AdS/Ricci-flat correspondence and holography in asymptotically flat spacetimes

Marco Caldarelli

Mathematical Sciences and STAG research centre University of Southampton

(with J. Camps, B. Goutéraux and K. Skenderis)

~ arXiv:1211.2815 & 1312.7874 ~

Cortona ~ 28 May 2014

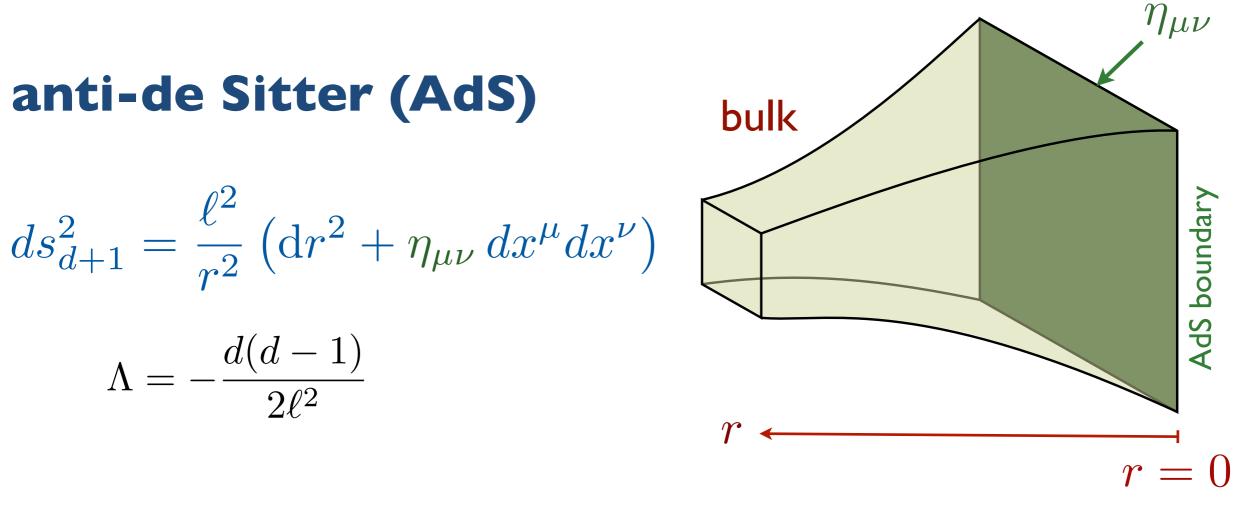
- Gravity is believed to be holographic: it should be described by a non-gravitational theory in one dimension less 't Hooft '93, Susskind '94
- This is well understood for asymptotically anti-de Sitter spacetimes: AdS/CFT correspondence Maldacena '97, Gubser Klebanov Polyakov '98, Witten '98, ...
- Original arguments for holography are insensitive to asymptotics
- Decoupling argument extends to nonconformal
 branes (non-trivial dilaton & non-AdS asymptotics)
 Kanitscheider et al '08
 Wiseman & Withers '08
 - obtained from AdS via a generalized dimensional reduction
 - Holographic dictionary inherited from AdS Kanitscheider & Skenderis '09

We want to present a generalized dimensional reduction linking Ricci-flat and AdS solutions, and use it to set up holography for Ricci-flat spacetimes

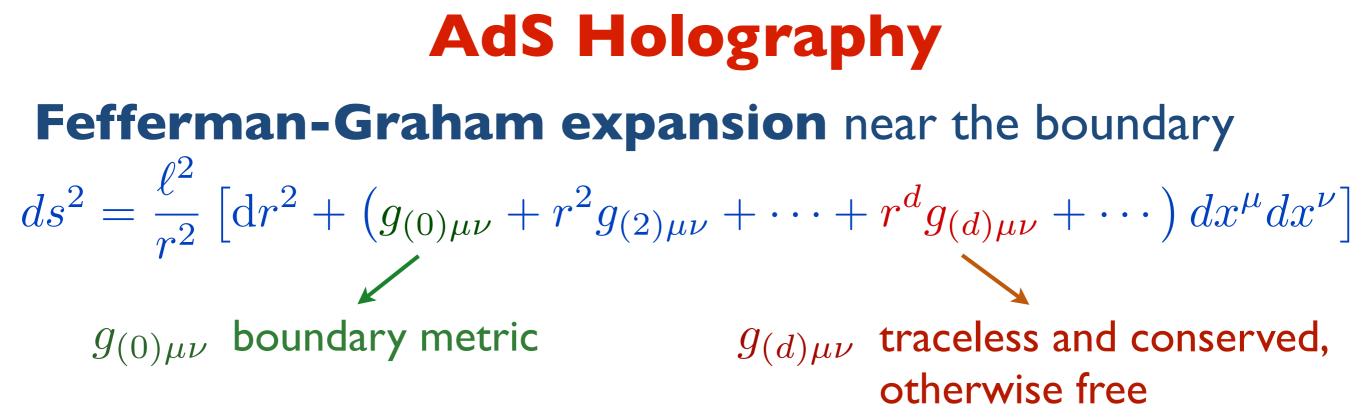
Holography in anti-de Sitter spacetimes

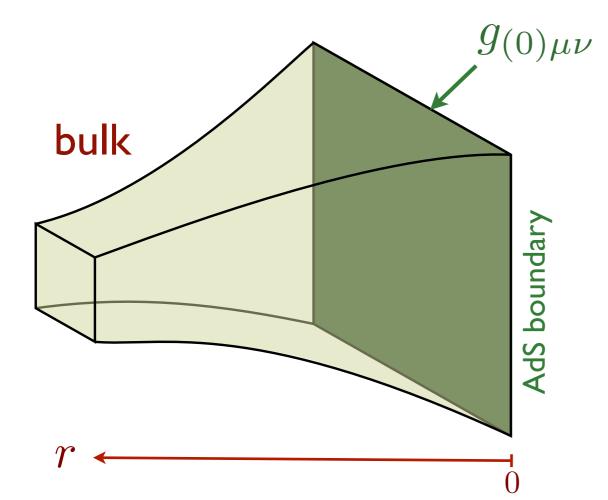
~ a lightning review ~

AdS Holography



- \diamond Conformal **boundary** in r = 0, Minkowski in d dimensions (M_d)
- \Leftrightarrow AdS isometry group is the **conformal group** of M_d
- \Leftrightarrow AdS gravity is dual to a **conformal field theory** (CFT) on M_d
- \diamondsuit The AdS solution represents the **vacuum** of the CFT

