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Figure 6: Comparison of the temperature dependence of the renormalized chiral suscep-

tibility normalized by various powers of T . Only our Nt = 12 data are shown. Different

symbols correspond to different normalizations.

On Figure 5 we plot this renormalized chiral susceptibility normalized by T 4 as a
function of the temperature. We show results for three different lattice spacings (Nt =

8, 10 and 12). In case of Nt = 8 and 10 we have the results on two different volumes
as well, the larger volumes are plotted with filled symbols. The finite temperature

data on Nt = 8 and 10 was taken from our old paper. The renormalization was
carried out with the new zero temperature results (see Subsection 2.3). The scale
has also slightly changed due to the change in the experimental value of the fK in

the Particle Data Group (see Subsection 2.4). This results in an overall ∼ 5 MeV
downward shift in the temperature compared to what we reported in [6].

We see no considerable lattice artefacts, in particular the new Nt = 12 results are
consistent with the Nt = 10 ones from our old data set. A small volume dependence

can be seen in the height of the susceptibility peak, but the volume dependences of
the width and the position are not significant within the present statistics.

In order to help comparisons with other approaches we also provide the temper-
ature dependence for the renormalized chiral susceptibility normalized by T 2 or not

normalized by any power of T , at all (see Figure 6). As it can be seen the curves
are gradually shifted to the right, resulting in increasing transition temperatures de-

fined from the peak positions (see Table 3). This is a feature of the crossover type
transition, different definitions generally result in different temperature values.

Now let us make the comparison with the results of the ’hotQCD’ collaboration.
First let us consider the data of [3], which uses ’asqtad’ fermion discretization. The

light quark masses in our simulations and in the simulations of [3] are quite different.
The latter uses three times larger light quark masses than the physical, which is

– 12 –

zero-temperature estimate h !c c ilðMS;! ¼ 2 GeVÞ ¼
242ð9Þðþ5

%17Þð4Þ MeV3 determined in the chiral limit
using SUð2Þ staggered chiral perturbation theory by the
MILC Collaboration [41] and the corresponding strange

quark mass mMSð !!¼2GeVÞ¼88ð5ÞMeV. We get d ¼
0:023 224 4.

We show "R
l for the HISQ/tree action and the stout

continuum results in Fig. 8 (left).5 To compare with the
stout continuum results, we need to extrapolate the HISQ/
tree data both to the continuum limit and to the physical
quark mass. To perform the continuum extrapolation we
convert"R

l to the fK scale in which discretization errors, as
already noted for "l;s, are small. We then interpolate these
N" ¼ 8 data at ml=ms ¼ 0:05 and 0.025 to the physical
quark mass ml=ms ¼ 0:037. These estimates of the con-
tinuum HISQ/tree "R

l are shown in Fig. 8 (left) as black
diamonds and are in agreement with the stout results (green
triangles) [24].

Last, in Fig. 8 (right), we show the subtracted renormal-
ization group invariant quantity,"R

s , which is related to the
chiral symmetry restoration in the strange quark sector. We
find a significant difference in the temperature dependence
between "R

l and "R
s , with the latter showing a gradual

decrease rather than a crossover behavior.

B. The chiral susceptibility

As discussed in Sec. III, the chiral susceptibility #m;l is a
good probe of the chiral transition in QCD as it is sensitive
to the singular part of the free energy density. It diverges in
the chiral limit, and the location of its maximum at nonzero
values of the quark mass defines a pseudocritical tempera-

ture Tc that approaches the chiral phase transition tempera-
ture T0

c as ml ! 0.
For sufficiently small quark masses, the chiral suscepti-

bility is dominated by the disconnected part; therefore, Tc

can also be defined as the location of the peak in the
disconnected chiral susceptibility defined in Eq. (27). As
we will show later, #q;disc does not exhibit an additive
ultraviolet divergence but does require a multiplicative
renormalization.6

