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Plasma Acceleration

A ‘driver’ pushes the plasma electron away from their equilibrium
position.

In the wake behind the driver an intense electric field develops.

A ‘witness’ is accelerated and focused if properly injecteded in the

wake.

wake: phase velocity = drive-beam velocity



Plasma Acceleration

Driver nature:

 High Power Laser -> Laser Wake-Field Acceleration (LWFA);

* Relativistic Electron Bunch -> Plasma Wake-Field Acceleration (PWFA);
« N, <<HN,-> Linear regime;
* n,>n, -> Non-Linear regime (NL);
* n, >nyand Q <1->Weakly Non-Linear regime (WNL).

Injection scheme :

 External injection;

* Selfinjection:
 Wakefield lonization Injection (WII)
e Laser driven self-injection;
 Downramp beam driven self-injection;
* Trojan Horse self-injection;



Working project

* Analytical and numerical studies of the WII scheme in the NL regime;

* Analytical and numerical studies of the WIIl in the WNL regime;

* Analysis of the feasibility of triggering the WIl with a multi-driver scheme in the

WNL regime .
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Produced beams are
intrinsecally synchronised, low-
emittance and strongly
accelerated!



How to do it

Analytical simplified models;
Computer simulations: Particle In Cell method.
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PIC code ALaDyn

* Fully Relativistic three dimensional;

3D (2D-1D) High Order in Space and time;

* Charge preserving high order scheme;

* Jonization module;

* 3D output -> Visit;

* Used on both Tier-0
class and small clusters.

Pic Codes are very Driver
time consuming
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~ Weeks on a
100-cores
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Witness




Linear regime

Small density perturbation = first order expansion of Maxwell
equations and plasma continuity and momentum equations in
cylindrical symmetry and quasi-static approximation (QSA).
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* Existence of general analytical solutions;

* Low current driver;

» Accelerating fields lower than 1GV/m;

* Intrinsecally difficult high quality transport;
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Non-Linear regime

Density

* High density perturbation;
* Fields higher than 100 GV/m;

e Correlated longitudinal
energy spread;

* Emittance conservation;

... No general analytic solution!

All the electrons are expelled from the wake:
‘bubble’ or ‘blowout’ regime.



Analytical models

Different assumptions required for simplified models:

 The bubble is spherical and positive;

* The electrons accumulate in a narrow layer at the border of the
bubble with constant density;

e Cylindrical symmetry and QSA.

The trajectory of the innermost electron, the 5 i = Simulation Profile
longitudinal field and the transverse force are ? 4t s theoretical model
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Analytical models

Different assumptions required for simplified models:

 The bubble is spherical and positive;

* The electrons accumulate in a narrow layer at the border of the

bubble with constant density;
e Cylindrical symmetry and QSA.

The trajectory of the innermost electron, the
longitudinal field and the transverse force are
derived

A(ry) : . _ + C(ry)r, = -

-(p-djc) (enp)

—— Simulation Profile
theoretical model




Analytical models

Different assumptions required for simplified models:
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Analytic model and PIC comparison
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Limits of the analytical model

The analytical model does not reproduce:

* The density spike at the back
of the bubble;

* The transition region at the
beginning of the bubble.

The dynamics of the

electrons in these regions is currently
subject of studies with a particle
tracking code | developed.
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Application of the analytical model: beam loading in the

external injection scheme for gaussian bunches

Driver: o, = 50 um,o, = 4um, Q=200pC *° T kA
Witness:o, = 10 um, 15 um 051 Qw=20pC —E, 0.0/,
Plasma Density: n, = 10° cm™3 04 1)

Distance: L = 3 cm 0l /
0.2+
Low charge witness:

0.1+~

 Weak field distortion; .
* Positioning on the crest of the wake;
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Application of the analytical model: beam loading in the

external injection scheme for gaussian bunches
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External injection limits:

AE/E

Optimization analysis of
witness charge and position
in the wake: the higher the
charge the less the sensitivity.
Very narrow region with
energy spread < 1%.

* High charge &> difficult to handle at low energy. Higher energy spread induced;

 Lowcharge = extremely sensitive to positioning.



Self injection scheme

How do we overcome

the limit of external :> In the LWFA we can use the electrons of the
injection? plasma background!

The electrons at the back of the bubble
feel a strong accelerating field and can
be trapped into the wake.
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N The electrons accumulates at the back

Average longitudinal and transverse B of of the bubble but no trapping occurs.
the background electrons at the back of the bubble.



Wakefield lonization Injection

The electrons are injected directly in the

back of the bubble via ionization of a :> Preliminary results of WII for a
dopant element (He, Ar) confined in a H+Ar plasma (no layer):

thin layer at the entrance of a capillary. . Average accelerating field > 30GV/m:
50 | | | | | » Self injected beam energy = 10MeV
M gained in = 400 pum;
| I * Energy spread < 5%;

* Injected charge > 10 pC.
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Main limitations:

* Driver current required >10 kA;

* High degree of control of the
dopant distribution.
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Aim of the thesis project

° i i He/H gaSJet ;— gas inlets
Emlttance, energy spread,.spot Size n,, =0.002 n, =5x10" cm’l |
and energy measurement in a k ///
. . . . . electron beam reionization laser
realistic PIC simulation with the A P
dopant layer; =23 GeV | /L
=23 kA 7"/

e Studies of the beam quality and
acceleration varying the dopant
density distribution in the capillary;

* Studies of the effect of different gases
(Ar, He, Ne, N ...);

e Studies of the feasibility of triggering the WII with a multi-driver scheme
in the weakly non-linear regime;

e Studies on an extension of the analytical model of the non linear regime to the
regions of the head and the back of the bubble.
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