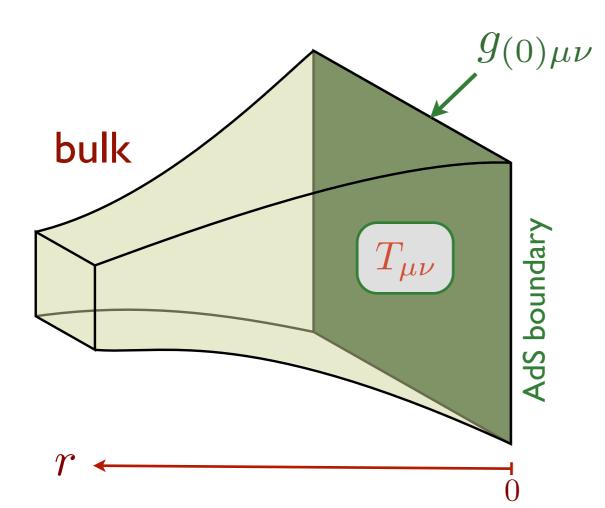




Dirichlet problem in AdS: fix the boundary metric (conformal class)

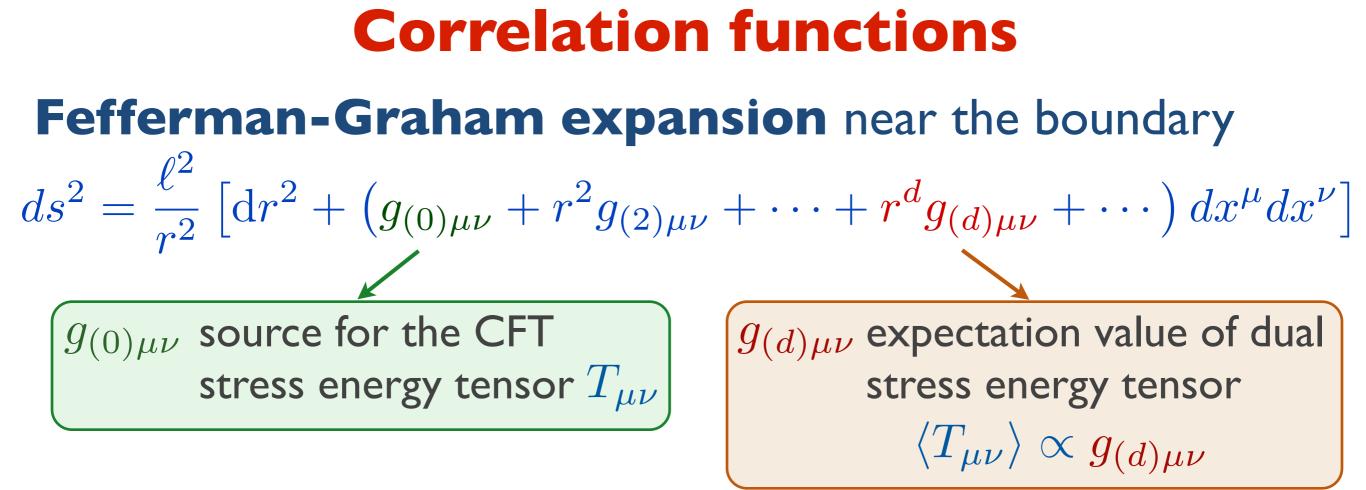
$$g_{(0)ij} \sim e^{2\sigma(x)} g_{(0)ij}(x)$$

AdS HolographyFefferman-Graham expansion near the boundary $ds^2 = \frac{\ell^2}{r^2} \left[dr^2 + (g_{(0)\mu\nu} + r^2 g_{(2)\mu\nu} + \dots + r^d g_{(d)\mu\nu} + \dots) dx^{\mu} dx^{\nu} \right]$ $g_{(0)\mu\nu}$ source for the CFT
stress energy tensor $T_{\mu\nu}$ $g_{(d)\mu\nu}$ expectation value of dual
stress energy tensor $\zeta T_{\mu\nu} \rangle \propto g_{(d)\mu\nu}$



Dirichlet problem in AdS: fix the boundary metric (conformal class)

$$g_{(0)ij} \sim e^{2\sigma(x)} g_{(0)ij}(x)$$



Observables: correlators of local operators in dual CFT

Find the regular solution in the bulk satisfying appropriate Dirichlet boundary conditions. Perturbatively, expand $g_{(0)\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

An example: 2-point function

Find the **regular linear** perturbation around AdS,

$$h_{\mu\nu}(k) = h_{(0)\mu\nu}(k) \frac{1}{2^{d/2 - 1}\Gamma(d/2)} \underbrace{(kr)^{d/2} K_{d/2}(kr)}_{1 + \dots + r^d k^d + \dots}$$

Extract the 2-point function from the asymptotic expansion

$$\langle T_{\mu\nu}(k)T_{\rho\sigma}(-k)\rangle = \prod_{\mu\nu\rho\sigma}k^d$$
 projector to transverse traceless tensors

This is the correct 2-point function for the stress energy tensor of a CFT in d dimensions (d odd)

Can this construction be extended to asymptotically flat spacetimes?

