Searching for New Physics with Flavor-Violating Observables

Wolfgang Altmannshofer

Rencontres de Physique de la Vallee d'Aoste La Thuile, Italy February 26 - March 3, 2012

Sensitivity to Short Distances

Example: CP Violation in Kaon mixing

► SM Amplitude is loop suppressed and CKM suppressed

Sensitivity to Short Distances

Example: CP Violation in Kaon mixing

► SM Amplitude is loop suppressed and CKM suppressed

▶ Generic NP amplitude is not necessarily suppressed

► CP Violation in Kaon Mixing can probe extremely high scales

$$\Lambda_{\mathsf{NP}} = \mathit{M}_{\mathsf{X}} \sim \mathit{M}_{\mathsf{W}} \frac{4\pi}{g^2} \frac{1}{|V_{td}V_{ts}^*|} \sim 10^4 \, \mathsf{TeV}$$

The New Physics Flavor Problem

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda=1~{\rm TeV}$)		Observables
	Re	${ m Im}$	Re	${ m Im}$	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	Δm_K ; ϵ_K
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	Δm_K ; ϵ_K
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1.1×10^{2}		7.6×10^{-5}		Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7×10^2		1.3×10^{-5}		Δm_{B_s}

Isidori, Nir, Perez '10

- ► Consider $\Delta F = 2$ dimension 6 operators $(c_{ij}/\Lambda^2)O_{ij}$
- ▶ a generic flavor structure $c_{ij} = O(1)$ requires a very high NP scale Λ
- ▶ NP at the natural TeV scale needs a highly non-generic flavor structure
- ▶ But: still lots of room for NP in many $\Delta F = 1$ processes and to some extent also in the B_s mixing phase

Some Promising Flavor Observables

Charm

- ► CP Violation in $D^0 \bar{D}^0$ mixing (LHCb, SuperB, Belle II)
- ▶ direct CP Violation in SCS D decays (LHCb, SuperB, Belle II)
- ▶ ..

Kaons

- \blacktriangleright $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (NA62, ORKA)
- \blacktriangleright $K_L \rightarrow \pi^0 \nu \bar{\nu}$ (K0TO, Project X)
- **>** ...

B Mesons

- ► CPV in B_s mixing (LHCb)
- \blacktriangleright $B_{s,d} \rightarrow \mu^+ \mu^-$ (LHCb, CMS)
- ► $B \to X_s \ell^+ \ell^-$ (SuperB, Belle II)
- ► $B \to K^{(*)} \ell^+ \ell^-$ (LHCb, SuperB, Belle II)
- ▶ $B \to K^{(*)} \nu \bar{\nu}$ (SuperB, Belle II)
- ► $B \to K^* \gamma$ (LHCb, SuperB, Belle II)
- ▶ $B \rightarrow \tau \nu$ (SuperB, Belle II)
- **>** ...

 $+ \cdots$

Some Promising Flavor Observables

Charm

- ► CP Violation in $D^0 \bar{D}^0$ mixing (LHCb, SuperB, Belle II)
- 5) direct CP Violation in SCS *D* decays (LHCb, SuperB, Belle II)
- ▶ ..

Kaons

- $ightharpoonup K^+ o \pi^+
 u \bar{
 u}$ (NA62, ORKA)
- \blacktriangleright $K_L \rightarrow \pi^0 \nu \bar{\nu}$ (K0TO, Project X)
- **>** ...

B Mesons

- 2) CPV in B_s mixing (LHCb)
- 3) $B_{s,d} o \mu^+ \mu^-$ (LHCb, CMS)
- ► $B \to X_s \ell^+ \ell^-$ (SuperB, Belle II)
- 4) $B \to K^{(*)} \ell^+ \ell^-$ (LHCb, SuperB, Belle II)
- ► $B \to K^{(*)} \nu \bar{\nu}$ (SuperB, Belle II)
- ▶ $B \to K^* \gamma$ (LHCb, SuperB, Belle II)
- 1) B o au
 u (SuperB, Belle II)
 - **▶** ...

