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1. Introduction

low T high T

Chiral symmetry of QCD

restoration of chiral symmetry

phase transition

Some questions

2. Eigenvalue distribution of Dirac operator 

1. Recovery of U(1)_A symmetry at high T ?

relation ?

U(1)B � SU(Nf )V U(1)B � SU(Nf)L � SU(Nf )R

�(�) �: eigenvalue of Dirac operator



Eigenvalue density

Banks-Casher relation
if chiral symmetry is restored.
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Anomalous U(1)A symmetry is fully restored.If �(�) has a gap
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Susceptibility
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If U(1)A is recovered, ���� = ���� = ���� = 0.



2. Previous Theoretical Investigation

S.A, H. Fukaya, Y. Taniguchi,
 “Chiral symmetry restoration, eigenvalue density of Dirac operator and axial 

U(1) anomaly at finite temperature”, 
Phys. Rev D86(2012)114512.



Set up

Lattice regularization with Overlap fermion, 2-flavor

Exact “chiral” symmetry

Eigenvalue spectrum �A
n + �̄A

n = aR�̄A
n �A
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h
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zero modes(chiral) doublers(chiral)

Ginsparg-Wilson relation

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

⟨(Ja
x − δa

xS)O + δa
xO⟩ = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x⟨{Ja

x + 2mP a(x)}O + δa
xO⟩ = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)

6

A: gauge configuration



Some assumptions 

non-singlet chiral symmetry is restored.Assumption 1

Assumption 2 if O(A) is m-independent

�O(A)�m = f(m2) f(x) is analytic at x = 0

Note that this does not hold if the chiral symmetry is spontaneously broken.

Ex. lim
V��

1
V

�Q(A)2�m = m
�
Nf

+ O(m2)

topological charge

A: gauge configuration



Results
Non-singlet chiral Ward-Takahashi identities
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No constraints to higher ��A
n �m

��A
3 �m �= 0 even for ”free” theory.



We think that we can not prove ⟨ρA
3 ⟩0 = 0 in general since ⟨ρA

3 ⟩0 ̸= 0 for the free theory.
Note here that the density of eigenvalues is always defined in the V → ∞ limit.

For discrete zero modes, we have

lim
V →∞

1
V k

⟨(NA
R+L)k⟩m = 0, lim

V →∞

1
V k

⟨Q(A)2k⟩m = 0 (3.83)

for an arbitrary positive integer k even at a small but non-zero m.

4. Singlet susceptibilities

In this section, we consider possible constraints to singlet susceptibilities using constraints
obtained in the previous section. It seems that singlet susceptibilities at odd N automat-
ically vanish. We explicitly check this property at N = 1, 3, 5. See appendix B for more
general cases. We therefore consider even N here.

4.1 N = 2 case

At N = 2 a nontrivial singlet susceptibility is given by

χπ−η =
1
V
⟨P 2

a − P 2
0 ⟩m = lim

V →∞

N2
f

m2V
⟨Q(A)2⟩m = 0. (4.1)

Therefore the singlet susceptibility vanishes at this order.

4.2 N=4

From Appendix B, there are two non-trivial susceptibilities at N = 4 , which is given by

χ6 = ⟨O0022 −O2002⟩m, χ7 = ⟨O0022 −O0220⟩m (4.2)

See Appendix B. Since we can neglect NA
R+L/V and Q(A)2/V terms in the large N limit,

we have

lim
m→0

lim
V →∞

χ6

V 3
= − lim

m→0
lim

V →∞
N3

f

〈
NfQ(A)2

m2V

(
NA

R+L

mV
+ I1

)2〉

m

= 0, (4.3)

lim
m→0

lim
V →∞

χ7

V 3
= lim

m→0
lim

V →∞

N3
f

m

〈(
NA

R+L

mV
+ I1

)2 (
NA

R+L

mV
+ I1 −

NfQ(A)2

mV

)〉

m

= lim
m→0

N3
f

m

〈
I3
1

〉
m

. (4.4)

The second term also vanishes as

⟨I3
1 ⟩m = ⟨

(
πρA

1 + O(m)
)3⟩m = O(m3). (4.5)

We therefore conclude that leading order contributions in V for the singlet susceptibilities
vanish also at N = 4.
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��A
0 �m = 0

topological charge Q(A) = NA
R �NA

L

NA
R+L = NA

R + NA
Ltotal number of zero modes

NA
R a number of right-handed zero modes

NA
L a number of left-handed zero modes



Consequences

Singlet susceptibility at high T

This, however, does not mean U(1)_A symmetry is recovered at high T.

is necessary but NOT “sufficient” for the recovery of U(1)_A .

lim
m�0

���� = 0

lim
V�0

���� = lim
m�0

lim
V��

N2
f

m2V
�Q(A)2�m = 0

Effective symmetry at hight T

SU(2)L � SU(2)R � Z4 not SU(2)L � SU(2)R � U(1)A

full U(1)A is not recovered.