1. Disconnected chiral susceptibility

The multiplicative renormalization factors for the chiral
condensate and the chiral susceptibility can be deduced
from an analysis of the line of constant physics for the light
quark masses, mlð$Þ. The values of the quark mass for the
asqtad action, converted to physical units using r1, are
shown in Fig. 9 (left). The variation with $ gives the scale
dependent renormalization of the quark mass (its recipro-
cal is the renormalization factor for the chiral condensate).
What mlð$Þ does not fix is the renormalization scale,
which we choose to be r0=a ¼ 3:5 (equivalently r1=a ¼
2:37 or a ¼ 0:134 fm), and the ‘‘scheme,’’ which we
choose to be the asqtad action. For the asqtad action, this
scale corresponds to the coupling $ ¼ 6:65 which is half-
way between the peaks in the chiral susceptibility on
N"¼8 and 12 lattices. This specification, ZmðasqtadÞ¼1
at r0=a ¼ 3:5, is equivalent to choosing, for a given action,
the renormalization scale#which controls the variation of
Zm with coupling$ as shown in Fig. 9 (right) for the asqtad
action.
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FIG. 7 (color online). The subtracted chiral condensate for the asqtad and HISQ/tree actions with ml ¼ ms=20 is compared with the
continuum extrapolated stout action results [24] (left panel). The temperature T is converted into physical units using r1 in the left
panel and fK in the right. We find that the data collapse into a narrow band when fK is used to set the scale. The black diamonds in the
right panel show HISQ/tree results for N" ¼ 8 lattices after an interpolation to the physical light quark mass using the ml=ms ¼ 0:05
and 0.025 data.

5We multiply the stout results by ðms=mlÞ ¼ 27:3 and by
r41m

4
% ¼ 0:002 227 5. For the latter factor, we use the physical

pion mass and the value of r1 determined in [59] and discussed in
Sec. II C.

6It is easy to see that at leading order in perturbation theory,
i.e., in the free theory, the disconnected chiral susceptibility
vanishes and thus is nondivergent. Our numerical results at
zero temperature do not indicate any quadratic divergences in
the disconnected chiral susceptibility, but logarithmic divergen-
ces are possible.

A. BAZAVOV et al. PHYSICAL REVIEW D 85, 054503 (2012)
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• U(1)A asymptotic restoration could lead to O(4)⇥ U(1)A

pattern instead of O(4)

• A↵ects the transition order, critical end point, etc

• Observed M⌘0 reduction points to U(1)A restoration.

Increase of ⌘0 production would a↵ect dileptons&diphotons

• Chiral pattern still not settled in lattice in terms of

chiral partner degeneration !
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Particle spectrum ! degeneration of chiral partners:

⇡a =  ̄l�5⌧
a l

SUA(2) ! � =  ̄l l

lUA(1) lUA(1)

�a =  ̄l⌧
a l

SUA(2) ! ⌘l =  ̄l�5 l

⇡a = i ̄l�5⌧
a , �a =  ̄l⌧

a l ⇠ a0(980)

� =  ̄l l, �s = s̄s ! f0(500), f0(980) (mixed)

⌘l = i ̄l�5 l, ⌘s = is̄�5s ! ⌘, ⌘0 (mixed)



temperatures there isa largediscrepancybetweenthe163 × 8
and the 323 × 8 ensembles which becomes larger as tem-
perature decreases. Results from 243 × 8, fall in between,
although they tend to lie closer to the 323 × 8 points.
Since we are studying only a single value of Nτ and a

pion mass that is larger than physical by a factor of 1.5, it is
premature to draw a definite quantitative conclusion about
the pseudocritical transition temperature. However, a quali-
tative examination of the left panel in Fig. 5 suggests that a
peak in χdisc occurs for the 163 and 243 volumes at
approximately 160 MeV and that this peak position
increases to slightly above 165 MeV as the volume is
increased to 323.
The right panel of Fig. 5 compares the mπ ¼ 200 MeV,

323 × 8 DWF results for χdisc with those obtained from
staggered fermions using a 483 × 12 volume and the highly
improved staggered quark (HISQ) and a-squared tadpole
improved (ASQTAD) staggered actions with mπ ¼ 161
and 177 MeV respectively [26]. Again, the disconnected
chiral condensates are consistent among these three meth-
ods for T ≥ 175 MeV. However, the ASQTAD results lie

substantially below the DWF and HISQ results for temper-
atures at and below the transition region. The HISQ results
are in good agreement with the 323 × 8 DWF results.
However, this agreement appears to be coincidental, since
the HISQ results are obtained for a quoted pion mass of
161 MeV, significantly smaller than the 200 MeV pion
mass of the DWF ensembles. The expected strong depend-
ence of χdisc near Tc on the pion mass suggests that mπ ¼
160 MeV DWF results would lie above those found with
HISQ. The discrepancy between the DWF and ASQTAD
results and the expected discrepancy with comparable
HISQ results are likely explained by lattice discretization
errors associated with staggered taste symmetry breaking.