 $+ \cdots$

 ${\it B}
ightarrow au
u$ and $\sin 2 \beta$

HFAG combination of data from BaBar and Belle

$$BR(B^+ \to \tau^+ \nu)_{\rm exp} = (1.64 \pm 0.34) \times 10^{-4}$$

SM prediction depends strongly on $|V_{ub}|$:

1. Use direct determination of $|V_{ub}|$ from semileptonic B decays

$$|V_{ub}| = (3.89 \pm 0.44) \times 10^{-3}$$
 (PDG)

$$BR(B^+ \to \tau^+ \nu)_{SM} = (1.04 \pm 0.25) \times 10^{-4}$$

Helicity suppressed tree level decay

$$BR(B^+ o au^+
u)_{
m SM} \propto f_{B^+}^2 |V_{ub}|^2$$

HFAG combination of data from BaBar and Belle

$$BR(B^+ \to \tau^+ \nu)_{\rm exp} = (1.64 \pm 0.34) \times 10^{-4}$$

SM prediction depends strongly on $|V_{ub}|$:

1. Use direct determination of $|V_{ub}|$ from semileptonic B decays

$$|V_{ub}| = (3.89 \pm 0.44) \times 10^{-3}$$
 (PDG)

$$BR(B^+ \to \tau^+ \nu)_{SM} = (1.04 \pm 0.25) \times 10^{-4}$$

2. Take $|V_{ub}|$ from a CKM fit

Determination by $\Delta \textit{M}_{\textit{d}}/\Delta \textit{M}_{\textrm{S}}$ and $\textit{S}_{\psi\textit{K}_{\textrm{S}}}$ gives

$$|V_{ub}| = (3.43 \pm 0.16) \times 10^{-3}$$

$$BR(B^+ \to \tau^+ \nu)_{SM} = (0.80 \pm 0.11) \times 10^{-4}$$

 $ightarrow \sim 3\sigma$ discrepancy!

Helicity suppressed tree level decay

$$BR(B^+ o au^+
u)_{\mathrm{SM}} \propto f_{B^+}^2 |V_{ub}|^2$$

HFAG combination of data from BaBar and Belle

$$BR(B^+ \to \tau^+ \nu)_{\rm exp} = (1.64 \pm 0.34) \times 10^{-4}$$

SM prediction depends strongly on $|V_{ub}|$:

1. Use direct determination of $|V_{ub}|$ from semileptonic B decays

$$|V_{ub}| = (3.89 \pm 0.44) \times 10^{-3}$$
 (PDG)

$$BR(B^+ \to \tau^+ \nu)_{SM} = (1.04 \pm 0.25) \times 10^{-4}$$

2. Take $|V_{ub}|$ from a CKM fit

Determination by $\Delta \textit{M}_{\textit{d}}/\Delta \textit{M}_{\textit{S}}$ and $\textit{S}_{\psi\textit{K}_{S}}$ gives

$$|V_{ub}| = (3.43 \pm 0.16) \times 10^{-3}$$

$$BR(B^+ \to \tau^+ \nu)_{SM} = (0.80 \pm 0.11) \times 10^{-4}$$

 $ightarrow \sim 3\sigma$ discrepancy!

Helicity suppressed tree level decay

$$BR(B^+ o au^+
u)_{\rm SM} \propto f_{B^+}^2 |V_{ub}|^2$$

1. Charged Higgs contributions to $B^+ \to \tau^+ \nu$

$$R_{B au
u} = rac{BR(B^+ o au^+
u)}{BR(B^+ o au^+
u)_{ ext{SM}}}$$

1. Charged Higgs contributions to $B^+ \to \tau^+ \nu$ \sim +100% New Physics effect to match the central values

$$R_{B au
u} = rac{BR(B^+ o au^+
u)}{BR(B^+ o au^+
u)_{ ext{SM}}}$$

- 1. Charged Higgs contributions to $B^+ \to \tau^+ \nu$ \sim +100% New Physics effect to match the central values
- ightarrow Discrepancy grows in a 2HDM of type II

