In medium effects on vector mesons through holographic QCD

Floriana Giannuzzi

Università degli studi di Bari, Italy INFN, Sezione di Bari

based on JHEP 1205 (2012) 076 with P. Colangelo, S. Nicotri

QCD@Work 2012 Lecce, 18-21 June, 2012

Why are spectral functions interesting?

- behaviour of vector mesons in medium
- melting
- transport coefficients and hydrodynamical quantities
- **.**..

How?

Soft wall model: holographic bottom-up approach to QCD

AdS/QCD correspondence

AdS/CFT correspondence [Maldacena, '97]

Type IIB string theory in $AdS_5 \times S^5$

SUGRA limit

$$g_s \to 0$$

$$R \to \infty$$

$$g_s = g_{YM}^2$$

$$\boldsymbol{R}^4 = 4\pi g_s N \boldsymbol{\alpha'}$$

 $\mathcal{N}=4$ SYM theory on 4d Minkowski

large N + NP limit

$$N \to \infty$$

$$\lambda = g_{\rm YM}^2 N \to \infty$$

How can the theories be linked?

→ Holographic description [Witten '98, Gubser et al. '98]

Dictionary:

- 1. field $\phi(x,z) \leftrightarrow \text{operator } \mathcal{O}(x)$
- 2. $m_{d+1}^2 \leftrightarrow \Delta$

3.
$$\langle e^{\int_{\partial AdS_{d+1}} \phi_0(x)\mathcal{O}(x)} \rangle = Z_S[\phi_0(x)] \approx e^{-S}$$

4.
$$\phi(x,z) = \int_{\partial AdS_{d+1}} d^d x' K(x-x',z) \ \phi_0(x')$$

5.
$$K(x-x',z) \xrightarrow{\partial AdS_{d+1}} z^{\lambda} \delta^d(x-x')$$

$$\lambda = \frac{d}{2} - \sqrt{\frac{d^2}{4} + m_{d+1}^2 R^2}$$

apply to QCD, but ...

QCD is

- 1. not supersymmetric
- not conformal (running coupling constant)

break

possible solutions:

- 1. introduce independent bosonic and fermionic fields
- 2 introduce a mass scale

How? We focus on soft wall model: "dilaton" profile in the metric or action

$$\mathsf{e}^{-arphi(z)}$$

$$\mathrm{e}^{-\varphi(z)} \qquad \varphi(z) = c^2 z^2$$

Karch et al '06

→ Regge trajectories:

Vector mesons
$$m_n^2 = c^2(4n+4)$$

$$m_n^2 = c^2(4n + 4)$$

Scalar mesons
$$m_n^2 = c^2(4n+6)$$

Scalar glueballs
$$m_n^2 = c^2(4n+8)$$

$$m_{
ho} = 0.776 \text{ GeV} \quad \rightarrow \quad c = 0.388 \text{ GeV}$$

Finite temperature and density effects: charged Black-Hole

QCD

add to generating functional $\mu ar{q} \gamma^0 q$

Periodic Euclidean time

SW

5d U(1) gauge field A_0

Black Hole

 $BH + A_0 \rightarrow AdS/RN$ metric

$$\begin{split} ds^2 &= \frac{R^2}{z^2} \left(f(z) dt^2 - d\bar{x}^2 - \frac{dz^2}{f(z)} \right) \qquad 0 < z < z_h = \text{outer horizon of BH} \qquad (f(z_h) = 0) \\ f(z) &= 1 - (1 + Q^2) \left(\frac{z}{z_h} \right)^4 + Q^2 \left(\frac{z}{z_h} \right)^6 \qquad 0 \leqslant Q \leqslant \sqrt{2} \quad \text{ prop. to BH charge} \\ A_0(z) &= \mu - k \frac{Q^2}{z^3} z^2 \end{split}$$

Temperature and density are linked to BH parameters by:

$$\begin{array}{cccc} A_0(z_h)=0 & \to & \mu=k\frac{Q}{z_h} & \text{$(k=1$ will be set)} \\ T=\frac{1}{4\pi}\left|\frac{df}{dz}\right|_{z_h} & \to & T=\frac{1}{\pi z_h}\left(1-\frac{Q^2}{2}\right) & \text{Hawking temperature} \end{array}$$

Vector mesons

operator

$$\bar{q}\gamma_{\mu}T^{a}q$$

gauge field

$$V_M^a(x,z)$$

$$S = -\frac{1}{2\,k_V\,g_{\rm 5}^2}\int d^5x \sqrt{g}\,e^{-\varphi(z)}\,\,{\rm Tr}\left[F_V^{MN}\,F_{V\,MN}\right] \label{eq:S}$$

$$F_V^{MN} = \partial^M V^N - \partial^N V^M \qquad k_V g_5^2 = 12\pi^2/N_c$$

we fix the gauge $V_z=0$, and c=1 (mass unit).

