

MINOS Results and Future Prospects

Ryan Nichol

Beyond 3 Neutrinos, LNGS 2011

Outline

- Overview of the MINOS Experiment
 - -MINOS Physics Goals
 - -NuMI Beam
 - -MINOS Detectors
- Recent Results
 - –Muon-Neutrino Disappearance *Updated*
 - Muon-Antineutrino Disappearance *Updated*
 - -Electron-Neutrino Appearance (won't cover in this talk)
 - -Sterile Neutrino Search
- Future Prospects
 - -MINOS+

MINOS Physics Goals

- Precision measurements of oscillation parameters
 - –Confirm oscillation hypothesis vs decay, ...
- Use magnetised detector for precision antineutrino tests
- Search for subdominant oscillations to $\nu_{\rm e}$
- Search for evidence of sterile neutrinos
- Atmospheric neutrino & cosmic ray studies
- Cross-sections, ...

MINOS Collaboration

Argonne • Arkansas Tech • Athens • Benedictine • Brookhaven • Caltech • Cambridge • Campinas • Fermilab • Harvard • IIT • Indiana • Minnesota-Twin Cities • Minnesota-Duluth • Oxford • Pittsburgh • Rutherford • Sao Paulo • South Carolina • Stanford • Sussex • Texas A&M • Texas-Austin • Tufts • UCL • Warsaw • William & Mary

MINOS Concept

- MINOS (Main Injector Neutrino Oscillation Search)
 - Long-baseline neutrino oscillation experiment
- Basic Concept
 - Measure energy spectrum at Near Detector
 - Measure energyspectrum at Far Detector
 - Compare measurementsto study oscillations

Neutrinos at the Main Injector (NuMI)

- 10µs pulse of 120 GeV protons every 2.2s
- 3.0 x 10¹³ protons per pulse
- 275kW typical beam power
- Can tune energy spectrum by varying relative positions of target and horns, in low energy:

NuMI Beam Performance

MINOS Detector Technology

M64

- Magnetised steelscintillator calorimeters
 - -2.54cm Steel
 - -~1.3T B field
 - -orthogonal strips of coextruded polystyrene

Near Detector

- ~1kT Detector located 1km downstream of the target
- Consisting of 282 steel, 153 scintillator planes
- Fast QIE electronics for continuous sampling of beam spill.

Far Detector

- 735km away at the Soudan mine, MN
- 5.4kT, 8m octagonal planes
- 486 steel planes
- 484 scintillator planes
- Veto shield (scintillator modules)
- Spill trigger from Fermilab for beam trigger

Located in the place of coldest recorded temperature in mainland US (-67 F)

Event Topologies

Three classifications of events

 ν_{μ} CC Event

NC Event

 v_e CC Event

Event Topologies

Monte Carlo

 ν_{μ} CC Event

long μ track & hadronic activity at vertex

NC Event

short event, often diffuse

 ν_e CC Event

short, with typical EM shower profile

Hadron Production Tuning

- Hadron production from the NuMI target has substantial uncertainties
 - Fit CC data taken in nine beam configurations to configurations to improve the hadron production model

Near to Far Extrapolation

Extrapolate near detector to the far detector

 Use Monte Carlo to provide corrections for energy smearing and acceptance

-Encode pion decay kinematics & the geometry of the

beamline into a matrix

Muon Neutrino Disappearance

Precision measurement of neutrino mixing in the atmospheric sector

ν_μ Disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta)\sin^2(1.27\Delta m^2 L / E)$$

'Toy' Monte Carlo

(Input parameters: $\sin^2 2\theta = 1.0$, $\Delta m^2 = 3.35 \times 10^{-3} \text{ eV}^2$)

CC events in the Near Detector

- Majority of data from low energy beam
- High energy beam improves statistics in energy range above oscillation dip
- Additional exposure in other configurations for commissioning and systematics studies

Analysis Improvements

- Since 2008
- Additional data
 - $-3.4x10^{20} \rightarrow 7.2x10^{20} POT$
- Main Analysis improvements
 - improved shower energy resolution
 - separate fits in bins of energy resolution
 - inclusion of events originating outside of the Far Detector's fiducial volume
 - These are the Rock and Anti-Fiducial (RAF) Events

Systematic Uncertainties

 Evaluated effect of systematic uncertainties by fitting modified MC in place of the data

Rock and Anti-Fiducial Events

 High statistics low energy resolution sample of events

No Oscillations: 2206

Observation: 2017

Fully Reconstructed Event Energy Spectrum

No Oscillations: 2451

Observation: 1986

Far Detector Energy Spectrum

- Combined fit to contained and rock/anti-fiducial events
 - Over 58% of mock experiments have larger log-likelihood
- Pure decoherence[†] disfavoured at 9σ
- Pure decay[‡] disfavoured at 7σ

Contours

$$|\Delta m^2| = 2.32^{+0.12}_{-0.08} \times 10^{-3} \,\mathrm{eV}^2$$

$$\sin^2(2\theta) > 0.90 (90\% \text{ C.L.})$$

- Contour includes effects of dominant systematic uncertainties
 - Normalisation
 - NC background
 - shower energy
 - track energy

Published yesterday. Phys. Rev. Lett. 106, 181801 (2011)

Note: These are the last published Super-K contours, not the improved ones shown at 26 Neutrino2010

Muon-Antineutrino Disappearance Analysis

Do antineutrinos do it the same?

