Measurements and simulations of electron-cloud-induced tune shifts and emittance growth at CESRTA

Stephen Poprocki,

J.A. Crittenden, D.L. Rubin, S.T. Wang

Cornell University

ECLOUD'18

June 3-7, 2018 Elba Island, Italy

- Electron Cloud (EC) can cause instabilities and emittance growth, and can be a limiting factor in accelerator performance
- An increase in vertical beam size due to electron cloud has been seen in many e+ rings:
 - PEPII, KEKB, DAPHNE, CESR
- EC has been studied at CESRTA (Cornell Electron-Positron Storage Ring Test Accelerator) since 2008
 - Local and ring-wide EC measurements
 - EC mitigation techniques
 - Inform ILC damping ring design
- Emittance growth has been measured along trains of positron bunches, and compared to simulations

- This talk will present our measurements, describe the simulations, and compare results
- Focus on recent developments:
 - Improved tune shift measurements
 - Fitting e-cloud model to tune shift measurements at various bunch currents & beam energies
 - → Improved modeling of photons from synchrotron radiation & generation of primary electrons
 - ★ (Jim Crittenden's talk Wednesday morning)
 - Effect on emittance growth simulations
- These improvements greatly enhance the predictive power of the model
 - Can be applied to any storage ring given a lattice and vacuum chamber information

- Buildup of electrons hitting the vacuum chamber wall and generating secondary electrons
- Main source: photoelectrons from synchrotron radiation
 - Also beam-gas ionization or stray protons hitting the wall
- Bunches accelerate the electrons as they pass
- Positron bunches pull the cloud towards it ("pinch effect")
- EC builds up along a train of bunches

- CESR (Cornell Electron-Positron Storage Ring)
 - 768 m in circumference
- Starting in 2008, CESR was reconfigured into a low emittance damping ring as a Test Accelerator (CESRTA) for the ILC Damping Ring specifically, and future high intensity, ultra low emittance storage rings in general
- The goal was to:
 - Characterize the build-up of EC in each of the key magnetic field regions
 - Study the most effective methods of suppressing EC in each region
- Electron and positron beams
- 1.8 6 GeV
- Flexible bunch patterns
- 12 Superconducting wigglers at low energy (2 GeV)
 - Generate 90% of the synchrotron radiation

Beam:

- 2.1 GeV positrons or electrons (5.3 GeV for additional tune shifts)
 - ★ Horizontal emittance: 3.2 nm, fractional energy spread: 8x10⁻⁴, bunch length: 9 mm
- 30 bunch train, 0.4 mA/b and 0.7 mA/b, 14 ns spacing
 - \star (0.64x10¹⁰ and 1.12x10¹⁰ bunch populations)
- 1 witness bunch, 0.25 to 1.0 mA, bunch positions 31 to 60

- ★ Witness bunch position probes cloud as it decays
- ★ Witness bunch current controls strength of **pinch effect** (cloud pulled in to e+ bunch)

Measure:

- Betatron tunes: using digital tune tracker
 - ★ Drive an individual bunch via a gated kicker that is phase locked to the betatron tune
- Vertical bunch size: from X-ray beam size monitor
 - ★ Bunch-by-bunch, turn-by-turn
- Horizontal bunch size: from visible light gated camera
 - ★ Bunch-by-bunch, single-shot
- Bunch-by-bunch feedback on to minimize centroid motion
 - Disabled for a single bunch when measuring its tunes

 Vertical emittance growth along a train of positron bunches above a threshold current of 0.5 mA/b

- Trains of e- bunches do not blow-up
 - Indicates e+ emittance growth is due to EC, not another effect

Horizontal beam size also blows-up in 0.7 mA/b e+ train

- One witness bunch to a 30 bunch 0.7 mA/b e+ train
 - Start with witness at bunch #60, vary current, eject bunch, move to #55...
 - For a given witness bunch #, the cloud it sees is the same
 - ★ Emittance growth strongly depends on current (pinch effect)

Tune shift measurements

Tune shifts can be measured various ways:

