
Physics Simulations on multi- and many-core
architectures

Sebastiano Fabio Schifano

University of Ferrara and INFN-Ferrara

SuperB: Computing R&D Workshop 2011

Ferrara

July 4-7, 2011

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 1 / 28

Let me Introduce Myself

For those who do not know me:

I’m not a physicist, but computer scientist

I work with physicist since 1999

I have been involved in several project to develop computing systems
optimized for computational physics:

I APEmille and apeNEXT: LQCD machines
I AMchip: pattern matching processor, installed at CDF
I Janus: 256 FPGA-based system
I QPACE: TOP-GREEN 500 in Nov.’09 and July’10
I AuroraScience

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 2 / 28

Assessment of Multi- and Many-core Systems

More recently I have studied the performance of computing systems based
on commodity multi- and many-core architectures for scientific computation.

Systems

multi-core: Cell-BE, Intel Nehalem and Westmere

many-core: NVIDIA GPU Tesla C1060 and Fermi

Applications

Monte-Carlo simulations of Spin Glass systems

Simulation of Rayleight-Taylor Instability: Lattice Boltzmann

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 3 / 28

Assessment of Multi- and Many-core Systems

Issues
how to meet applications requirements and architecture features

how to approach peak performance

Methodology

structured VS un-structured programs

hardware-aware VS hardware-oblivious approach

Goals
Study methodologies to program efficiently multi- and many-core systems.

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 4 / 28

Simulation of the Rayleigh-Taylor (RT) Instability

Interface instability of two fluids
of different densities triggered by
gravity.

Rayleigh-Taylor Instability
A cold-dense fluid over a less dense and warmer fluid triggers an instability
that mixes the two fluid-regions (till equilibrium is reached).

E.g.: Pooring cold-wine over warmer water !!!

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 5 / 28

The Lattice Boltzmann Method

Lattice Boltzmann methods (LBM) is a class
of computational fluid dynamics (CFD)
methods.

Simulation of synthetic dynamics described
by the discrete Boltzmann equation, instead
of the Navier-Stokes equations.

The key idea: virtual particles interacting
by streaming and collision reproduce –
after appropriate averaging – the dynamics
of fluids.

Easy to implement complex physics.

Good computational efficiency on MPAs.

foreach time−step
foreach lattice−point

stream () ;

collide () ;

endfor
endfor

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 6 / 28

The D2Q37 Lattice Boltzmann Model

Correct treatment of:

I Navier-Stokes equations of motion
I heat transport equations
I perfect gas state equation (P = ρT)

D2 model with 37 velocity components, 3D under development

Suitable to study behaviour of compressible gas and fluids

Optionally in the presence of combustion processes
(chemical reactions turning cold-mixture of reactants
into hot-mixture of burnt product)

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 7 / 28

D2Q37: stream()

stream():

applies to each lattice-cell

requires to access cells at distance 1,2, and 3.

gathers populations at the edges of the arrows at the center point, that
will be collided by next computational phase

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 8 / 28

D2Q37: bc() and collide()

bc(): compute boundary conditions

adjusts values – e.g. set velocity to zero –
at sites y = 0 . . . 2 and y = Ny − 3 . . .Ny − 1

collide():

computed for each lattice-cell

computational intensive:
requires ≈ 7820 DP ops.

completely local:
arithmetic operations require only the
populations of the site

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 9 / 28

D2Q37 CPU Implementation

typedef struct {
double p [3 7] ; / / popu la t ions
double u ; double v ; / / h o r i z o n t a l and v e r t i c a l v e l o c i t y
double rho ; / / dens i t y
double temp ; / / temperature

} pop_type ;

for (time−step = 0; time−step < MAXSTEP ; time−step++) {
stream () ;

bc () ;

collide ;
}

Each lattice-cell is represented by a struct variable of type pop_type

At each point in the loop over time steps, each lattice-cell is processed
by three main kernels:

I stream(): moves particles among lattice-sites
I bc(): interactions particles and up- and down-border
I collide(): collision of particles

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 10 / 28

D2Q37 CPU Implementation
Developed on the AuroraScience machine:

node:
I 2 six-core Intel Xeon X5660 CPUs per node
I 12 MB L3-cache, 12 GB Ram

system:
I 32 nodes / chassis (16 front + 16 rear) 5 Tflops
I 8 chassis / rack 40 Tflops

network:
I switched, based on standard Infiniband QDR adapters
I point-to-point, based on a 3D-Torus network (FTNW∗)

(latency ≈ 1 µsec, bandwidth 1 GB/sec)
Symmetric Multi-Processor (SMP) system:

I programming view: single processor with 12 cores
I memory address space shared among cores

Non Uniform Memory Access (NUMA) system:
memory access time depends on relative position of tread and data-structure

(∗) Developed by M. Pivanti, F. S. Schifano, and H. Simma

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 11 / 28

D2Q37: Optimization on Multicore CPU System
Exploit parallelism at various levels:

node parallelism: split the lattice
over the nodes, each keeping a
sub-lattice,

core parallelism: split the
sub-lattice over the cores of the
node.

instruction parallelism: process
two lattice-sites in parallel exploiting
vector SSE instructions within the
core.