Making a neutrino beam

Making an anti-neutrino beam

FD Data

- No oscillation Prediction: 155
- □Observe: 97
- No oscillationsdisfavoured at 6.3σ

FD Data

- No oscillation Prediction: 155
- □Observe: 97
- No oscillationsdisfavoured at 6.3σ

$$\left| \overline{\Delta m^2} \right| = 3.36^{+0.45}_{-0.40} \times 10^{-3} \,\mathrm{eV}^2$$

$$\sin^2(2\theta) = 0.86 \pm 0.11$$

Background

Subtracted

Comparisons to Neutrinos

Comparisons to Neutrinos

A 2% chance of seeing such a discrepancy if the underlying parameters are the same

Antineutrinos in the neutrino beam

- We have analysed the sample of antineutrinos in the neutrino beam
 - -Low statistics, higher energy sample
- Consistent with both the neutrino and antineutrino results

Neutral Current Analysis

Searching for evidence of oscillations to sterile neutrinos

Motivation: Neutral Current

- In the standard 3-flavor picture neutrinos are oscillating between
 - v_e, v_μ, v_τ .
- Oscillations into v_s affect number of observed NC interactions as v_s do not interact in the detector.
- Look for NC disappearance at the Far Detector

 Sterile neutrino mixing would deplete NC energy spectrum

Near Detector NC Event Selection

- Neutral current selects events with one or zero reconstructed tracks
- Two selection variables

Neutral Current Near Event Rates

- Neutral Current event rate should not change in standard 3 flavor oscillations
- A deficit in the Far event rate could indicate mixing to sterile neutrinos
- v_e CC events would be included in NC sample, results depend on the possibility of v_e appearance

Neutral Currents in the Far Detector

- □Expect: **754** events
- □Observe: 802 events
- ■No deficit of NC events

$$R = \frac{N_{data} - BG}{S_{NC}}$$

$$1.09 \pm 0.06 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$$

(no $V_{\rm e}$ appearance)

$$1.01 \pm 0.06 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$$

(with v_e appearance)

$$f_s \equiv \frac{P_{\nu_{\mu} \to \nu_s}}{1 - P_{\nu_{\mu} \to \nu_{\mu}}} < 0.22 \ (0.40) \ \text{at } 90\% \ \text{C.L.}$$
no (with) v_e appearance

Neutral Current Limits

- At the 90% C.L the MINOS neutral current result excludes sterile mixing for a range of parameters
 - Including the region suggested by the reactor antineutrino anomaly
 - arXiv:1101.2755
 - But not for antineutrino mixing...

MINOS+

Future prospects for the MINOS experiment in the NoVA era

MINOS+

 In January 2013 the NuMI beam is scheduled to switch to medium energy configuration for the NoVA experiment

MINOS+ Muon Disappearance Analysis

 For the first two years MINOS+ would contribute to the world's most precise determination of the masssplitting

MINOS+ Comparison

MINOS+ Sterile Neutrinos in the FD

 A large mass scale sterile neutrino would cause a deficit of high energy muon neutrinos at the Far

Detector

MINOS+ Sterile Neutrinos in the FD

MINOS+ Sterile Neutrinos in the ND

- The MINOS Near Detector is sensitive to oscillations with large mass splitting (above 1eV²)
 - However single detector measurements are much more difficult.
 - Such experiments have greater exposure to systematic uncertainties in beam and cross-section
 - With MINOS+ these could be partially mitigated by comparing neutrino mode to antineutrino mode beam
 - Assuming the sterile coupling is different between neutrinos and antineutrinos

MINOS+ Exotic Models

- Non-standard interactions with matter can introduce differences between the observed neutrino and antineutrino mixing
- MINOS+ can probe this with unprecedented precision at higher energies

MINOS+ Exotic Models

 Some exotic models predict a modulation of the oscillation probability at the Far Detector

arXiv.org > hep-ph > arXiv:1101.1686

High Energy Physics - Phenomenology

Probing Extra Dimensions with Neutrino Oscillations

MINOS+ Summary

- The NuMI upgrade to a medium energy high intensity neutrino beam for NoVA that is aimed directly at the MINOS Far Detector
 - This presents MINOS with the opportunity to really make precision measurements of the Far Detector energy spectrum and survival probability
 - New physics from sterile neutrinos to non-standard interactions to large extra dimensions, predict a measurable distortion in the neutrino energy spectrum as measured at the Far Detector
 - Most of these effects would not be easily distinguishable at the narrow-band off-axis experiments (i.e. NoVA and T2K)