C. Uð1ÞA symmetry

We will now discuss the degree to which the anomalous
Uð1ÞA symmetry is restored above Tc by examining the
two implications of this symmetry for the four susceptibil-
ities given in Eq. (14): χπ ¼ χδ and χσ ¼ χη. The numerical
results for each of these four susceptibilities are

FIG. 4 (color online). The two SUð2ÞL × SUð2ÞR-breaking susceptibility differences χM̄S
π − χM̄S

σ and χM̄S
δ − χM̄S

η plotted as a function
of temperature for our three spatial volumes: 163, 243 and 323. For temperatures of 170 MeVand above these differences are consistent
with zero and the expected restoration of chiral symmetry above Tc. The quantity χπ − χσ becomes very large below Tc reflecting the
small mass of the pseudo-Goldstone π meson below Tc. In contrast, the second difference χη − χδ remains relatively small as the
temperature decreases below Tc, reflecting the relatively large masses of the δ and η mesons.

QCD CHIRAL TRANSITION, Uð1ÞA SYMMETRY AND … PHYSICAL REVIEW D 89, 054514 (2014)

054514-11

Lattice susceptibilities SUV (2)⇥ SUA(2) ⇠ O(4) pattern
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Bucho↵ et al (LLNL/RBC coll) PRD89 (2014)
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results between 3 and 7 shown in Table IV.1 Numerical
evidence for the absence of explicit chiral symmetry
breaking is provided by the near equality of the two
differences χπ − χδ and χσ − χη which are related by
SUð2ÞL × SUð2ÞR symmetry, a symmetry also explicitly
broken by ml and mres.
Strong evidence for the small size of possible explicit

chiral symmetry breaking also comes from the results for
χπ − χδ computed for the strange quark. It is the explicit
breaking of chiral symmetry by the valence propagators
which can create a nonanomalous signal for χπ − χδ. As can
be seen from Table V the results for χπ − χδ are smaller for
the strange than for the light quark. If the strange quark
results are interpreted as coming entirely from explicit
chiral symmetry breaking, the corresponding effects for the
light quarks should be reduced by a factor of

ð ~ml= ~msÞ2 ≈ 0.008. At T ¼ 179 MeV, this approach gives
explicit chiral symmetry breaking for the light-quark
quantity χπ − χδ of order 4.26 · 0.008 ¼ 0.034. This is
larger than the 0.001 estimate above but only a fraction
of a percent of the signal. Thus, we interpret the results for
χπ − χδ and χσ − χη shown in Table IV and Fig. 6 as clear
evidence for the anomalous breaking of Uð1ÞA symmetry
for T > Tc.

IV. LOW-LYING EIGENVALUE SPECTRUM

In Sec. III we studied the QCD transition region by
examining the temperature dependence of vacuum expect-
ation values and correlation functions whose behavior is
closely related to the SUð2ÞL × SUð2ÞR and Uð1ÞA sym-
metries that are restored, or partially restored, as the
temperature is increased through the transition region. In
this section we will examine a different quantity, the
spectrum of the light-quark Dirac operator, which is also
directly related to the violation of these symmetries. In the
first subsection, Sec. IV A, we review the basic formulas
relating the Dirac eigenvalue spectrum to other measures of
SUð2ÞL × SUð2ÞR and Uð1ÞA symmetry breaking in

FIG. 6 (color online). The two Uð1ÞA-violating susceptibility differences, χM̄S
π − χM̄S

δ and χM̄S
σ − χM̄S

η plotted as a function of
temperature for our three spatial volumes. As expected these quantities are very different below Tc. However, even for temperatures of
160 MeV and above these quantities differ from zero by many standard deviations, providing clear evidence for anomalous symmetry
breaking above Tc. The near equality of these two differences above Tc, which are related by SUð2ÞL × SUð2ÞR symmetry suggests that
the effects of explicit chiral symmetry breaking are much smaller (as expected) than this anomalous symmetry breaking.

1This assumed quadratic dependence on ~ml does not allow for
a possible combined effect of explicit chiral symmetry breaking
and the sort of nonanalytic behavior above Tc that we are trying
to study. We do not have sufficient numerical results to study such
effects which we view as “second order” since they require both
nonperturbative chiral breaking above Tc and ~ml ≠ 0.