A straightforward extension of this holographic procedure **fails** in asymptotically flat spacetimes!

WHY?

I. The fields that parametrize the boundary conditions are constrained

2. The infinities of the on-shell action are non local in these fields

We shall see that the holographic data is encoded in a different way!

AdS/Ricci-flat correspondence

~ a map linking AdS gravity and vacuum Einstein gravity ~

A map relating AdS and Ricci-flat solutions

MC, Camps, Goutéraux & Skenderis '12

 $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 0$ $\Lambda = -\frac{d(d-1)}{2\ell^2}$

I. Solutions to AdS gravity in d+1 dimensions of the form:

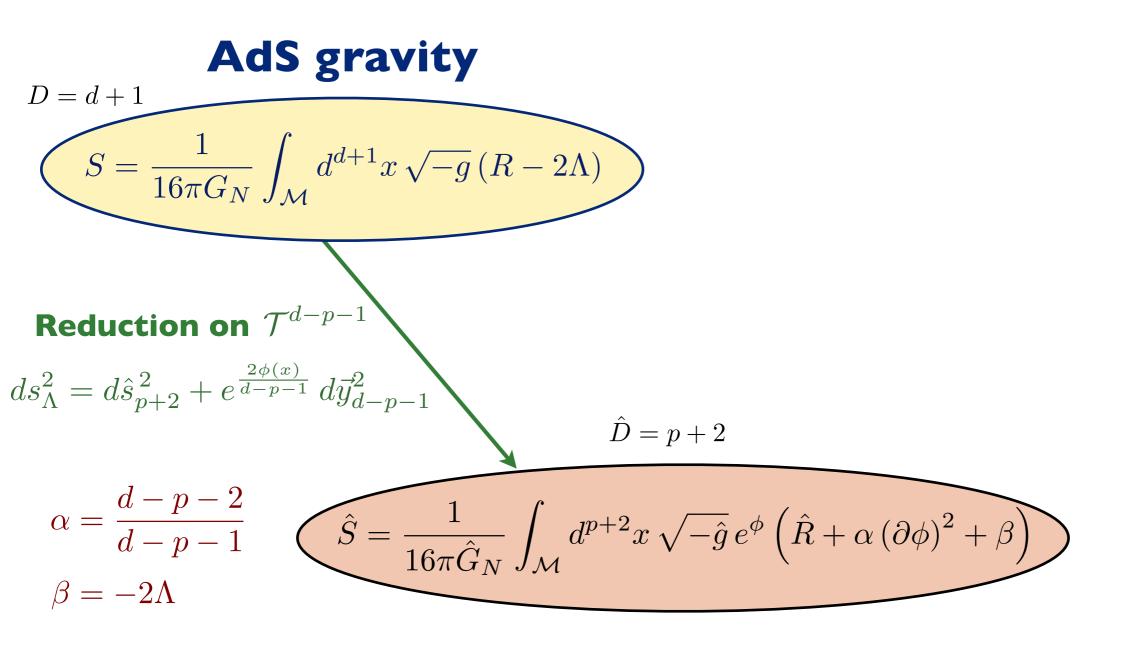
$$ds_{\Lambda}^{2} = d\hat{s}_{p+2}^{2}(x) + e^{\frac{2\phi(x)}{d-p-1}} d\vec{y}_{d-p-1}^{2}$$

2. Extract (p+2)-dim metric $\hat{g}(x)$ and the scalar $\phi(x)$

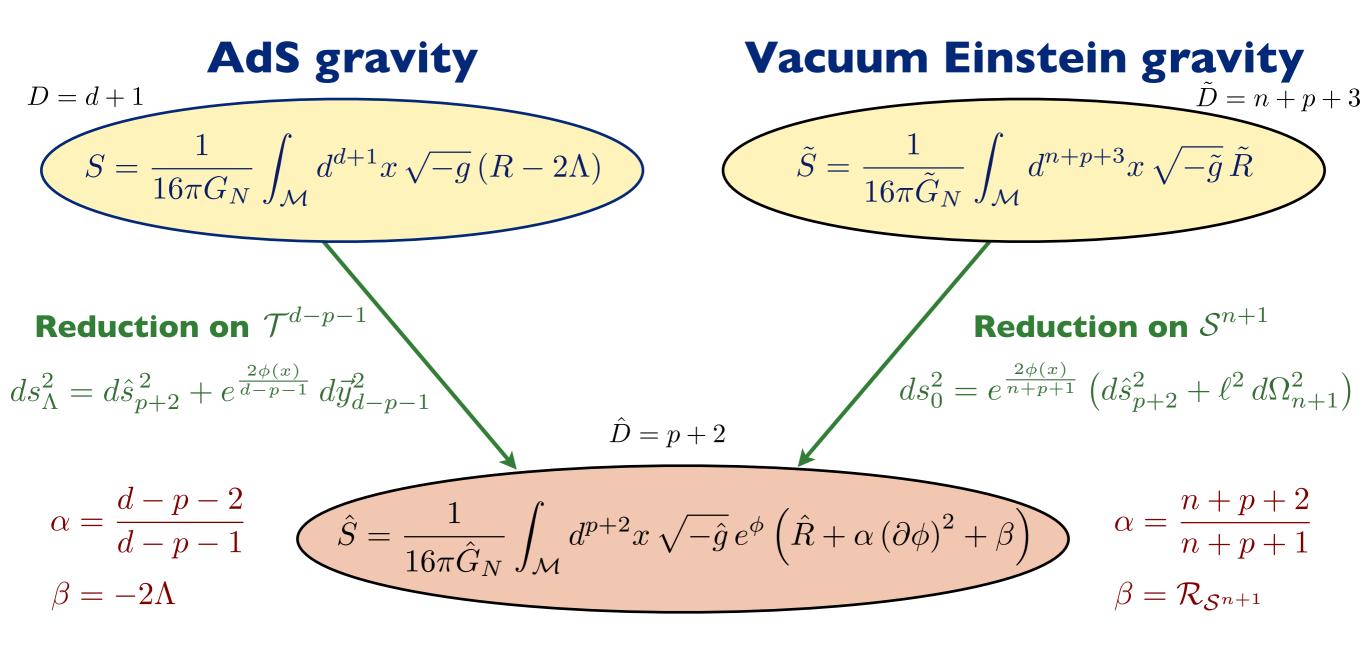
3. Substitute $d \to -n$ in $\hat{g}(x)$ and $\phi(x)$ 4. Insert back in $ds_0^2 = e^{\frac{2\phi(x)}{n+p+1}} \left(d\hat{s}_{p+2}^2(x) + \ell^2 d\Omega_{n+1}^2 \right)$