Eq. of motion in Fourier space for $V_i(z,\omega^2)$ in meson rest frame $\bar{p}=0$

$$\partial_z \left(\frac{e^{-\phi(z)}}{z} f(z) \partial_z V_i(z,\omega^2) \right) + \frac{e^{-\phi(z)}}{z \, f(z)} \omega^2 \, V_i(z,\omega^2) = 0$$

1. High z_h

BH horizon does not affect meson wave functions

wave functions as eigenfunctions of the Schrödinger equation:

$$\begin{split} V_i(z,\omega^2) &= \mathrm{e}^{B(z)/2} H(z,\omega^2) \qquad B(z) = z^2 + \log z - \log f(z) \\ &- \partial_z^2 H(z,\omega^2) + U(z) \, H(z,\omega^2) = \frac{\omega^2}{f(z)^2} \, H(z,\omega^2) \qquad U(z) = \frac{B'^2}{4} - \frac{B''}{2} \end{split}$$

$$\begin{cases} H(0,\omega^2) = 0 \\ H(z,\omega^2) \text{ normalizable} \end{cases}$$

eigenfunctions eigenvalues

2. Low z_h

masses: positions of the peaks of the spectral function

Boundary conditions for the bulk-to-boundary propagator ${\cal V}(z,\omega^2)$

$$V_i(z, \omega^2) = V(z, \omega^2) V_i^0(\omega^2)$$

$$\int V(0, \omega^2) = 1$$

$$\begin{cases} V(0,\omega^2) = 1 \\ V(z,\omega^2) \xrightarrow{z \to z_h} (1-z/z_h)^{-i\frac{\sqrt{\omega^2}\,z_h}{2(2-Q^2)}} \left(1 + \mathcal{O}(1-z/z_h)\right) \end{cases} \qquad \textit{falling in solution}$$

Retarded Green's function:

$$G_{ij}^R(\omega^2) = \left. \frac{\delta^2 S}{\delta V_i^0(-\omega) \delta V_j^0(\omega)} = \delta_{ij} \left. \frac{e^{-\phi(z)} \, f(z)}{g_5^2 \, k_V} V(z,\omega^2) \frac{\partial_z \, V(z,\omega^2)}{z} \right|_{z=0}$$

spectral function:

$$\rho(\omega^2) = \operatorname{Im}\left(G^R(\omega^2)\right)$$

Results

$$\checkmark \quad \rho \underset{\omega \to \infty}{\sim} \omega^2$$

- ? peaks moving towards lower masses at increasing T and μ
- \checkmark broadening of peaks at increasing T and μ
- \checkmark melting (at lower T and μ for excited states)

Fit with modified Breit-Wigner function to extract masses and width

$$\rho_{\text{BW}}(x) = \frac{a \, m \, \Gamma \, x^b}{(x - m^2)^2 + m^2 \Gamma^2}$$

mass decrease
$$\frac{m|_{\mu=0}-m|_{\mu=\mu_c}}{m|_{\mu=0}}$$
 :

- ▶ 13% effect at $T \sim 0$ (25% on squared mass)
- ▶ 8% effect at $T\sim 0.1c$ (16% on squared mass)

Comparison with other models and experiments:

√ Width

width increases at increasing T and $\mu\mbox{,}$ in agreement with other models and experiments

? Mass

- \rightarrow in SW mass decreases at increasing T and μ
- → models suggest a mass decrease or increase
- → in experiments found a small decrease or no effect

In particular

- Brown-Rho dropping: mass decrease related to chiral symmetry breaking parameters
- Hatsuda-Lee:

$$\begin{array}{ll} m(\rho)/m(0)=1-\alpha\,\rho/\rho_0 & \alpha=0.16\pm0.06\\ T=0 & , \quad \rho_0=\text{nuclear matter density}\\ \text{Assuming this scaling, we find at } T=0.023c\\ \alpha=0.012 & \text{with} \quad \mu_0=0.209c \end{array}$$

Conclusions

- ▶ Little analytical and numerical effort to compute spectral functions
- Broadening of peaks in the spectral functions, as in many models and experiments
- Downward mass shift, debated issue!
- ▶ Very small mass decrease at nuclear density, in agreement with experiments

ground state			
T/c	T (MeV)	μ/c	μ (MeV)
0	0	0.5k	194 <i>k</i>
0.162	63	0	0