QCD CHIRAL TRANSITION, Uð1ÞA SYMMETRY AND … PHYSICAL REVIEW D 89, 054514 (2014)

054514-13

UA(1) restoration? �! degeneration of nonet partners of

opposite parity e.g. ⇡ � a0(980)(�)

Bucho↵ et al, PRD89 (2014)
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a possible combined effect of explicit chiral symmetry breaking
and the sort of nonanalytic behavior above Tc that we are trying
to study. We do not have sufficient numerical results to study such
effects which we view as “second order” since they require both
nonperturbative chiral breaking above Tc and ~ml ≠ 0.
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results between 3 and 7 shown in Table IV.1 Numerical
evidence for the absence of explicit chiral symmetry
breaking is provided by the near equality of the two
differences χπ − χδ and χσ − χη which are related by
SUð2ÞL × SUð2ÞR symmetry, a symmetry also explicitly
broken by ml and mres.
Strong evidence for the small size of possible explicit

chiral symmetry breaking also comes from the results for
χπ − χδ computed for the strange quark. It is the explicit
breaking of chiral symmetry by the valence propagators
which can create a nonanomalous signal for χπ − χδ. As can
be seen from Table V the results for χπ − χδ are smaller for
the strange than for the light quark. If the strange quark
results are interpreted as coming entirely from explicit
chiral symmetry breaking, the corresponding effects for the
light quarks should be reduced by a factor of

ð ~ml= ~msÞ2 ≈ 0.008. At T ¼ 179 MeV, this approach gives
explicit chiral symmetry breaking for the light-quark
quantity χπ − χδ of order 4.26 · 0.008 ¼ 0.034. This is
larger than the 0.001 estimate above but only a fraction
of a percent of the signal. Thus, we interpret the results for
χπ − χδ and χσ − χη shown in Table IV and Fig. 6 as clear
evidence for the anomalous breaking of Uð1ÞA symmetry
for T > Tc.

IV. LOW-LYING EIGENVALUE SPECTRUM

In Sec. III we studied the QCD transition region by
examining the temperature dependence of vacuum expect-
ation values and correlation functions whose behavior is
closely related to the SUð2ÞL × SUð2ÞR and Uð1ÞA sym-
metries that are restored, or partially restored, as the
temperature is increased through the transition region. In
this section we will examine a different quantity, the
spectrum of the light-quark Dirac operator, which is also
directly related to the violation of these symmetries. In the
first subsection, Sec. IV A, we review the basic formulas
relating the Dirac eigenvalue spectrum to other measures of
SUð2ÞL × SUð2ÞR and Uð1ÞA symmetry breaking in

FIG. 6 (color online). The two Uð1ÞA-violating susceptibility differences, χM̄S
π − χM̄S

δ and χM̄S
σ − χM̄S

η plotted as a function of
temperature for our three spatial volumes. As expected these quantities are very different below Tc. However, even for temperatures of
160 MeV and above these quantities differ from zero by many standard deviations, providing clear evidence for anomalous symmetry
breaking above Tc. The near equality of these two differences above Tc, which are related by SUð2ÞL × SUð2ÞR symmetry suggests that
the effects of explicit chiral symmetry breaking are much smaller (as expected) than this anomalous symmetry breaking.

1This assumed quadratic dependence on ~ml does not allow for
a possible combined effect of explicit chiral symmetry breaking
and the sort of nonanalytic behavior above Tc that we are trying
to study. We do not have sufficient numerical results to study such
effects which we view as “second order” since they require both
nonperturbative chiral breaking above Tc and ~ml ≠ 0.
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Figure 9. Results for the screening masses in the di↵erent channels for scans C1 (left) and D1
(right). The screening masses are normalised to the asymptotic limit M1.

where A and � are additional fit parameters. The latter corresponds to the energy gap to

the next excited state. This fit typically works very well and we could include all points

starting with z = 6a for P and S channels and z = 8a for V and A channels, which we

use conventionally. In figure 8 we show examples for the e↵ective masses in the di↵erent

channels above and below T
C

, together with the results from the associated fits.

The results for the screening masses are shown in figure 9. At T/T
C

⇡ 0.7 the screening

masses show the expected splitting from the zero temperature meson masses [79]. While

the masses in the P and V channels initially remain constant, indicated by a slight decrease

of M/T , the screening masses in S and A channels decrease drastically in the approach to

T
C

. Around T/T
C

⇡ 0.9 all screening masses start to increase. In particular, the screening

masses in P and S channels are drastically enhanced. Around T
C

the screening masses in

the V and A channels are mostly degenerate and around 85 to 90% of the asymptotic 2⇡T

limit, independent of the quark mass in the scan. This is consistent with the findings in

simulations with staggered fermions [80, 81].