What is the order of chiral phase transition in 2-flavor QCD ?  
1st or 2nd ?

”m� = m�”



Order of phase transition at Nf=2

U(1)A is still broken at T > Tc U(1)A is restored at T > Tc

2nd order 1st order ?

?

phase diagram of 2+1 flavor QCD

SU(2)L � SU(2)R � Z4
SU(2)L � SU(2)R SU(2)L � SU(2)R � U(1)



Remarks
Important conditions

Large volume limit 

chiral limit 

lattice chiral symmetry

m� 0

V ��

Ginsparg-Wilson relation

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

⟨(Ja
x − δa

xS)O + δa
xO⟩ = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x⟨{Ja

x + 2mP a(x)}O + δa
xO⟩ = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)

6

Fractional power for the eigenvalue density

�A(�) � cA�� , � > 0 non-singlet chiral symmetry is recovered.

� � 2 is excluded. � > 2

consistent with the integer case (n > 2)



3. Recent Numerical Results



Eigenvalue densities
�(�) = lim

V��

1
V
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n

�(�� �n)

FIG. 5: Spectral density of the massless overlap-Dirac operator in two-flavor QCD. Top and

bottom panels are the data clearly below and above the critical temperature, respectively. The

middle panel corresponds to those around the transition point. The jackknife errors are shown for

each bin of the histogram. When the histogram is terminated at the lower end, it implies that we

find no eigenmode below that value. The statistical error in that case is also zero, because we use

the jackknife method. The lighter the color the lighter the mass.

argument about the power α and the point where gap opens would not be possible with the

currently available data. There is even a possibility that the gap develops right above the

critical point. Much more extensive data at several quark masses and volumes would be

necessary for a definite conclusion on this point.

21

Cossu et al. (JLQCD), Overlap
Phys. Rev. D87 (2013) 114514 

Gap seems to open at 
smaller quark mass.

Tc � 180 MeV
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FIG. 7. The eigenvalue spectrum for T = 149−195 MeV, expressed in the MS scheme at the

scale µ = 2 GeV. The imaginary, “unphysical” eigenvalues are plotted as −
√
|Λ2 − m̃2

l |.

The spectra from the 323 × 8 ensembles are plotted as histograms and fit with a linear

(T = 149 − 178 MeV) or a quadratic (T = 186 − 195 MeV) function (blue dashed line).

The spectrum from each of the 163 × 8 ensembles [7] is plotted as a black solid line.

41

Buchoff et al. (LLNL/RBC), DomainWall, Phys. Rev. D89 (2014) 5,054514 

Gap seems to close at or 
above critical temperature

Small eigenvalues 
appear.

Tc � 180 MeV



What causes this difference ?

volume ? quark mass ? lattice chiral symmetry ?

Overlap: exact GW relation DomainWall: approximated  GW relation
JLQCD collaboration LLNL/RBC collaborations

Recent study by A. Tomiya et al. for JLQCD collaboration

generate gauge configurations with an improved DomainWall quarks
very small violation of GW relation

(1)calculate eigenvalue distrubution of overlap operator on these configurations
partially quenched 

(2)reweighting factor from the improved DW to Overlap is intorudced to obtain 
the full eigenvalue distribution

full Overlap

Preliminary



partially quenched(PQ) full Overlap
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small eigenvalue 

After the reweighting, small eigenvalues in PQ disappear, and the 
gap seems to open in full Overlap.

An exact lattice chiral symmetry is essential to obtain the correct result.
A tiny violation of the chiral symmetry may destroy the theoretically expected 
relation.

Does the gap really open at critical temparutue?

Further inverstigations are needed. a precise determination of Tc

Preliminary



partially quenched(PQ) full Overlap
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Smaller volume also show a simlira behavior.
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Smaller quark mass is needed to see the gap.
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higher temparture
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gap ?

a(Nt = 12)/a(Nt = 8) = 8/12 = 2/3

Existence of the gap is unclear. 
Further inverstigation is necessary. (Chiral zero modes must be removed.) 

Preliminary



3. Conclusion



Order of phase transition in 2-flavor QCD

1st or 2nd ?

SU(2)L � SU(2)R � Z4

Conformal bootstrap method may help.

Even if the phase transition is of 2nd order, its universality class might be 
different from O(4).

SU(2)� SU(2)� U(1)gap
gapless