Then, the metric ds_0^2 is **Ricci-flat** $\tilde{R}_{\mu\nu} = 0$ It solves **vacuum Einstein** equations in (n+p+3) dimensions

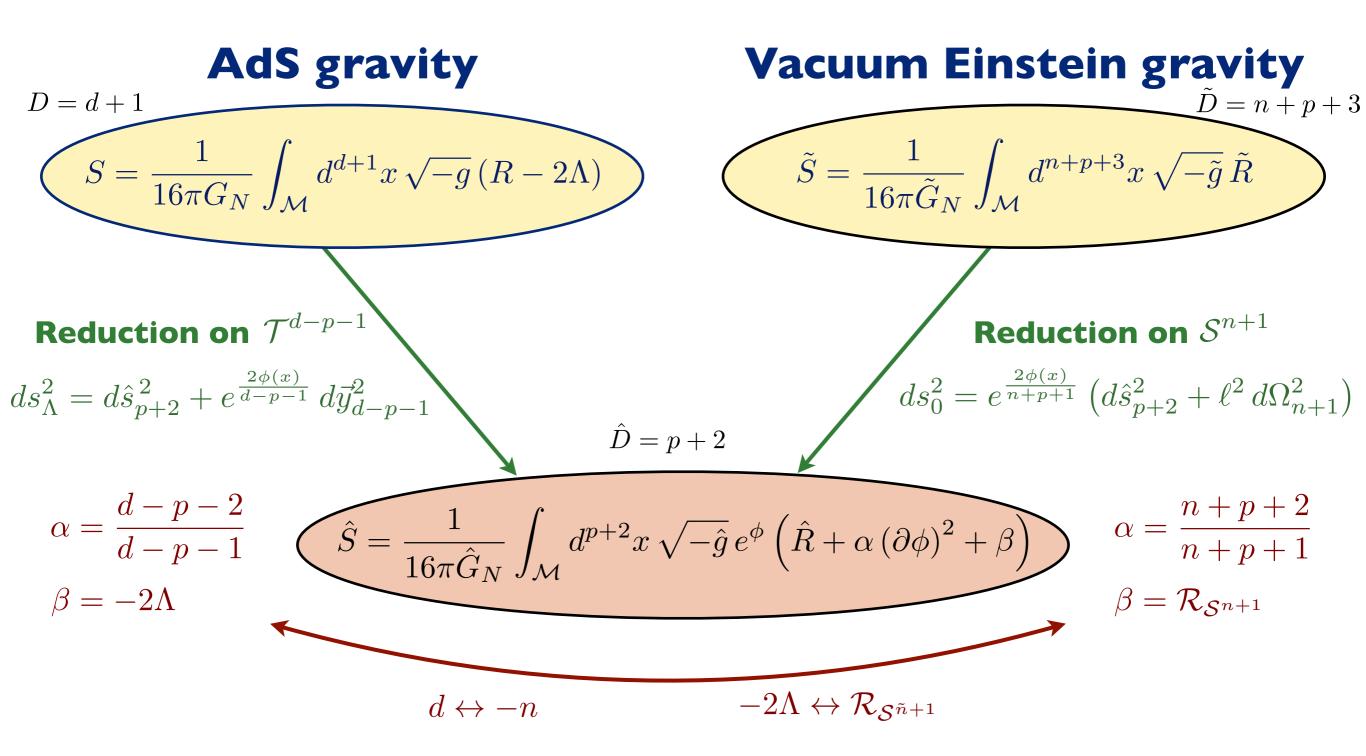
Trading curvatures: from AdS to Ricci-flat



Trading curvatures: from AdS to Ricci-flat



Trading curvatures: from AdS to Ricci-flat



Dimension d (and n) enters analytically as a parameter in the equations of motion

Some remarks

- I. Requires knowing the solution for any d (or n): we are mapping families of AdS solutions to families of Ricci-flat solutions
- 2. Analytical continuation $d \rightarrow -n$ on the lower dimensional theory: d and n should not be thought of as spacetime dimensions
- 3. This is an example of Generalized Dimensional Reduction Kanitscheider & Skenderis '09 - Goutéraux, Smolic, Smolic, Skenderis & Taylor '11 - Goutéraux & Kiritsis '11
- 4. We are trading the curvature of AdS with the curvature of the sphere $(-2\Lambda \leftrightarrow \mathcal{R}_{S^{\tilde{n}+1}})$
- 5. Extensions with other compactifications/cosmological constants e.g. AdS/dS correspondence Di Dato & Fröb '14

The resulting Ricci-flat class of solutions has an underlying holographic structure and hidden conformal symmetry inherited from the locally asymptotically AdS class of solutions.