The screening masses in P and S channels move closer together and fluctuate strongly

around T
C

. For the P channel the screening masses are only around 40 to 50% of the

2⇡T limit for scan C1 with a pion mass of around 300 MeV and 35 to 40% for scan D1

with a pion mass around 200 MeV, indicating a quark mass dependence of the properties

of pseudoscalar (and scalar) states around T
C

. The screening mass in the S channel

is typically around 10% larger than M
P

. In the temperature interval covered by our

calculations above T
C

, all screening masses are below the asymptotic high temperature

limit. Note that weak-coupling calculations [84, 85] predict the asymptotic approach to

occur from above, implying that the screening masses must cross the value 2⇡T at a certain

temperature.

Our findings are in good agreement with the results for screening masses obtained

with staggered fermions [80, 81]. In simulations within the quenched approximation, finite

size e↵ects have been found to be significant up to aspect ratios of N
s

/N
t

= 4 [95, 96].
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the V and A channels are mostly degenerate and around 85 to 90% of the asymptotic 2⇡T

limit, independent of the quark mass in the scan. This is consistent with the findings in
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around T
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b ⌘ P b ! 1p vs 2p fns ! hq̄qi vs �P

Obc
P = P bSc ! 2p vs 3p ! ch.partners vs meson vertices

(e.g. �� � �⇡ ⇠ �⇡⇡, . . . )

Ob
S =  ̄�b ⌘ Sb ! hq̄qi vs �S for  sector b = 4, . . . , 7



Ward Identities: quark condensates vs P suscept. 
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�5,disc
O(4)⇠ 0 ) O(4)⇥ U(1)A pattern

) SU(2)A transforms (⌘s invariant) Pls ! h�⌘si = 0 by parity

Hence at exact chiral restoration
O(4)⇠ :

(e.g. two massless flavours @ hq̄qil = 0)
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323 ⇥ 8 lattice size.
m̂/ms = 0.088
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WI and Screening Masses 

Same lattice setup for masses  
(Cheng et al  EPJC’11) and  

condensates (PRD’08) 
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• < 5% deviations below Tc from predicted WI scaling

• �i subtracted condensates with two fit parameters to eliminate T = 0 lattice

divergences hq̄iqii ⇠ mi/a2 + . . .

• Rapid Tc increase due to Msc
⇡ ⇠ hq̄qi�1/2

l . Softer Msc
K ⇠ (hq̄qil + 2hs̄si)�1/2

(soft T -dep hs̄si). Even softer Msc
s̄s ⇠ hs̄si�1/2

(no light contrib.)

•  minimum from condensate di↵. (last two points not fitted)



 

Gasser, Gerber, Leutwyler, 1987, 1989 

Cabrera, Dobado, Fernández-Fraile, AGN, Llanes-Estrada, Peláez, Ruiz de Elvira, Torres-Andrés 2002- 

Low-energy realization: effective meson theories 

Karsch, Tawfik, Redlich 2003, Tawfik-Toublan 2005, Jankowski, Blaschke, Spalinski 2013 

• WI defined only formally in QCD, up to renormalization.

• E↵ective Theories needed below the transition to verify WI and
study partner degeneration.

• ChPT model-independent framework for ⇡, K, ⌘, ⌘0.

• HRG approach to include (free) heavier states (Tc reduction)

• ⇡⇡ scattering dominant interaction process.

• Unitarized ChPT (scattering) generates (thermal) resonances



 

Low-energy realization: effective meson theories 

* to account consistently for UA(1) anomaly and ⌘0

) WI verified in U(3) ChPT* to NNLO in � ⇠ 1/Nc ⇠ mq ⇠ T 2



 

Low-energy realization: effective meson theories 
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Low-energy realization: effective meson theories 

* to account consistently for UA(1) anomaly and ⌘0

) WI verified in U(3) ChPT* to NNLO in � ⇠ 1/Nc ⇠ mq ⇠ T 2
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! O(4)⇥ UA(1) in chiral limit
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�5,disc(T )

�5,disc(0)
!

hq̄qil (T )
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Low-energy realization: effective meson theories 

* to account consistently for UA(1) anomaly and ⌘0

) WI verified in U(3) ChPT* to NNLO in � ⇠ 1/Nc ⇠ mq ⇠ T 2

Di↵erences within ChPT
uncertainty in massive case.