$$R_{B au
u}^{II} = \left(1 - rac{m_{B^+}^2}{m_{H^+}^2} t_{eta}^2
ight)^2$$

→ Discrepancy can be explained in a 2HDM with Minimal Flavor Violation

$$R_{B au
u}^{\mathsf{MFV}} = \left| 1 - rac{m_{B^+}^2}{m_{H^+}^2} rac{(t_eta - \epsilon_b)(t_eta - \epsilon_ au)}{(1 + \epsilon_b t_eta)(1 + \epsilon_ au t_eta)}
ight|^2$$

(see e.g. Blankenburg, Isidori '11)

$$R_{B au
u} = rac{BR(B^+ o au^+
u)}{BR(B^+ o au^+
u)_{SM}}$$

- 1. Charged Higgs contributions to $B^+ \to \tau^+ \nu$ \sim +100% New Physics effect to match the central values
- $\,\,\,\,\,\,\,\,\,\,$ Discrepancy grows in a 2HDM of type II

$$R_{B au
u}^{II} = \left(1 - rac{m_{B^+}^2}{m_{H^+}^2} t_{eta}^2
ight)^2$$

→ Discrepancy can be explained in a 2HDM with Minimal Flavor Violation

$$R_{B au
u}^{\mathsf{MFV}} = \left| 1 - rac{m_{B^+}^2}{m_{H^+}^2} rac{(t_eta - \epsilon_b)(t_eta - \epsilon_ au)}{(1 + \epsilon_b t_eta)(1 + \epsilon_ au t_eta)}
ight|^2$$

(see e.g. Blankenburg, Isidori '11)

2. New Physics in B_d mixing?

$$S_{\psi K_S} = \sin(2\beta + \phi_d^{NP})$$

large nagative NP phase in the B_d mixing amplitude $\phi_d^{\rm NP} \simeq -20^\circ$ changes $\sin 2\beta$ by the right amount

$$R_{B au
u} = rac{BR(B^+ o au^+
u)}{BR(B^+ o au^+
u)_{SM}}$$

CP Violation in B_s Mixing

CPV Observables in B_s Mixing

CP violation in $b \rightarrow s$ transitions is predicted to be very small in the SM

$$eta_s \sim \text{Arg}(\textit{V}_{ts}) \simeq 1^\circ \;,\; \phi_s^{\text{SM}} \sim 0.2^\circ \quad o \quad \text{excellent probe of NP}$$

semileptonic asymmetry

$$\begin{aligned} \mathbf{a}_{\mathsf{SL}}^{\tilde{s}} &= \frac{\Gamma(\bar{B}_{\mathsf{S}} \to X\ell^{+}\nu) - \Gamma(B_{\mathsf{S}} \to X\ell^{-}\nu)}{\Gamma(\bar{B}_{\mathsf{S}} \to X\ell^{+}\nu) + \Gamma(B_{\mathsf{S}} \to X\ell^{-}\nu)} \\ &= \left| \frac{\Gamma_{12}^{\tilde{s}}}{M_{12}^{\tilde{s}}} \right| \sin(\phi_{s}^{\mathsf{SM}} + \phi_{s}^{\mathsf{NP}}) \end{aligned}$$

▶ time dependent CP asymmetry in decays to CP eigenstates $B_s \to f$ (e.g. $B_s \to \psi f_0$)

$$\begin{split} \mathbf{S}_f \sin(\Delta M_{s}t) &= \frac{\Gamma(\bar{B}_{s}(t) \to f) - \Gamma(B_{s}(t) \to f)}{\Gamma(\bar{B}_{s}(t) \to f) + \Gamma(B_{s}(t) \to f)} \\ \mathbf{S}_f &= \sin(2|\beta_{s}| - \phi_{s}^{NP}) \end{split}$$

Experimental Status

PRD 85, 032006 (2012), arXiv:1112.1726, arXiv:1112.3183 (see talks by Emilie Maurice and Hideki Miyake)