Optimize memory access:

exploit cache-data reuse

control memory allocation (NUMA)

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 12 / 28

Node Parallelism

1 lattice size Lx × Ly is split over
the nodes along X direction
in sublattices of Lx

Np
× Ly

2 on each node borders of neighbor
sub-lattices are replicated

3 each sub-lattice is split over the cores

X-splitting make easy parallelization w/o bad impacts on performance.

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 13 / 28

Core Parallelism
Each node is a SMP processor with 12 cores. Cores execute:

for (step = 0; step < MAXSTEP ; step++) {

if (tid == 0 | | tid == 1) {
comm () ; / / exchange borders
stream () ; / / apply stream to l e f t− and r i g h t−border

} else {
stream () ; / / apply stream to the inne r pa r t

}

pthread_barrier_wait (. . .) ;

if (tid == 0)
bc () ; / / apply bc () to the three upper row−c e l l s

if (tid == 1)
bc () ; / / apply bc () to the three lower row−c e l l s

pthread_barrier_wait (. . .) ;

collide () ; / / compute c o l l i d e ()

pthread_barrier_wait (. .) ;
}

Each node runs 12 threads, 1 for each available core.

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 14 / 28

Instruction Parallelism

Components of two cells have been paired in a vector of two-doubles

we have used the gcc compiler

each v_pop_type variable
represent two cells

two cells are processed in parallel

typedef double twoD __attribute__ ((vector_size (1 6))) ;

typedef struct {
twoD p [3 7] ; / / popu la t ions
twoD u ; twoD v ; / / h o r i z o n t a l and v e r t i c a l v e l o c i t y
twoD rho ; / / dens i t y
twoD temp ; / / temperature

} v_pop_type ;

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 15 / 28

Optimization of Stream

Stream execution generates sparse memory accesses.

Labelling of population is arbitrary. Cells are stored by-column.

Reordering populations allow cache-reuse improving performance of
stream (cache-aware).

Use of NUMA library allows to control allocation of memory to avoid
memory access conflicts.

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 16 / 28

Optimization of Stream

Lx × Ly Size (GB) Base +Cache-reuse +NUMA ctrl
252 × 8000 1.4 0.18 0.12 (+33%) 0.07 (+61%)
480 × 8000 2.8 0.35 0.25 (+28%) 0.13 (+62%)
480 × 16000 5.4 0.72 0.52 (+27%) 0.27 (+62%)
480 × 32000 11.0 1.00 0.71 (+29%) 0.54 (+46%)

Execution time (sec.) of stream for versions 1.x of the code on one node

Numbers in brackets are the improvement w.r.t. the base version.

Execution time grows proportionally with the size of data-set.

NUMA reduces memory access conflicts and balances allocation.

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 17 / 28

Performance Results (Versions 1.x)

Base +Cache-reuse +NUMA ctrl
Tpbc 0.34 s 0.25 s 0.12 s
Tstream 0.36 s 0.26 s 0.14 s
Tbc 0.9 ms 0.5 ms 0.2 ms
Tcollide 0.39 s 0.39 s 0.39 s
Ttime/site 12.5 ns 11.2 ns 8.7 ns
MLUps 78 89 115
Rmax 23.8 % 27.0 % 35.2 %

Code versions 1.x running on 16 processing elements (192 cores).

Grid size Lx × Ly = 4032 × 16000.

Ttime/site is the time to process one lattice-cell.

MLups, the number of grid sites updated per second.

Rmax fraction of the peak (double precision).

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 18 / 28

Merging Stream and Collide (Versions 2.x)

If computation of combustion is not enabled, stream and collide phases
can been merged together in a single-step (STEP 3).

Optimizations for cache re-use and memory allocation, in the same way
as described before.

Base + Cache-reuse + NUMA ctrl
STEP 1 0.06 s 0.06 s 0.06 s
STEP 2 1.36 ms 1.32 ms 0.64 ms
STEP 3 0.53 s 0.47 s 0.43 s

Ttime/site 9.3 ns 8.7 ns 7.5 ns
MLUps 103 113 130
Rmax 31.5 % 34.4 % 39.6 %

Code versions 2.x running on 16 processing elements (192 cores).

Grid size Lx × Ly = 4032 × 16000.