! O(4)⇥ UA(1) in chiral limit

with
�5,disc(T )

�5,disc(0)
!

hq̄qil (T )
hq̄qil (0)
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2
ChPT Partial waves tIJ = tIJ2 + tIJ4 + . . .

σ(s) =

r
1−

4M2

s
=
pCM√
s
two-particle phase space

Unitarity → Im t(s) = σ(s)|t(s)|2 (s ≥ 4M 2) ⇒ Im t−1 = −σ

FINITE TEMPERATURE:

Thermal phase Space.
Bose net enhancement (1 + n)2 − n2

Unitarizing ChPT: scattering and resonances

A.Dobado, D.Fernández-Fraile, AGN, F.J.Llanes- 
Estrada, J.R.Peláez,E.Tomás-Herruzo, ’02 ’05 ‘07 

t4(s) → t4(s;T )

σ → σ
£
1 + 2nB(

√
s/2)

¤
≡ σT

[ ]
);()(

)();(
42

2 
2

Tstst
stTstU

−
= Exactly proven for large 

N*% anG chiral limits: 
S.Cortés� $*N� -.0orales 
��

Unitarizing scattering: resonances 

(IAM) 



The σ/f0(500) and chiral symmetry restoration  
Unitarized Scalar Susceptibility

χUS (T ) =
χChPTS (0)M2

S(0)

M2
S(T )

(assuming p = 0 pole not very diff. from sp)

Normalization to match T = 0 ChPT.
Compensates pole diff.

F Saturate the scalar correlator with the f0(500) thermal state:

δhq̄qiU(T,M) = B0T 2g(T/M)

δχUS = B
2
0h(T/M)

F Unitarized condensate from χU requires additional
scaling assumptions (holding in ChPT): δf (T ) = f (T ) − f (0)

x0 ¿ 1 matching point

g(x) = g(x0) +

Z x

x0

h(y)

y3
dy (x > x0)

g(x) = gChPT (x) (x ≤ x0)

�S / GS(p = 0) ⇠ 1

Re(⌃S)
⇠ 1

M2
S

sp = (Mp � i�p/2)
2 ! M2

S = M2
p � �2

p/4



The σ/f0(500) and chiral symmetry restoration  Results: ChPT & UChPT

Data from
Y.Aoki et al JHEP 09

x0 ' 0.1

F Improving of critical behaviour → χUS peak at Tc = 157 MeV
Tc ↓ and more abrupt χUS near chiral limit ⇒ Thermal f0(500) crucial!

F low-T χUS and hq̄qiU OK with ChPT

F S/P intersection near χUS peak

∑
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LEC fixed at T = 0:
Mp = 441 MeV

�p = 466 MeV

Not a fit!

Robust under

unit.method and

LEC uncert.



Unitarized susceptibility fits & HRG 
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A = 0.1± 0.01 fit param.

data above Tc not fitted



Unitarized susceptibility fits & HRG 
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Thermal f0(500) saturated fit

HRG fit (< 2 GeV)
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data above Tc not fitted

• HRG fit based on Jankowski et al (2013) HRG quark mass de-
pendence

• f0(500) saturated model accounts better for data around Tc



 

CONCLUSIONS 

? WI useful for chiral pattern and related partner degeneration

? Consistent with O(4)⇥ U(1)A for exact restoration.

�5,disc scaling governed by hq̄qil in phys.lim.

? WI scaling of meson screening masses consistent with lattice

? Thermal f0(500) relevant ! saturated �U
S OK with lattice data



BACKUP SLIDES 



Check of WI in lattice 

where in this equation we construct the quark bilinears JðfÞ5q
and πðfÞ from a single flavor of quark specified by f ¼ l or
s and include only connected graphs, in which the quark
fields are contracted between J5q and π. In these tables and
figures and those which follow, when a combination of
quantities that were computed separately are combined,
such asmlχlπ þ Δl

mp, we will use the jackknife method with
data that has been averaged over bins of 50 configurations
to compute the error on the combined quantity so that the
effects of statistical correlations between the quantities
being combined are included. However, for simplicity, if a
computed renormalization factor, factor of a expressed in
physical units or factor of mres appears, these factors
usually have smaller errors than the quantities they multiply
and their fluctuations will be ignored.
A second use of Eq. (29) is to provide a method to

compute a more physical result for Δl;s in a DWF
calculation. Since no chiral limit has been taken in the
continuum derivation of Eq. (29), it will hold equally well if
applied to either strange or light quarks. If we use the
resulting equations for Σl and Σs to determine the weighted
difference Δl;s we obtain