- ▶ in the past CDF and D0 had a slight preference for a large negative B_s mixing phase in $B_s \to \psi \phi$
- ▶ LHCb finds a SM like B_s mixing phase combination of the mixing phase determined from $B_s \rightarrow \psi \phi$ and $B_s \rightarrow \psi f_0$

$$\phi_s^{\text{LHCb}} = 0.03 \pm 0.16 \pm 0.07$$

Phys.Rev. D84 (2011) 052007

Experimental Status

PRD 85, 032006 (2012), arXiv:1112.1726, arXiv:1112.3183 (see talks by Emilie Maurice and Hideki Miyake)

- ▶ in the past CDF and D0 had a slight preference for a large negative B_s mixing phase in $B_s \to \psi \phi$
- ▶ LHCb finds a SM like B_s mixing phase combination of the mixing phase determined from $B_s \rightarrow \psi \phi$ and $B_s \rightarrow \psi f_0$

$$\phi_s^{\text{LHCb}} = 0.03 \pm 0.16 \pm 0.07$$

Phys.Rev. D84 (2011) 052007

► like sign dimuon charge asymmetry measured by D0

$$A_{\rm SL}^b = 0.59 \, a_{\rm SL}^d + 0.41 \, a_{\rm SL}^s = (-78.7 \pm 19.6) 10^{-4}$$

- ightharpoonup 3.9 σ discrepancy with SM prediction
- ▶ large NP phase in B_s mixing?

Combining data from

- ▶ time dependent CP asymmetry in $B_d \rightarrow \psi K_S$ from the B factories
- time dependent CP asymmetry in $B_{\rm S} \to \psi \phi$ from CDF and D0
- ▶ time dependent CP asymmetries in $B_s \rightarrow \psi \phi$ and $B_s \rightarrow \psi f_0$ from LHCb
- → still some room for a NP phase in B_s mixing
- → preference towards a non-zero negative NP phase in B_d mixing (from tensions in the UT fit)

Combining data from

- ▶ time dependent CP asymmetry in $B_d \rightarrow \psi K_s$ from the B factories
- time dependent CP asymmetry in $B_{\rm S} \to \psi \phi$ from CDF and D0
- ▶ time dependent CP asymmetries in $B_s \rightarrow \psi \phi$ and $B_s \rightarrow \psi f_0$ from LHCb
- \rightarrow still some room for a NP phase in B_s mixing
- → preference towards a non-zero negative NP phase in B_d mixing (from tensions in the UT fit)

Large like-sign dimuon charge asymmetry cannot be explained

assumptions:

- 1. no significant NP contributions to the tree level decays $B_d \to \psi K_{\rm S}, \, B_{\rm S} \to \psi \phi$
- no significant NP contributions to the absorptive parts of the mixing amplitudes Γ^{d,s}₁₂

Implication for Models with MFV

2 Higgs doublet models with Minimal Flavor Violation can contribute to B meson mixing at tree level

(Buras, Carlucci, Gori, Isidori '10; Buras, Isidori, Paradisi '10)

- 1) contributions proportional to Y_h^2
- \rightarrow universal shifts in the B_q mixing phases: $\phi_s^{\sf NP} = \phi_d^{\sf NP}$
- strongy suppressed if quartic couplings in the Higgs potential have "MSSM-like" structure
- are generically dominant for more general Higgs potentials
- 2) contributions proportional to $Y_b Y_s$ and $Y_b Y_d$
- ightarrow negligible small for B_d mixing: $\phi_d^{
 m NP} \ll \phi_s^{
 m NP}$
- ightarrow LHCb data on B_s mixing phase excludes non-standard phase in B_d mixing

Implication for Models with MFV

2 Higgs doublet models with Minimal Flavor Violation can contribute to B meson mixing at tree level (Buras, Carlucci, Gori, Isidori '10; Buras, Isidori, Paradisi '10)

