

⁷Be(n,p) cross section measurement for the Cosmological Lithium Problem at the n_TOF facility at CERN

L.A. Damone¹, M. Barbagallo^{1,2}, N. Colonna¹, M. Mastromarco^{2,3}, A. Mengoni^{4,5} and **The n_TOF Collaboration**

¹INFN, Sezione di Bari, Italy, ²Centre Europen pour la Recherche Nuclaire(CERN), Geneva, Switzerland ³University of Manchester, Oxford Road, Manchester, UK, ⁴ENEA, Bologna, Italy, ⁵INFN, Sezione di Bologna, Italy

Big Bang Nucleosynthesis (BBN) theory predicts the abundances of the light elements D, ³He, ⁴He and ⁷Li produced in the early universe. The primordial abundances of D, ³He and ⁴He inferred from observational data are in good agreement with predictions, however, the BBN theory overestimates the primordial ⁷Li abundance by about a factor of three with respect to the observations in metal poor halo stars [1]. This discrepancy is known as Cosmological Lithium Problem (CLiP). Since primordial ⁷Li is produced mainly by the decay of ⁷Be, reducing the amount of ⁷Be surviving the BBN phase, reduces the primordial ⁷Li. The two principal reactions responsible of the destruction of ⁷Be via neutron reactions are: the ⁷Be(n,p)⁷Li, providing 97% destruction of ⁷Be and the 7 Be(n, α) 4 He, responsible of 2.5%. The (n, α) reaction has already been studied at the n_TOF facility at CERN, where its cross section has been found too low to solve the CliP [2]. Various measurements have excluded also a significant effect on the CLiP of charged particle induced reactions on ⁷Be, so the only possibility left to find a Nuclear physics solution to the problem is the (n,p) reaction. Despite the importance of this reaction in BBN, there is a lack of cross section data. Taking advantage of the innovative features of the second experimental area at n_TOF facility at CERN [3][4], e.g. the very high instantaneous flux, the wide energy range and the low background conditions, an accurate measurement of ⁷Be(n,p)⁷Li cross section has been recently performed at n_TOF with a pure ⁷Be target produced by implantation of a ⁷Be beam at ISOLDE. The experimental procedure, the set-up used in the measurement and the results will be presented in this talk.

References

- [1] Martin Asplund et al., The Astrophysical Journal **644**(2006).
- [2] M. Barbagallo et al., Phys. Rev. Lett. **117** (2016).
- [3] M. Sabat-Gilarte et al., Eur. Phys. J. A **53**(2017)210.
- [4] C.Weiss et al., NIM A **799**(2015)90.