Δl;s ¼ mc
l ðχπl − χπsÞ; (33)

where we use the symbol χπs to represent the “pion”
susceptibility that results if the light-quark mass is replaced
by that of the strange quark and add the subscript l to the
usual pion susceptibility for clarity. From the perspective of
the continuum theory both sides of Eq. (33) provide an
equally good value for the subtracted chiral condensate.
Neither quantity contains a quadratic divergence and the
much smaller logarithmic divergences present on both sides
are equal. For a DWF theory with residual chiral symmetry
breaking this equation does not hold and the left-hand side

Δl;s contains an unphysical additive constant Oðmres=a2Þ.
However, the right-hand side is much better defined with no
1=a2 term. Thus, we can use the right-hand side of Eq. (33)
to provide a more physical result forΔl;s which will contain
only a small, unphysical piece of order mlm2

s lnðmsaÞ.
Thus, we can define an improved value for Δl;s:

~Δl;s ¼ ~mlðχπl − χπsÞ; (34)

which we will use to compare with spectral formulas and
with the results for Δl;s from other lattice fermion
formulations.

B. Chiral symmetry restoration

In this section we present and discuss our numerical
results for the chiral condensate and for the disconnected
chiral susceptibility as a function of temperature. Figure 2
shows the Monte Carlo time histories of the light-quark
chiral condensate for seven of the temperatures studied.
The time evolutions for the 323 × 8 ensembles are dis-
played in the left panel and those from 243 × 8 in the right.
The evolutions of the light-quark condensates from both
sets of ensembles appear to follow the same trend. For the
lower temperature region (T ≤ 168 MeV), the light-quark
condensate fluctuates around its average value. However, as
temperature grows higher, the fluctuations can better be
described as upward spikes added to an otherwise flat
base line.
This behavior is typically seen in finite-temperature

DWF calculations and arises because above Tc the main
contribution to the chiral condensate comes from isolated,
near-zero modes [24]. These modes become increasingly
infrequent as the temperature is increased but, when
present, produce a noisy, nonzero chiral condensate. The
noise results from the relatively small space-time extent of

FIG. 1 (color online). The left panel shows the light-quark chiral condensate, Σl, and the sum of mlχπ and the mixed π − J5q=2
susceptibility to which it should be equal according to the Ward identity in Eq. (31). Also shown is ðml þmresÞχπ ≡ ~mlχπ which would
equal Σl ifmres were the only effect of residual chiral symmetry breaking. The right panel shows the same quantities computed using the
strange instead of the light quark. Similar agreement between the right- and left-hand sides of Eq. (31) is found for the 243 and 163

volumes, as can be seen from Table II.

MICHAEL I. BUCHOFF et al. PHYSICAL REVIEW D 89, 054514 (2014)

054514-8

Bucho↵ et al, PRD89, 2014

? Both ⇡ and s̄s channel need compensating lattice current to re-

duce finite-size e↵ects

? Small deviations in s̄s channel compatible with anomaly suppres-

sion

? No results for K channel (so far) which would test hq̄qil + 2hs̄si
combination



 

Chiral Patterns and Partners from WI 

P⇡⇡(y)� Sll(y) = m̂

Z

T
dx hT �l(y)⇡(x)⇡(0)i

Pll(y)� S��(y) = m̂

Z

T
dx hT �(y)⇡(x)⌘l(0)i

Pls(y) =
1

3
m̂

Z

T
dx hT ⌘s(y)⇡(x)�(0)i

Sls(y) = �1

3
m̂

Z

T
dx hT �s(y)⇡(x)⇡(0)i

d

abc [PKK(y)� S(y)] = m̂

Z

T
dx

⌦
T K

b(y)c(x)⇡a(0)
↵

O(4) partners

2p vs 3p WI FOR CHIRAL PARTNERS

 



 

Chiral Patterns and Partners from WI 
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T
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⌦
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↵

O(4) partners

2p vs 3p WI FOR CHIRAL PARTNERS

 

�⇡⇡ vertex

! ⇡⇡ scattering I = J = 0



 

Chiral Patterns and Partners from WI 

2p vs 3p WI FOR CHIRAL PARTNERS

 