Conclusion

- The MINOS experiment is one of the world's leading neutrino oscillation experiment
 - -We have made some of world's best measurements in the atmospheric, sterile, "unknown" and antineutrino sectorsInteresting tension between neutrino and antineutrino oscillation measurements
- New results expected this year
 - -Improved electron appearance analysis
 - -Muon antineutrino analysis
- MINOS+
 - –There are compelling reasons to continue running the MINOS experiment in the NoVA beam

Backup Slides

Rock and Anti-Fiducial Events

Calibration of the MINOS Detectors

Incidentally, the title of my thesis

- Light-Injection System (PMT gain + linearity)
- Cosmic Ray Muons (spatial and temporal variations)
- Stopping Muons (detector-to-detector energy scale)
- Calibration Detector (overall energy scale)

FD Data

CC Event Pre-Selection

- To select v_{μ} require:
 - –At least one track per event
 - -Reconstructed event vertex in the fiducial volume

- –Coil hole cut
 - To exclude poorly reconstructed events
- -The fitted track curvature should have negative charge
 - To select only V_{μ} events

CC Event Selection

- Use kNN to separate NC background
 - Improvement in efficiency over the 2008 analysis
 - -Monte carlo and data in

Analysis Improvements

- Since PRL 101:131802, 2008
- Additional data
 - $-3.4x10^{20} \rightarrow 7.2x10^{20} POT$
- Analysis improvements
 - updated reconstruction and simulation
 - new selection with increased efficiency
 - no charge sign cut
 - improved shower energy resolution
 - separate fits in bins of energy resolution
 - smaller systematic uncertainties

MINOS Runs Consistency Check

Systematic Uncertainties

 Evaluated effect of systematic uncertainties by fitting modified MC in place of the data

Event Rate/Spectrum Stability

ND Anti-neutrino Data

- Focus and select positive muons
 - purity 94.3% after charge sign cut
 - purity 98% < 6GeV
- Analysis proceeds as (2008) neutrino analysis
- Data/MC agreement comparable to neutrino running
 - different average kinematic distributions
 - more forward muons

ND Data

Data/MC agreement comparable to neutrino running

Rock and Anti-fiducial Events

- Neutrinos interact in rock around detector and outside of Fiducial Region
- These events double sample size, events have poorer energy resolution

Fits to NC

- Fit CC/NC spectra simultaneously with a 4th (sterile) neutrino
- 2 choices for 4th mass eigenvalue
 - $m_4 >> m_3$
 - $m_4 = m_1$

Making an antineutrino beam

 Hadron production and cross sections conspire to change the shape and normalization of energy spectrum

~3x fewer antineutrinos for the same exposure

z position (m)

Anti-neutrino Selection

Anti-neutrino Systematics

Cross sections

FD Anti-neutrino Data

- Vertices uniformly distributed
- Track ends clustered around coil hole

Previous Anti-neutrino Results

- Results consistent with (less sensitive) analysis of antineutrinos in the neutrino beam
 - anti-neutrinos from unfocused beam component
 - mostly high energy antineutrinos
- Analysis of larger exposure on going

Future Anti-neutrino Sensitivity

Atmospheric Neutrinos

$$R_{\overline{\nu/\nu}}^{data} / R_{\overline{\nu/\nu}}^{MC} = 1.04_{-0.10}^{+0.11} \pm 0.10$$

$$\left| \Delta m^2 \right| - \left| \overline{\Delta m^2} \right| = 0.4^{+2.5}_{-1.2} \times 10^{-3} \,\mathrm{eV}^2$$

Electron-Neutrino Appearance

Probing beyond the Chooz limit

ve Appearance

- Searching for an excess of events above a large background(s)
 - -Neutral current events
 - -Charged current υ_{μ}
 - -Intrinsic beam v_e

After

Background Decomposition

- Use multi-beam method to determine backgrounds in Near Detector
- Then extrapolate them to the Far Detector

Systematic Uncertainties

Final Far Detector Prediction

	Total	Stat. Err.	Syst. Err.	NC	CCNuMu	Beam NuE	CcNuTau
ANN11	48.6	7.0	2.7	35.8	6.3	4.7	1.8

Expected signal at Chooz limit: 23.9 events

Ve Appearance Results

	Total	Stat. Err.	Syst. Err.	DATA	Excess	Sigma
ANN11	48.6	7	2.7	54	5.4	0.7

v_e Appearance Results

for
$$\delta_{CP} = 0$$
, $\sin^2(2\theta_{23}) = 1$,
 $\left| \Delta m_{32}^2 \right| = 2.43 \times 10^{-3} \text{ eV}^2$

 $\sin^2(2\theta_{13}) < 0.12$ normal hierarchy $\sin^2(2\theta_{13}) < 0.20$ inverted hierarchy at 90% C.L.

Phys. Rev. D 82, 051102 (2010)