8R
2 + c9R∇µ (h

µνaν) + c10Rh
µνaµaν

]
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Local U(1)

• TTNC identity (note λ = 1):

δN (∇ν v̂
µ∇µv̂

ν −∇µv̂
µ∇ν v̂

ν) = −Rv̂µ∂µσ + torsion terms ,

• The additional field Φ̃ transforms as: δN Φ̃ = −v̂µ∂µσ.

S =

∫

d3xe
[

C
(

hµρhνσKµνKρσ − (hµνKµν)
2
− Φ̃R

)

− V
]

Is the U(1) invariant HMT action for projectable HL
gravity in 3D [Horava, Melby-Thompson, 2010].

• The non-projectable HMT action can only be made
U(1) invariant by adding a Stückelberg scalar [HMT].
By replacing mµ by mµ − ∂µχ we reproduce precisely
all the terms of [Zhu, Shu, Wu, Wang, 2010].
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Summary/Outlook

• Dynamical (TT)NC geometry is exactly the same as
(non-)projectable HL gravity.

• What does this teach us about the ground state? Flat
NC space-time has different symmetries than
Minkowski space-time (see talk by Niels Obers).

• χ is an essential part of the TNC geometry. Under
special circumstances it can drop out (e.g some HL
actions or Schrödinger scalar model).

• Black holes?, phase space formulation, etc.

• Gauging other NR symmetry groups: Schrödinger
space-times [Andrade, Keeler, Peach, Ross, 2014], [Armas, Blau, JH, in

progress] or warped AdS3 [Hofman, Rollier, 2014].
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