- 1. "Pinging": Coherently kicking entire train once, measuring bunch-by-bunch, turn-by-turn positions, and peak-fitting the FFTs
 - ★ Fast measurement (whole train at once)
 - ★ Multiple peaks from coupled-bunch motion contaminate signal
 - ★ Unable to measure horizontal tune shifts from dipoles (vertical stripe of cloud moves with train)
- 2. "Single bunch": Feedback on all bunches except one. FFT its turn-by-turn position data
 - ★ Cleaner signal if kicking the single bunch with gated kicker
 - ★ Measures horizontal tune shift
- 3. "Digital tune tracker": Enhancement on above technique, driving the bunch transversely in a phase lock loop with a beam position monitor
 - ★ Best method; used here

Tune shift measurements

Tune shifts measured at 2.1 and 5.3 GeV at various currents:

- Simulations involve four codes which feed into each other
 - 1. Tracking photons from synchrotron radiation (Synrad3D)
 - → Information on photons absorbed in vacuum chamber
 - 2. Photo-electron production (Geant4)
 - → Quantum efficiencies
 - → Photo-electron energies
 - 3. Electron cloud buildup (ECLOUD)
 - → Space-charge electric field maps
 - 4. Tracking of beam through the lattice with EC elements (Bmad)
 - → Betatron tunes
 - → Equilibrium beam size
- The separation of steps 3 and 4 makes this a "weak strong" simulation
 - More on this later

Synrad3D

- Simulates photons from synchrotron radiation
- Tracks photons through vacuum chamber including specular & diffuse reflections
- Input: lattice, 3D vacuum chamber profile, material
- Output: information on absorbed photons:
 - ★ Azimuthal angle
 - ★ Energy
 - ★ Grazing angle with vacuum chamber wall

2) Photo-electron production

Geant4

- Input: Absorbed photons
 - ★ Azimuthal angle
 - ★ Energy
 - ★ Grazing angle with vacuum chamber wall
- Simulates electron production from photo-electric and Auger effects
- Vacuum chamber material (Aluminum) and surface layer (5 nm carbon-monoxide)
- Output:
 - ★ Quantum efficiency vs azimuthal angle
 - ★ Photo-electron energy distributions
- QE depends on photon energy & grazing angle which vary azimuthally
- Improvement on ECLOUD model
- Big improvement to predictive ability

Vacuum Aluminum Incident photons

300 eV 5 deg. grazing angle

★ See Jim Crittenden's talk Wednesday morning

3) EC buildup simulation

- Start with EC buildup simulations with ECLOUD in both dipole and field-free regions
- Use element-type ring-averaged beam sizes
 - Dipole: 730 x 20 um
 - Drift: 830 x 20 um
 - ★ The large horizontal size is dominated by dispersion
- Obtain space-charge electric field maps from the EC for 11 time slices during a single bunch passage, in ±5σ of the transverse beam size
 - $-\Delta t = 20 \text{ ps}$
- Only ~0.1% of electrons are within this beam region
 - Necessary to average over many ECLOUD simulations

Transverse EC charge distributions in an 800 G dipole for bunch 30 of a 0.7 mA/b positron train

120 90

-90

-120

Calibration of model to tune shift measurements

- ECLOUD simulations depend strongly on vacuum chamber secondary yield (SEY) parameters
- Direct SEY measurements provide a good starting point, but it's hard to accurately determine all the parameters
- Still, the condition in the machine may be different
- To improve agreement between the ECLOUD model and our various measurements:
 - Use a multi-objective optimizer to fit the SEY parameters to tune shift data
 - At each iteration, run ECLOUD simulations in parallel varying each parameter by an adaptive increment
 - ★ Calculate Jacobian & provide to optimizer

TABLE I. Main parameters of the model.