 \bar{B}_q B_q B_q B_q B_q

- 1) contributions proportional to Y_h^2
- ightarrow universal shifts in the B_q mixing phases: $\phi_s^{\rm NP} = \phi_d^{\rm NP}$
- strongy suppressed if quartic couplings in the Higgs potential have "MSSM-like" structure
- are generically dominant for more general Higgs potentials
- 2) contributions proportional to $Y_b Y_s$ and $Y_b Y_d$
- ightarrow negligible small for B_d mixing: $\phi_d^{\sf NP} \ll \phi_s^{\sf NP}$
- \rightarrow LHCb data on B_s mixing phase excludes non-standard phase in B_d mixing

Ex: MSSM with MFV + dim 5 ops. (WA, Carena '11)

- b) and in the Superpotential (modify the MSSM Higgs potential)

$$B_{
m S}
ightarrow \mu^+ \mu^-$$
 and $B_{
m d}
ightarrow \mu^+ \mu^-$

► CDF observes an excess of $B_s \rightarrow \mu^+ \mu^-$ candidates (talk by Hideki Miyake)

$$BR(B_s \to \mu^+ \mu^-)_{CDF} = (1.3^{+0.9}_{-0.7}) \times 10^{-8}$$

 CMS and LHCb set upper limits.
 Strongest bound currently from CMS (CERN seminar yesterday)

$$BR(B_s \to \mu^+ \mu^-)_{CMS} < 7.7 \times 10^{-9} @ 95\% \text{ C.L.}$$

Main uncertainty in the SM prediction comes from the $B_{\rm S}$ decay constant $f_{B_{\rm S}}$

eliminate f_{Bs} by normalizing to ΔM_s
 (assumes ΔM_s NP free) (Buras '03)

$$BR(B_s \to \mu^+ \mu^-)_{SM} = (3.2 \pm 0.2) \times 10^{-9}$$

- strongly helicity suppressed in the SM
- ▶ induced by Z penguins and boxes

2. there has been remarkable progress on the lattice

$$f_{B_8} = (225 \pm 4) \text{MeV}$$
 (HPQCD collaboration '11)
 $\rightarrow BR(B_8 \rightarrow \mu^+\mu^-)_{\text{SM}} = (3.0 \pm 0.2) \times 10^{-9}$
 $f_{B_8} = (242.0 \pm 9.5) \text{MeV}$ (Fermilab lattice + MILC collaboration '11)
 $\rightarrow BR(B_8 \rightarrow \mu^+\mu^-)_{\text{SM}} = (3.5 \pm 0.3) \times 10^{-9}$

Probing New Physics with $B_{s,d} \rightarrow \mu^+ \mu^-$

- most prominent example of NP effects: Higgs penguins in the MSSM
- ▶ lift the helicity suppression
- for large tan β huge enhancement possible (orders of magnitude) even in models with MFV (Choudhury, Gaur '98; Babu, Kolda '99)
- many other NP effects are possible: modified Z penguins, flavor changing Z', ...

Probing New Physics with $B_{s,d} \rightarrow \mu^+ \mu^-$

- most prominent example of NP effects: Higgs penguins in the MSSM
- ▶ lift the helicity suppression
- for large tan β huge enhancement possible (orders of magnitude) even in models with MFV (Choudhury, Gaur '98; Babu, Kolda '99)
- many other NP effects are possible: modified Z penguins, flavor changing Z', ...

"Golden" MFV Relation

(Buras '03; Hurth, Isidori, Kamenik, Mescia '08)

$$\frac{\textit{BR}(\textit{B}_{\textit{S}} \rightarrow \mu^{+}\mu^{-})}{\textit{BR}(\textit{B}_{\textit{d}} \rightarrow \mu^{+}\mu^{-})} \simeq \frac{\textit{f}_{\textit{B}_{\textit{S}}}^{2}}{\textit{f}_{\textit{B}_{\textit{d}}}^{2}} \frac{\textit{T}_{\textit{B}_{\textit{S}}}}{|\textit{V}_{\textit{td}}|^{2}} \frac{|\textit{V}_{\textit{ts}}|^{2}}{|\textit{V}_{\textit{td}}|^{2}} \simeq 35$$