Some simple examples

 \sim what happens to simple known solutions under this map? \sim

First example: AdS_{d+1} on a Torus

I. AdS spacetime in d+I dimensions: T^{d-p-1}

$$\mathrm{d}s_{\Lambda}^{2} = \frac{\ell^{2}}{r^{2}} \left(\mathrm{d}r^{2} + \eta_{ab} \mathrm{d}x^{a} \mathrm{d}x^{b} + \mathrm{d}\vec{y}^{2} \right)$$

2. Extract the metric and scalar:

$$ds_{\Lambda}^{2} = d\hat{s}_{p+2}^{2} + e^{\frac{2\phi}{d-p-1}} d\vec{y}_{d-p-1}^{2} \Rightarrow \begin{cases} d\hat{s}_{p+2}^{2} = \frac{\ell^{2}}{r^{2}} \left(dr^{2} + \eta_{ab} \, dx^{a} dx^{b} \right) \\ \phi(x) = -(d-p-1) \ln \frac{r}{\ell} \end{cases}$$

3. Substitute $d \to -n \Rightarrow \begin{cases} d\hat{s}_{p+2}^{2} = \frac{\ell^{2}}{r^{2}} \left(dr^{2} + \eta_{ab} \, dx^{a} dx^{b} \right) \\ \phi(x) = (n+p+1) \ln \frac{r}{\ell} \end{cases}$

4. Lift to n+p+3 dimensions:

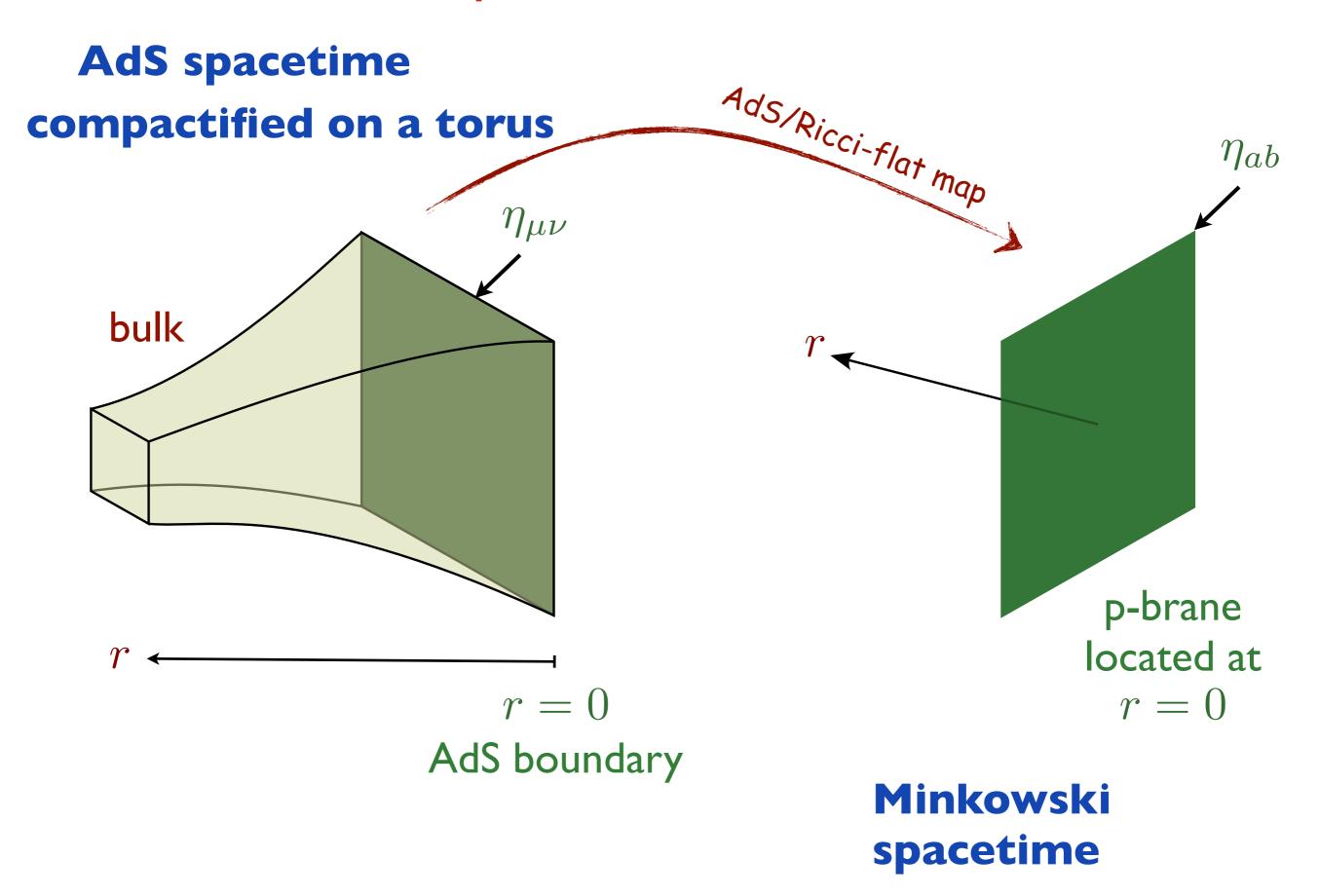
$$ds_0^2 = e^{\frac{2\phi}{n+p+1}} \left(d\hat{s}_{p+2}^2 + \ell^2 \, d\Omega_{n+1}^2 \right)$$

00

$$\Rightarrow \quad ds_0^2 = \underbrace{\eta_{ab} \mathrm{d} x^a \mathrm{d} x^b}_{\mathbb{R}^{1,p}} + \underbrace{\mathrm{d} r^2 + r^2 \mathrm{d} \Omega_{n+1}^2}_{\mathbb{R}^{n+2}}$$

Minkowski in n+p+3 dim.

