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high-energy neutrino telescopes

ANTARES/
KM3NET

Baikal/
GVD

IceCube-Gen2



high-energy neutrino telescopes
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neutrino detection principle

Monte Carlo
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Detect Cherenkov light 
of interaction products

array of optical modules
in a transparent medium

signature in the detector

early late

amount of light ∝ energy

events from IceCube



neutrino beams in neutrino telescopes 
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neutrino telescopes are subject to 
a high statistics (~100.000 /y km3), 
high-energy neutrino beam from 

the atmosphere 

 an even higher-energy 
astrophysical flux (~100 /y km3)plus...
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neutrino beams in neutrino telescopes 

Both IceCube and KM3NET have, or plan to have, low-E 
extensions (DeepCore, PINGU, ORCA) to cover as low  energies as possible



particle physics topics with neutrino telescopes

Check the contributions to the latest Workshop on Exotic Physics with Neutrino Telescopes for more ideas,  indico.in2p3.fr/event/7381/

NEUTRINO CROSS SECTION 
NEUTRINO OSCILLATIONS 

STERILE NEUTRINOS

NON-STANDARD 
NEUTRINO INTERACTIONS

TESTS OF FUNDAMENTAL LAWS

DARK MATTERNEW PARTICLE SEARCHES

TEV GRAVITY

...
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the atmospheric neutrino flux

An enormous wealth of information can 

be obtained from the energy

and pathlength of atmospheric neutrinos 

through the Earth to the detector

mm
m

m

m

qz

L

Neutrinos available over a wide range of 

baselines,  with energies from a few GeV to 

~100 TeV. Earth's core

Adv. High En. Phys, vol. 2015, 271968



neutrino oscillations

NTs can cover L/E regions 

unaccessible to accelerators

arXiv:1707.07081

arXiv:1707.07081



sterile neutrinos

αL=∑
k=1

3

U α k k L (α = e, m, t)

3+1 sterile scenario

Minimal 3+1 scenario adds 6 parameters: Dm2
41, q14, q24, q34, d14 and d34

(α = e, m, t, s)αL=∑
k=1

4

U α k k L

additional state to oscillate to → perturbation to standard oscillations

From solar, atmospheric and accelerator results: mixing with s must be small,  |Uα4| « 1



sterile neutrinos

Phys. Rev. Lett. 117, 071801 (2016) 
Phys. Rev. D 95, 112002 (2017)

KM3NET sensitivity 
(arXiv:1702.04508)

NTs sensitive to disappearance effects in atmospheric neutrinos, ie, mainly to Dm2
41 and sin2q24  

E ⪆ 300 GeV

So far, results consistent with the standard three-neutrino hypothesis

E ⪅ 60 GeV

excluded

excluded



sterile neutrinos in large extra dimensions (LED)

JCAP12(2014)002

e x c l u d e d

● LED ⇒ “sterile” neutrinos living in the extra 

dimensions (KK-tower)

● mixing with of KK  modes with active 

neutrinos distorts standard oscillation pattern

● R
D
 and m

1
 (lowest KK mode) can be 

constrained from oscillation analyses



neutrino cross section

● Neutrino Xsection only measured below ~300 GeV

● Neutrino telescopes exposed to copious neutrino 

flux above TeV

● Look for deviations of expected flux due to 

anomalous neutrino interactions in matter

IceCube Preliminary

IceCube search:
   fit m angle and energy distribution with sm as 
   free parameter.  

 No deviation from SM found

    sm = 1.3+0.21
-0.19 (stat) +0.39 -0.43 (sys) x sm

SM

High-energy  absorbed
Low-energy  transmitted

High- and low-energy  
transmitted

IceCube preliminary

https://arxiv.org/abs/1707.07081
https://arxiv.org/abs/1707.07081


non-standard neutrino interactions (NSI)

● Additional disappearance effect to MSW

● Mediated by non-SM bosons. 

→ 9 additional “interaction terms”  

(6, if requirements of hermicity and unitarity are imposed)

● Modify the rate of neutrinos detected at different energies 

and angles

● Effect proportional to LxE

● Shows in complementary range of parameter 

space wrt standard oscillations 

standard      MSW      NSI

JHEP06(2013)026

standard osc.

NSI

 d
iff

e
r e

n
ce

 o
f 

p
ro

b
a
b

ili
ti

e
s 

w
it

h
 a

n
d

 w
it

h
o
u

t  
N

S
I

JHEP06(2013)026

P(m→m)

ϵm t=10−2



non-standard neutrino interactions (NSI)

So far, results from IceCube and SK compatible with no NSI      (see also MINOS results, Phys. Rev. D 88, 072011 (2013) )

JHEP01(2017)141

IceCube 
preliminary
(IC86-3yr)

e'=0

e'

Phys. Rev. D 84, 113008 (2011)

arXiv:1702.04508



search for heavy neutrino states...

● Low-energy “Double-bang” events from 
heavy neutrino production and decay, 
without intermediate track

arXiv:1707.08573

● mN ≥ 1 GeV → Ldetector ≥ 20 m

atmospheric

additional mixing matrix 
components that can be 
probed

● |Ut4|
2 up to ~10-2 still allowed for 

a window of masses

optimistic
 detector

assumptions!



