Development of compound neutron moderator structures for small accelerator based neutron sources.

Chris Franklyn Necsa

UCANS-V 12 –15 May 2015

Motivation

Celebrating SAFARI-1 Research Reactor 50 th Anniversary

Expected continued lifetime ± 10 years

> with a cold source!

Motivation

Recently refurbished state-ofthe-art NDIFF facility for residual stress and powder diffraction studies

In process of refurbishing NRAD radiography/tomography beam line

Currently attempting to re-establish a SANS facility, without a cold source on a radial beam port.

Schematic of SAFARI-1 beam lines

Aim

Long delays experienced – consider an alternative cold neutron source, accelerator based

Lack experience with cold source systems

Solution:

In interim, utilize in-house small, high current, accelerator based system to:

- generate an intense source of "fast" neutrons.
- Design a moderator configuration to optimally thermalize the neutrons.
- Enhance preferred direction of sub-thermal neutrons

In the process, have to be innovative whilst in an "economic" squeeze.

Accelerator

Accelerator to use?

- > 3.8 MV Van de Graaff, ~400 µA DC (H+, D+) beam
- > RFQ linac system, ~30 mA peak, 100 Hz, 0.1 2 ms pulse length
 - 4 / 4.75 MeV D+
 - 2 / 2.37 MeV H⁺

Facility dedicated to producing dual energy fast neutrons using d-d reaction

Accelerator

2 / 2.4 MeV

Accelerator

The RFQ accelerator facility

Features	RFQ
RF frequency	200 MHz
E _d (function on φ)	3.0 – 4.75 MeV
output current (peak)	50 mA
beam pulse width	0.4 - 2 ms
repetition rate	20 -100 Hz
duty factor	20 %
pulsed RF power	1000 + 200 kW
linac length	4.5 m
Neutron flux (DD)	10 ¹² /sec

Accelerator technique

Windowless D₂ gas target

Combination of differential pumping and slotted spinning disk

Accelerator technique

at **NECSA**

Application

Original application of facility: Detection of diamonds within kimberlite rock

Pulsed beam applications

- Modification of ion source and LEBT (B Bromberger, PTB) to supply ns pulsed beam
- Adaptation of target station :

Deposit B₄C onto spinning disk tungsten beam stop

- > Utilize ¹¹B(d,n+γ) reaction
- > Fast neutrons 1-10 MeV (E_n from TOF)
- > Dual energy γ-rays, 4.43 & 15.11 MeV

Application

Cultural heritage

But, primary interest is in SANS development

Cold Source Development

Nuclear reaction to use?

Beam energy <5 MeV D+, 2.4 MeV H+ so target options restricted

• Opt for high E_n? Be(d,n)

X

• Opt for low E_n ? Li(p,n)

LiF -> $3x10^{10}$ n/mC

For intended dedicated application: SANS

Moderator

Moderator(s) to use?

Opt for solid CH₄ or mesitylene/m-xylene beads

$$T_m = 225 \text{ K}$$

Demonstrated to perform well as a neutron moderator for thermal neutron beam lines at the IBR-2 reactor at FLNP, JINR, Dubna

V. Ananiev, et al. NIM-B320(2014)pp70-74

- Li(p,n) reaction provides a pseudo-isotropic distribution of fast neutrons within the moderator volume.
- Task now to extract a viable sub-thermal neutron beam.
- Neutron "escaping" the moderator based on last collision i.e. within 1-2 mm of surface.

Iverson, Baxter et al : Convoluted moderator

Layers of polyethylene and Si wafers

- ❖ Ideally use MCNP-6 or MCNP-X
- ❖ But can also use McStas, FLUKA and Vitess
- However simulation only as good as the data-base quality
- ❖ Deficiency in low T c/s libraries for many elements, e.g. Be, Si, Zr
- ❖ Since Li(p,n) primary neutron source, minimal complexity to primary moderator
- Challenge is the search for optimal cold neutron extraction.

Current status: Yield from 2cm port

Primary 200 keV neutron distr. In 35° cone. Sim. 2*10⁷ events

Wish List

- Further enhancement of extracted beam
- Use of carbon nanotubes as moderator/collimators
 - > e.g. Ni coated C nanotubes neutron guides.
- Properties of nano-diamonds as part of neutron guide
- Other nano-materials?

Acknowledgement

Funding support for this project through Necsa and IAEA Research Contract No.18179

Support from colleagues of the CRP

THANK YOU