U(1)A partners

P⇡⇡(y)� S��(y) =

Z

T
dx hT ⇡(y)�(0)⌘̃(x)i

Pll(y)� Sll(y) =

Z

T
dx hT ⌘l(y)�l(0)⌘̃(x)i

Pls(y)� Sls(y) =

Z

T
dx hT ⌘l(y)�s(0)⌘̃(x)i

Pss(y)� Sss(y) =

Z

T
dx hT ⌘s(y)�s(0)⌘̃(x)i

PKK(y)� S(y) =

Z

T
dx hT K(y)(0)⌘̃(x)i

⌘̃(x) = m̂⌘l(x) +ms⌘s(x) +
1
2A(x) three sources of U(1)A breaking



Chiral Patterns and Partners from WI 
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Also testable in lattice

Data from Bucho↵ et al, PRD89, 2014



Subtracted Condensates have the right critical behavior in lattice,

avoiding T = 0 finite-size divergences hq̄iqii ⇠ mi/a2 + . . . :

WI and Lattice Screening Masses 

r31 hq̄qi
ref
l = 0.750

r31hs̄siref = 1.061

r1 ' 0.31 fm

�l(T ) =
hq̄qil (T )� hq̄qil (0) + hq̄qirefl

hq̄qirefl

�K(T ) =
hq̄qil (T )� hq̄qil (0) + 2 [hs̄si(T )� hs̄si(0)] + hq̄qirefl + hs̄siref

hq̄qirefl + hs̄siref

�s(T ) =
2 [hs̄si(T )� hs̄si(0)] + hs̄siref

hs̄siref

�(T ;T0) =
hq̄qil (T )� hq̄qil (0)� 2 [hs̄si(T )� hs̄si(0)] + hq̄qirefl � hs̄siref

hq̄qil (T0)� hq̄qil (0)� 2 [hs̄si(T0)� hs̄si(0)] + hq̄qirefl � hs̄siref

 



The σ/f0(500) and chiral symmetry restoration  

M2
S(T ) =M

2
p (T )− Γ

2
p(T )/4

scalar pole mass

Chiral restoring behaviour !

Pole position:

sp(T ) = [Mp(T )− iΓp(T )/2]
2

(2nd Riemann sheet)

LEC fixed at T = 0 comp.with PDG:

f0(500) :M
00
p = 441 MeV; Γ00p = 466 MeV

ρ(770 :M11
p = 756 MeV; Γ11p = 151 MeV



Look at correlators: S/P Susceptibilities

χP (T )δ
ab =

Z β

0

Z
d3~x hT (q̄γ5τaq) (x)

¡
q̄γ5τ

bq
¢
(0)i

χS(T ) = −
∂

∂m
hq̄qiT =

Z β

0

dτ

Z
d3~x

£
hT (q̄q)(x)(q̄q)(0)iT − hq̄qi2T

¤

B0 =M
2
π/2mq

from PCAC+GOR (T = 0)
or LO ChPT

Expected to be saturated by π and σ-like poles:

χP = 4B
2
0F

2
πGπ(p

2 = 0) ∼ 4B20
F 2π
M2

π

= −
hq̄qi
mq

χS = 4B
2
0F

2
πGσ(p

2 = 0) ∼
4B20F

2
π

M 2
σ

from LSB = 2B0Fπs(x)σ(x)

But no need to deal with a particle-like σ state.
⇒ suitable for ChPT (model independent) and UChPT

S/P susceptibilities at low energies 



Large-NGB NLSM at finite temperature (chiral limit) 
S.Cortés, AGN, J.Morales, PRD93 (2016) 036001 

A(p;T ) =

f(T ) =
1

1� T 2

12F 2

=
s

NF 2
f(T )

J(p;T )

=
s

NF 2

f(T )

1� s
2F 2 f(T )J(p;T )

• SN =
O(N + 1)

O(N)
formulation:

LNLSM =
1

2
gab(⇡)@µ⇡

a@µ⇡b; gab(⇡) = �ab +
1

NF 2

⇡a⇡b

1� ⇡2/NF 2

• Leading order scattering at finite T :



Parameter set Tc (MeV)
Grayer 92.33
Peláez 1 96.00
Peláez 2 129.07
IAM 118.23

S.Cortés, AGN, J.Morales, PRD93 (2016) 036001 

Large-NGB NLSM at finite temperature (chiral limit) 
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• Thermal Unitarity exact: ImtIJ(s;T ) = �T |tIJ(s;T )|2

• Renormalizable with T = 0 scheme ! two free parameters F, µ

• I = J = 0 phase shift and f0(500) thermal pole consistent with

data and 2nd order chiral symmetry restoration (chiral limit)