Relation holds in the SM and in all models where flavor violation is determined by the CKM matrix.

$$A(B_s o \mu^+ \mu^-) \propto \tan^3 \beta / M_A^2$$

Angular Observables in $B \rightarrow K^* \mu^+ \mu^-$

A Goldmine for New Physics Searches

 $dg^2 d \cos \theta_{K^*} d\theta_{\ell} d\phi$

- a plethora of observables can be extracted from the angular distributions (Lunghi, Matias '06; Egede et al '08,'10; Bobeth et al '08,'10,'11; Alok et al '10,'11; WA. Ball. Bharucha, Buras, Straub, Wick '08; Matias, Mescia, Ramon, Virto '12; ...)
- ▶ allow detailed insight in the structure of possible NP contributions

$$\begin{array}{lcl} C_7 m_b(\bar{s}_L(\sigma F)b_R) & , & C_9(\bar{s}_L\gamma_\mu b_L)(\bar{\mu}\gamma^\mu \mu) & , & C_{10}(\bar{s}_L\gamma_\mu b_L)(\bar{\mu}\gamma^\mu \gamma_5 \mu) \\ C_7' m_b(\bar{s}_R(\sigma F)b_L) & , & C_9'(\bar{s}_R\gamma_\mu b_R)(\bar{\mu}\gamma^\mu \mu) & , & C_{10}'(\bar{s}_R\gamma_\mu b_R)(\bar{\mu}\gamma^\mu \gamma_5 \mu) \end{array}$$

- ▶ possible issue: large theoretical uncertainties due to formfactors
- → normalizing the anglular distributions to the differential decay width cancels form factor uncertainties to a large extent
- ⇔ uncertainty in the overall normalization, but shape of the distribution is robust

 $dq^2 d \cos \theta_{K^*} d\theta_{\ell} d\phi$

Accessing Observables from the Angular Distribution

- One dimensional angular distributions give access to the well known observables
 F_L, the K* longitudinal polarization fraction, and
 A_{FB}, the forward-backward asymmetry
- ► Also the transversal asymmetry $S_3 = \frac{1}{2}A_T^{(2)}(1 F_L)$ and the CP asymmetry A_9 can be obtained from a 1-dim angular analysis

$$\begin{split} &\frac{d(\Gamma + \bar{\Gamma})}{dq^2 d \cos \theta_{K^*}} & \propto & 2 \emph{\textbf{F}}_L \cos^2 \theta_{K^*} + (1 - \emph{\textbf{F}}_L) \sin^2 \theta_{K^*} \\ &\frac{d(\Gamma - \bar{\Gamma})}{dq^2 d \cos \theta_\ell} & \propto & A_{FB} \cos \theta_\ell + \frac{3}{4} \emph{\textbf{F}}_L \sin^2 \theta_\ell + \frac{3}{8} (1 - \emph{\textbf{F}}_L) (1 + \cos^2 \theta_\ell) \\ &\frac{d(\Gamma + \bar{\Gamma})}{dq^2 d \phi} & \propto & 1 + \emph{\textbf{S}}_3 \cos 2\phi + \emph{\textbf{A}}_9 \sin 2\phi \end{split}$$

▶ The CP asymmetries A₇ and A₈ require a 2 or 3 dimensional angular analysis

$$\left[\int_0^1 - \int_{-1}^0 \right] d\cos\theta_{K^*} \; \frac{d(\Gamma - \bar{\Gamma})}{dq^2 d\phi d\cos\theta_{K^*}} \; \propto \quad S_5 \cos\phi + A_7 \sin\phi$$

$$\left[\int_0^1 - \int_{-1}^0 \right] d\cos\theta_\ell \; \left[\int_0^1 - \int_{-1}^0 \right] d\cos\theta_{K^*} \; \frac{d(\Gamma + \bar{\Gamma})}{dq^2 d\phi d\cos\theta_{K^*} d\cos\theta_\ell} \; \propto \quad S_4 \cos\phi + A_8 \sin\phi$$