First example: AdS_{d+1} on a Torus



I. Fefferman-Graham coordinates for Einstein-AdS solutions: $(
ho=r^2)$

$$\mathrm{d}s_{\Lambda}^{2} = \frac{\mathrm{d}\rho^{2}}{4\rho^{2}} + \frac{1}{\rho} \left(\eta_{\mu\nu} + \rho^{d/2}g_{(d)\mu\nu} + \cdots \right) \mathrm{d}z^{\mu}\mathrm{d}z^{\nu}$$

Flat boundary metric
$$T_{\mu\nu} = \frac{d}{16\pi G_{N}}g_{(d)\mu\nu},$$

Expectation value of the dual stress tensor

The stress tensor satisfies:

 $\partial^a T_{ab} = 0, \qquad T_a{}^a = 0$

as a consequence of the gravitational field equations (Ward identities for the CFT on flat background)

I. Fefferman-Graham coordinates for Einstein-AdS solutions:

$$ds_{\Lambda}^{2} = \frac{d\rho^{2}}{4\rho^{2}} + \frac{1}{\rho} \left(\eta_{\mu\nu} + \rho^{d/2} g_{(d)\mu\nu} + \cdots \right) dz^{\mu} dz^{\nu}$$

Flat boundary metric \longleftarrow compactify (d-p-I) of these flat directions

2. Reduced theory:
$$d\hat{s}^2 = \frac{d\rho^2}{4\rho^2} + \frac{1}{\rho} \left(\eta_{ab} + \rho^{d/2} (\hat{g}_{(d)ab} + \rho \hat{g}_{(d+2)ab} + \ldots) \right) dx^a dx^b$$

 $\phi = \rho^{d/2} \hat{\phi}_{(d)} + \rho^{d/2+1} \hat{\phi}_{(d+2)} + \ldots$

Holographic dictionary for nonconformal branes:

Kanitscheider & Skenderis '09

$$\hat{T}_{ab} = \frac{d}{16\pi \hat{G}_N} \hat{g}_{(d)ab}, \quad \hat{\mathcal{O}}_{\phi} = -\frac{d(d-p-1)}{32\pi \hat{G}_N} \hat{\phi}_{(d)}$$

expectation values of the dual stress energy tensor and of the scalar operator

Ward identities: $\partial^a \hat{T}_{ab} = 0$, $\hat{T}_a{}^a = (d - p - 1)\hat{\mathcal{O}}_{\phi}$

the expectation value of the scalar operator breaks conformal invariance

3. & 4. Analytical continuation and uplift to n+p+3 dimensions: $(\rho = 1/r^2)$

$$ds_0^2 = \left(1 - \frac{16\pi\hat{G}_N}{n\,r^n} (1 + \frac{r^2}{2(n-2)}\Box)\hat{\mathcal{O}}_{\phi}(x)\right) \left(dr^2 + \eta_{ab}dx^a dx^b + r^2 d\Omega_{n+1}^2\right) - \frac{16\pi\hat{G}_N}{n\,r^n} (1 + \frac{r^2}{2(n-2)}\Box)\hat{T}_{ab}(x) dx^a dx^b + \dots = (\eta_{AB} + h_{AB} + \dots) dx^A dx^B$$

As a perturbation of flat spacetime it verifies:

$$\bar{h}_{AB} = h_{AB} - \frac{h}{2}\eta_{AB} \qquad \qquad \Box \bar{h}_{AB} = 16\pi \hat{G}_N \Omega_{n+1} \delta_A{}^a \delta_B{}^b \hat{T}_{ab} \delta^{n+2}(r)$$

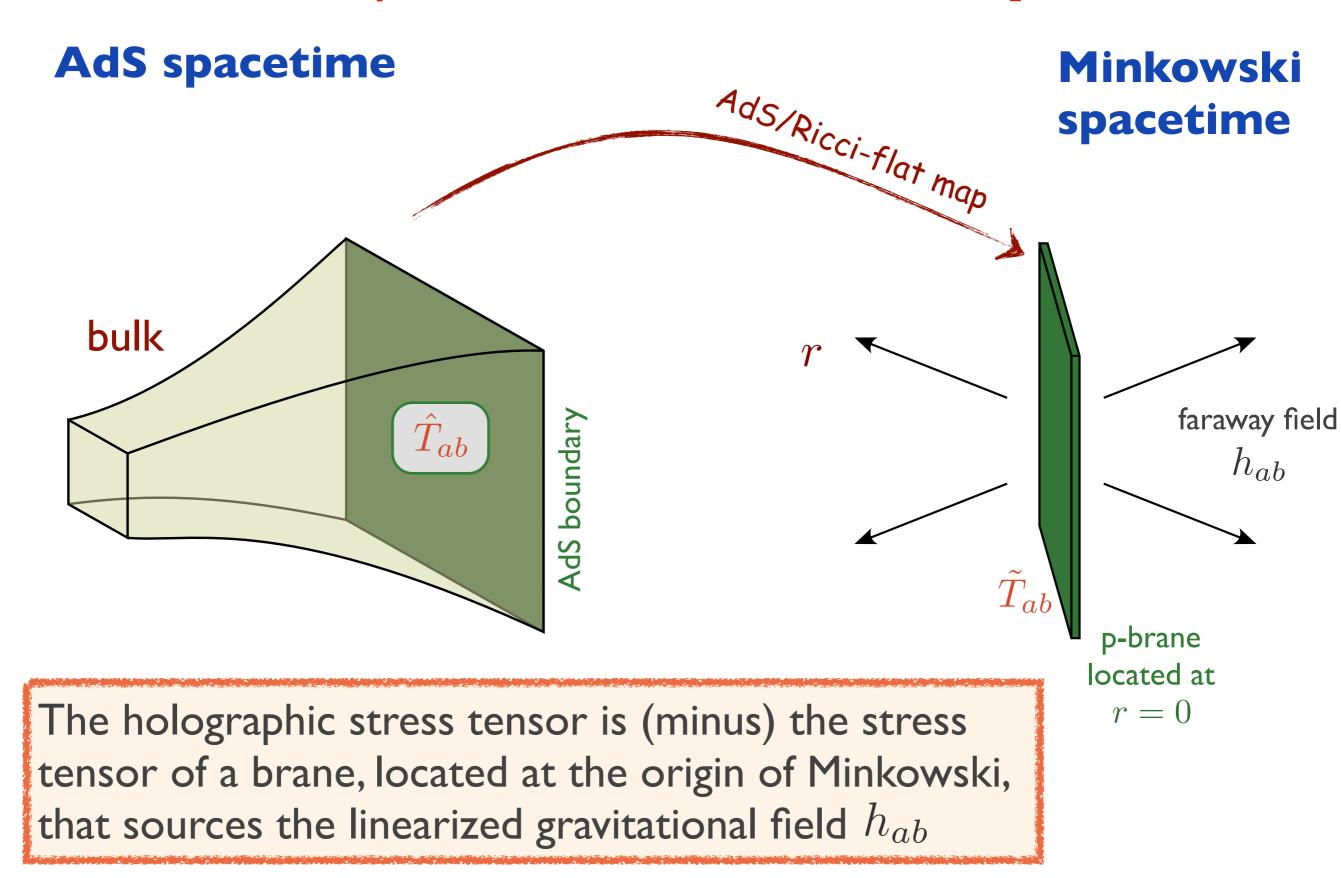
i.e. it solves linearized Einstein eqns $\Box \bar{h}_{AB} = -16\pi \tilde{G}_N \tilde{T}_{AB}$