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 19 / 28

D2Q37 GPU Implementation

JUDGE - JÜlich Dedicated Gpu Environment

Compute Nodes:

I 54 Compute nodes IBM System x iDataPlex dx360 M3
I node: 2 Intel Xeon X5650(Westmere) 6-core processor 2,66 GHz
I Main memory: 96 GB
I Network: IB QDR HBA
I GPU: 2 NVIDIA Tesla M2050 (Fermi) 1,15 GHz (448 cores),

3 GB memory

Complete System:

I 648 cores
I 108 graphic processors
I 5,1 TB main memory
I 62,5 Teraflops peak performance

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 20 / 28

D2Q37 GPU Implementation

typedef struct {
double p1 [NSITES] ; / / popu la t ion 1 ar ray
double p2 [NSITES] ; / / popu la t ion 2 ar ray
. . .
double p37 [NSITES] ; / / popu la t ion 37 ar ray

} pop_type ;

foreach (timestep=0; timestep < MAX_STEP ; timestep++) {
comm () ; / / exchange Y borders
move <<< grid , threads >>> () ; / / run stream
bc <<< grid , threads >>> () ; / / run bc
collide <<< grid , threads >>> () ; / / run c o l l i d e

}

SOA to exploit data-coalescing

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 21 / 28

D2Q37 GPU Implementation

two treads manage run on GPU

one thread executes communication with neighbour nodes

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 22 / 28

Performance Comparison: GPU vs CPU

GPU V1 CPU V1
comm 0.20 ms 10.00 ms
stream 47.85 ms 140.00 ms
bc 0.60 ms 0.20 ms
collide 194.69 ms 360.00 ms
GFLOps 129.23 60.17
Rmax 25% 38%
time/site 0.06 µs 0.13 µs
MLUps 16.56 7.71

GPU V2 CPU V2
STEP 1 0.19 ms 7.00 ms
STEP 2 1.18 ms 0.64 ms
STEP 3 0.99 ms 0.62 ms
STEP 4 193.45 ms 410.00 ms
GFLOps 160.59 72.41
Rmax 31% 45%
time/site 0.04 µs 0.11 µs
MLUps 20.59 9.28

GPU-system: NVIDIA Fermi

CPU-system: dual socket Intel six-core (Westmere, 160 Gflops DP peak)

lattice size: 252 × 16000

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 23 / 28

D2Q37 GPU: Scalability
Strong Scalability Ver. V1

#GPU 2 4 8 16 32 64
P (Gflops) 264 509 948 1504 2152 2138
Sr 2 3.8 7.5 11.4 16.3 16.2

Strong Scalability Ver. V2
#GPU 2 4 8 16 32 64
P (Gflops) 322 644 1288 2336 2320 2329
Sr 2 4 8 14.5 14.4 14.5

Weak Scalability Ver. V1
#GPU 2 4 8 16 32 64
P (Gflops) 262 520 1024 2088 4176 8320
Sr 2 3.9 7.8 15.9 31.8 63.5

Weak Scalability Ver. V2
#GPU 2 4 8 16 32 64
P (Gflops) 326 652 1300 2603 5203 10385
Sr 2 4 7.9 15.9 31.9 63.7

strong scaling: lattice size 1024 × 7168

weak scaling: each GPU allocate a lattice size 254 × 14464

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 24 / 28

Intel MIC Systems
Many Integrated Core Architecture

Knights Ferry: development board

Knights Corners: commercial product

COmputing on Knights Architectures (COKA)
INFN-Ferrara, LNL and CNAF are starting the COKA project for studing
performances of this class of architectures.

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 25 / 28

Intel MIC Systems: Knights Ferry

Yet another accelerator board

PCIe interface

Knights Ferry: 32 x86 core, 1.2 GHz

each core has 32KB L1 instruction cache, 32KB L1 data cache, and
256KB L2 cache

SSE unit: 16 SP, 8 DP

multithreading: 4 threads / core

8 MB L3 shared coherent cache

1-2 GB GDDR5

Knights Corners could assemble up-to 64 cores.

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 26 / 28

MIC Architectures

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 27 / 28

Conclusions
What we have learnt:

assessments of architecture features is important and crucial for
application performances,

use of multi- and many-core parallel systems require to exploit all
possible levels of parallelism,

in most cases a re-design of the program is necessary.

COKA project:

study and compare performance of Knights architectures w.r.t. GPUs
and CPUs,

evaluate performance of applications relevant for INFN, both in the field
of theoretical and experimental physics

study programming methodology for many-core architectures to run at
high efficiency.

S. F. Schifano (Univ. and INFN of Ferrara) Physics Simulations on MIC Thursday July 5th 28 / 28