...or search for heavy neutral mediators

● Simultaneous double m tracks from 
-N interactions with new vector (Z') 
or scalar (S') mediators, 

● Wide range of allowed Z'/S' mass: ~MeV to TeV
and couplings.

● Parameter space of the new mediator 
can be constrained

● SM background: ~ 0.5 evt/yr in a km3 detector

arXiv:1702.02617

5o-10o



 violation of Lorentz invariance                                     quantum decoherence

• Leads to modified dispersion relation:

• Different maximum attainable velocities ca  

for different flavour states: DE ~ (dc/c)E

• “oscillation” effect ∝  LxE instead of L/E

 

● Signature of quantum gravity

● Heuristic picture: foamy structure of 
      space-time.  Pure states interact with 
      environment 

● “oscillation” effect ∝ En         (n=1,2,3...)  

Lorenz invariance violation

Ea
2=pa

2+ma
2+ f a( p , E)

Ea
2=pa

2 ca
2+ma

2ca
2

could have consequences for timing in multimessenger searches

      QD Atmospheric m Survival Probability
(n=1)

VLI Atmospheric m Survival Probability
(maximal mixing)



SuperK
 
Phys. Rev. D 91, 052003 (2015)

Lorenz invariance violation

(arXiv:1608.02946)

    standard      MSW LVI terms

(strength of LV)

IceCube preliminary

arXiv:1709.03434

in the SME



magnetic monopoles

● Predicted from charge quantization (Dirac):  

           elementary charge 

● Most GUTs predict them

           mass range:  ~107 GeV  ⪅  mM ⪅ 1019 GeV

● Typical galactic B-fields (mG) and galactic sizes (kpc) can accelerate MMs to 

● MMs with masses below ⪅ 1012 GeV can be relativistic

● Different signatures in NTs, depending on speed, but always track-like

∇⃗⋅E⃗=4 πρe ∇⃗⋅⃗B=4 πρm −∇⃗× E⃗=1
c
∂ B⃗
∂ t

+ 4 π
c
j⃗m ∇⃗×B⃗= 1

c
∂ E⃗
∂ t

+ 4 π
c
j⃗e

gD=
α
2
e≈68.5 e

K=gd ∫
path

B⋅dl≃gDB l≈1012GeV

https://arxiv.org/abs/1707.08573


magnetic monopoles

slow 
(b⪅0.1c)

light from  EM showers of p-decay products

s
CAT

 = s
CAT

 (b) =s
0
/b

Estimated: 10-21 cm2 < s
CAT

< 10-27 cm2

Mean free path between p-decays: 1/s
CAT

  

Long passage time (~ms) → detector noise

relativistic

direct Cherenkov light (b⪆ 0.75c)

or from secondary d electrons (b⪆ 0.6c)

Vey bright events (g~68e). 

Nb. of  Cherenkov photons

x8200 min ionizing muon 

“mildly relativistic”
(0.2c⪅ b ⪅0.5c)

isotropic light from luminescence due

to electronic excitation-deexcitation

dim events

access to “intermediate” b range



magnetic monopoles

current results
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nuclearites & strangelets 

● QCD allows for neutral, stable “chunks” 

of strange matter (u, d, s)

   stranglets → mass 𝓞 (heavy nuclei)

   nuclearites → mass >> standard nuclei ( ≳1010 GeV)

● Neutral ⇒ difficult to accelerate

Gravitationally trapped in the galaxy ⇒  b~10-3  

→ non-relativistic: elastic collisions along their path

● Heat matter locally as they traverse it →

light from a cylindrical expanding thermal shock wave  

⇒ signature in a NT as a slow, bright track

PoS(ICRC2015)1060

scienceblogs.com/startswithabang/2010/10/29

nuclear matter nuclearite



searches dark matter

g, ...

theory

g, ...

Fm→ΓA→CC→sχ p

Fm→ΓA→sχχ

https://arxiv.org/abs/1608.02946


dark matter searches beyond MSSM

Possibility to test more exotic scenarios than the plain MSSM  neutralino: 

Phys Rev D 81, 063510 (2010)

JCAP04(2015)052

JCAP02(2014)047
self interacting dark matter with 

momentum-dependent self-interaction Xsection

self interacting dark matter

Kaluza-Klein dark matter

(extra dimensions)

Superheavy, non-thermal 
dark matter

Phys. Rev. D 81, 057101 (2010)

Plus many more...



Rich particle physics program for neutrino telescopes  (I skipped many topics)

Complementary in many aspects to accelerator physics

NT's have access to a high-statistics, high-energy neutrino beam (atm. neutrinos)

NT's are sensitive to other highly ionizing particles besides muons → monopoles...

The old adage is rapidly coming true: yesterday's signals are today's backgrounds

   Astrophysical neutrinos constitute a background for some of the mentioned topics

   They open the window to cosmological distances and  >PeV energies 

outlook







IceCube searches for dark matter

Eur.Phys.J. C76 (2016) no.10, 531

¿
¿
}
¿

Fm→ΓA→sχ χFm→ΓA→C c→sχ p

https://pos.sissa.it/301/912/pdf
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