with

$$\tilde{T}_{ab} = -\frac{G_N}{\tilde{G}_N} \Omega_{n+1} \hat{T}_{ab} \delta^{n+2}(r)$$

(stress tensor of a p-brane located at r=0)

Holographic stress tensor sources the faraway grav. field



[NB: A similar picture arises in the AdS/dS correspondence Di Dato & Fröb '14]

Correlation functions

To compute correlation functions we set $g_{(0)\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

and find **regular**, linear transverse traceless fluctuation in AdS

$$h_{\mu\nu}^{\text{AdS}}(k) = h_{(0)\mu\nu}(k) \frac{1}{2^{d/2 - 1} \Gamma(d/2)} (kr)^{d/2} K_{d/2}(kr)$$

Apply AdS/Ricci flat correspondence, with $\ d \rightarrow -n$

$$h_{\mu\nu}^{\mathsf{Mink}}(k) = h_{(0)\mu\nu}(k) \frac{2^{n/2+1}}{\Gamma(-n/2)} \frac{K_{n/2}(kr)}{(kr)^{n/2}}$$

Linearized gravitational field produced by a **p-brane** with worldvolume metric $\eta_{\mu\nu} + h_{\mu\nu}$

Exponential fall-off at infinity: the metric is asymptotically flat

First entries in the holographic dictionary

On AdS, the boundary condition was to choose a metric on the boundary

This translates on the Ricci-flat side into a **choice of a metric at the location of a p-brane**

At linear order, the holographic stress energy tensor becomes the **stress energy tensor due to this p-brane**, that sources the linearized gravitational field

The regularity in the bulk of AdS becomes the requirement that **the Ricci-flat perturbation preserves asymptotic flatness**

Generalized conformal symmetry & solution generating transformations

AdS isometries form the boundary **conformal group**

Dilatations $\delta_{\lambda} x^{M} = \lambda x^{M}$ Special conformal transformations $\begin{cases} \delta_{b} z^{\mu} = b^{\mu} z^{2} - 2z^{\mu} (z \cdot b) + r^{2} b^{\mu} \\ \delta_{b} r = -2(z \cdot b) r \end{cases}$

On Minkowski side they act as conformal transformation $\delta q_{0AB} = 2\sigma(x)q_{0AB}$ $\sigma(x) = \lambda$ for dilatations