	Copper	Stainless steel
	Emitted angular spectrum	
	(Sec. IIC1)	
α	1	1
	Backscattered electrons	
	(Sec. IIIB)	
$P_{1,e}(\infty)$	0.02	0.07
$\hat{P}_{1,e}$	0.496	0.5
\hat{E}_e (eV)	0	0
W (eV)	60.86	100
p	1	0.9
σ_e (eV)	2	1.9
e_1	0.26	0.26
e_2	2	2
_	Rediffused electrons	
	(Sec. IIIC)	
$P_{1,r}(\infty)$	0.2	0.74
E_r (eV)	0.041	40
r	0.104	1
q	0.5	0.4
r_1	0.26	0.26
r_2	2	2
	True-secondary electrons	
	(Sec. IIID)	
$\hat{oldsymbol{\delta}}_{ts}$	1.8848	1.22
\hat{E}_{ts} (eV)	276.8	310
S	1.54	1.813
t_1	0.66	0.66
t_2	0.8	0.8
t_3	0.7	0.7
t_4	1	1
•	Total SEY ^a	
\hat{E}_t (eV)	271	292
$\hat{\hat{\delta}}_t$	2.1	2.05

M. Furman & M. Pivi, "Probabilistic Model for the Simulation of Secondary Electron Emission," *Phys. Rev. ST Accel. Beams* **5**, 124404 (Dec. 2002)

Electric field gradients from cloud space-charge fields

- Tune shifts calculated from the cloud space-charge electric field gradients
- Gradient just before a bunch passage → coherent tune shift
 - Demonstrated in witness bunch tune measurements (left)
- Gradient during pinch → incoherent tune spread, emittance growth
 - Demonstrated in witness bunch size measurements (right)

Simulated tune shifts at 2.1 GeV

- Results from fitting ECLOUD model to data
- Simultaneously fit to:
 - 0.7 mA/b at 2.1 GeV
 - 2, 3, and 6 mA/b at 5.3 GeV (next slide)
- Parameters varied include:
 - Peak energy of true secondary yield
 - True secondary yield 's' parameter
 - True secondary yield
 - Rediffused secondary yield
 - Elastic yield at 0 energy
- Same SEY parameters used in simulations at all currents & energies

(Revolution frequency: 390 kHz)

100

Time (ns)

200

Simulated tune shifts at 5.3 GeV

200

100

Time (ns)

4) Tracking simulations

- Use the time-sliced electric field maps in EC elements at the dipole and drifts
- Track particles in bunch through the full lattice (using Bmad) for multiple damping times, with radiation excitation and damping
- "weak-strong" model: does not take into account effects on the cloud due to changes in the beam
 - Tracking: Weak: beam; Strong: EC
 - EC buildup simulations: Weak: EC; Strong: beam
 - Justification: EC buildup simulations are rather insensitive to vertical beam size
- Strong-strong simulations are too computationally intensive to track for enough turns
 - Damping times at CesrTA are ~20,000 turns
 - We want equilibrium beam sizes

Vertical bunch size growth - train

- Bunch size from simulation is the average over last 10k turns (of 60k)
- See vertical emittance growth in 0.7 mA/b simulations

Horizontal bunch size growth - train

 See some horizontal emittance growth in 0.7 mA/b simulations compared to 0.4 mA/b but needs investigation

Vertical bunch size growth - witness bunch

- More emittance growth with:
 - shorter distances from train (more cloud)
 - higher witness bunch current (more pinch)
- Simulations show similar behavior

- We have obtained various measurements of tune shifts and emittance growth from electron clouds
- Our e-cloud model has been improved with precise modeling of synchrotron radiation photons & generation of primary electrons
- The model has been validated with improved tune shift measurements for a range of bunch currents at 2.1 and 5.3 GeV
- A witness bunch at a range of currents gives a direct measurement of the pinch effect
 - Vertical emittance growth scales with pinch
 - Coherent tune shift does not
- · Our weak-strong incoherent model is consistent with this data
- The simulations can uncover the largest contributions to tune shifts and emittance growth
 - EC mitigation methods can be targeted to these regions and tested in simulation
- Future work:
 - Further investigate horizontal emittance growth in simulation
 - Use model to predict EC effects at future accelerators
 - Use model to understand underlying factors driving emittance growth
 - ★ New approaches to mitigating emittance growth from EC

Thank you for your attention

Witness bunch to a 0.4 mA/b train (below threshold)