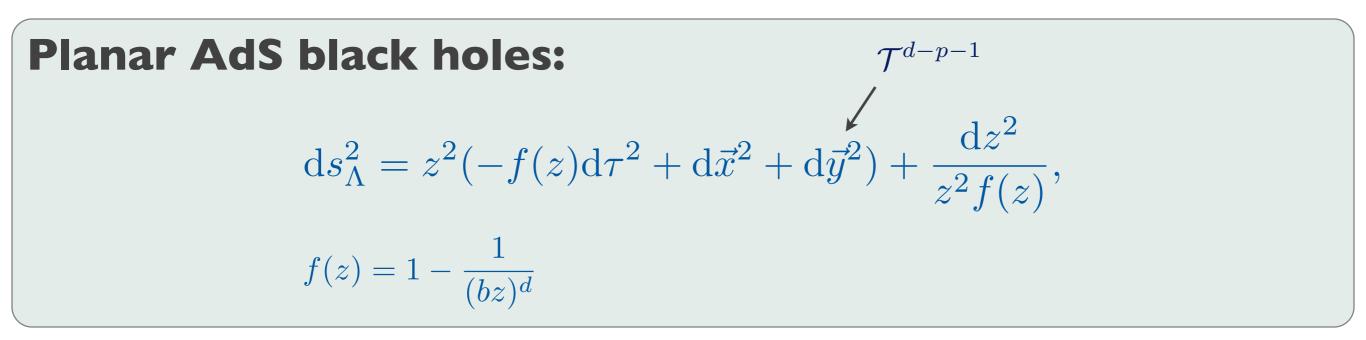
with

 $\sigma(x) = -2(x \cdot b)$ for special conformal transformations

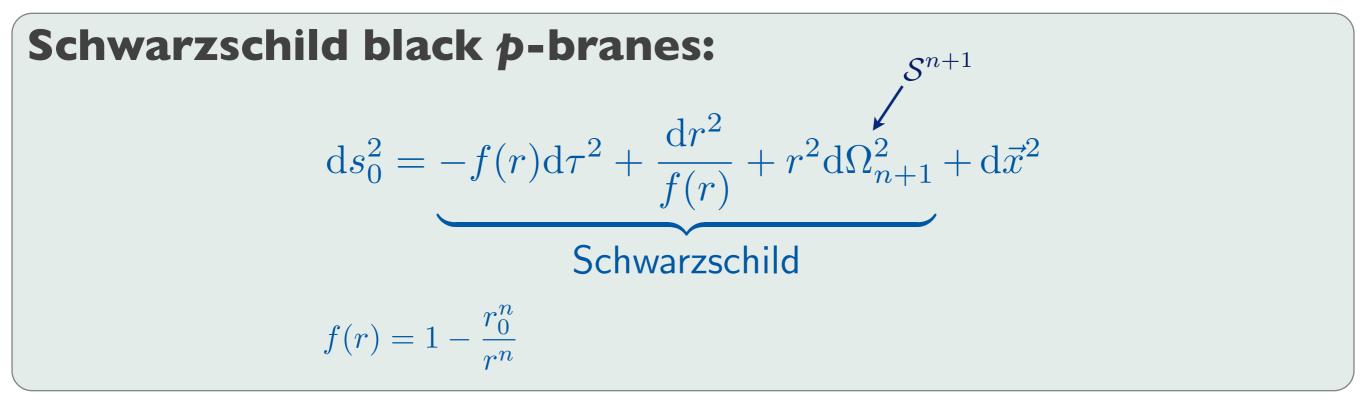
They are not isometries of Minkowski, but the resulting metric is still Ricci-flat: they act as solution generating transformations

The underlying generalized conformal structure constrains the physics of these Ricci-flat spacetimes

Third example: black branes

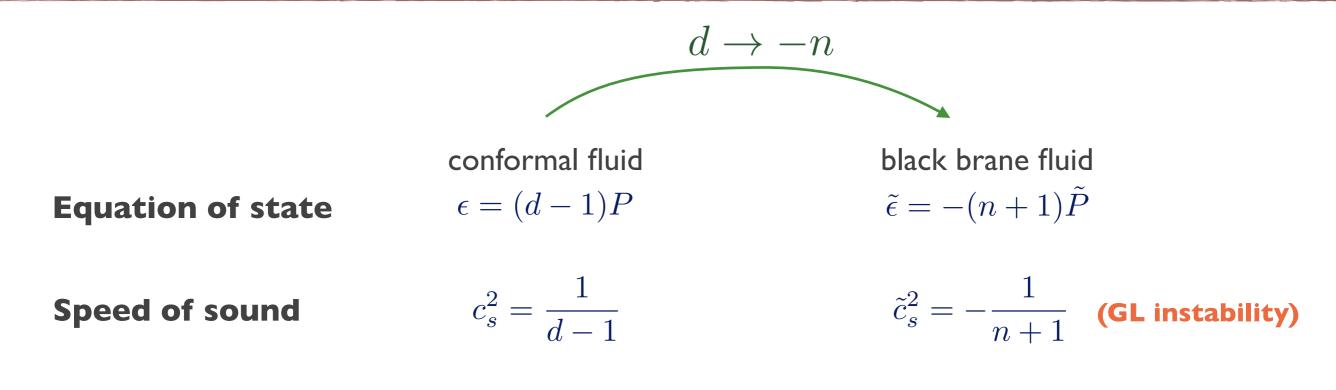


$$d \leftrightarrow -n$$
 \blacklozenge $z = \frac{1}{r}, \quad b = r_0$



Third example: black branes

Long wavelength perturbations of these solutions: we map the AdS/fluid metric to the blackfold perturbations!



Bulk viscosity: saturation of the Buchel bound explained by the **conformal origin** of the effective black brane fluid $\tilde{\zeta} = 2\tilde{\eta}\left(\frac{1}{n} - \tilde{c}_s^2\right)$

Exact agreement of the AF metric to first order in derivatives with the first order corrections of the blackfold metric computed by Camps Emparan & Haddad (2010)

In addition the AdS/Ricci-flat map provides us with the second order corrections in a derivative expansion to the black *p*-brane metric and its effective fluid stess tensor.

~ Conclusions ~

- * AdS/Ricci-flat correspondence maps asymptotically locally AdS solutions on a torus to Ricci-flat spacetimes
- * Holography for asymptotically flat spacetimes
 - Source for dual operators located at the location of a p-brane
 - Stress energy tensor due to this p-brane is holographic
- * Mapped AdS fluid metric to the Ricci-flat blackfold fluid
 - Holographic stress tens. \implies effective stress tens. of a *p*-brane
 - "Hidden" conformal symmetry reflected in transport coeff.
- * Ricci-flat spacetimes inherit a generalized conformal structure

- * AdS/Ricci-flat correspondence maps asymptotically locally AdS solutions on a torus to Ricci-flat spacetimes
- * Holography for asymptotically flat spacetimes
 - Source for dual operators located at the location of a p-brane
 - Stress energy tensor due to this p-brane is holographic
- * Mapped AdS fluid metric to the Ricci-flat blackfold fluid
 - Holographic stress tens. \implies effective stress tens. of a *p*-brane
 - "Hidden" conformal symmetry reflected in transport coeff.
- * Ricci-flat spacetimes inherit a generalized conformal structure
- * Turn on finite sources to develop a full holographic dictionary
- * Implications of the hidden conformal invariance?
- * Explore possible generalizations of the correspondence

~ Thank you! ~