Sensitivity to New Physics

- ► The transversal asymmetry $S_3 \propto A_T^{(2)}$ is sensitive to CP conserving RH currents
- ► The CP asymmetry

 A₉ is sensitive to

 CP violating RH currents
- ► The CP asymmetries A₇ and A₈ are sensitive to CP violating LH currents
- ► SM predictions of A_{7,8,9} and S₃ are strongly suppressed

Sensitivity to New Physics

- ► The transversal asymmetry $S_3 \propto A_T^{(2)}$ is sensitive to CP conserving RH currents
- ► The CP asymmetry

 A₉ is sensitive to

 CP violating RH currents
- ► The CP asymmetries A₇ and A₈ are sensitive to CP violating LH currents
- ► SM predictions of A_{7,8,9} and S₃ are strongly suppressed
- ▶ New Physics Examples
- Complex NP contribution to the left-handed magnetic operator s̄_L(σF)b_R

Sensitivity to New Physics

- ► The transversal asymmetry $S_3 \propto A_T^{(2)}$ is sensitive to CP conserving RH currents
- ► The CP asymmetry

 A₉ is sensitive to

 CP violating RH currents
- ► The CP asymmetries A₇ and A₈ are sensitive to CP violating LH currents
- ► SM predictions of A_{7,8,9} and S₃ are strongly suppressed
- ▶ New Physics Examples
- Complex NP contribution to the left-handed magnetic operator s̄_I (σF)b_R
- Complex NP contribution to the right-handed magnetic operator s̄_R(σF)b_I

Experimental Status

- ▶ BaBar, Belle, CDF and LHCb have results for A_{FB} and F_L
- ▶ hint for a non-standard A_{FB} at low q² by Belle is not confirmed by LHCb
- ► CDF presented first results on $A_T^{(2)} \propto S_3$ and $A_{im} = A_9$

arXiv:1108.0695 [hep-ex]

see also Descotes-Genon, Ghosh, Matias, Ramon '11, Bobeth, Hiller, van Dyk, Wacker '11

Data shows agreement with SM predictions and can be used to constrain New Physics contributions in a model independent way

see also Descotes-Genon, Ghosh, Matias, Ramon '11, Bobeth, Hiller, van Dyk, Wacker '11

Data shows agreement with SM predictions and can be used to constrain New Physics contributions in a model independent way

▶
$$BR(B \rightarrow X_s \gamma)$$

- ▶ $BR(B \rightarrow X_{s}\gamma)$
- ▶ $BR(B \to X_{s}\ell^{+}\ell^{-})$ (both low and high q^{2} region)

▶
$$BR(B \rightarrow X_s \gamma)$$

▶
$$BR(B \to X_s \ell^+ \ell^-)$$
 (both low and high q^2 region)

►
$$B \rightarrow K^* \mu^+ \mu^-$$
 at low q^2 (BR, A_{FB} and F_I)

▶
$$BR(B \rightarrow X_s \gamma)$$

▶
$$BR(B \to X_s \ell^+ \ell^-)$$
 (both low and high q^2 region)

▶ time dependent CP asymmetry in
$$B \to K^* \gamma$$

►
$$B \rightarrow K^* \mu^+ \mu^-$$
 at low q^2 (BR, A_{FB} and F_L)

▶
$$BR(B \rightarrow X_s \gamma)$$

▶
$$BR(B \to X_s \ell^+ \ell^-)$$
 (both low and high q^2 region)

►
$$B \rightarrow K^* \mu^+ \mu^-$$
 at low q^2 (BR, A_{FB} and F_L)

►
$$B \to K^* \mu^+ \mu^-$$
 at high q^2 (BR, A_{FB} and F_L)

Data shows agreement with SM predictions and can be used to constrain New Physics contributions in a model independent way

- ▶ $BR(B \rightarrow X_s \gamma)$
- ► $BR(B \to X_s \ell^+ \ell^-)$ (both low and high q^2 region)
- time dependent CP asymmetry in B → K* γ

►
$$B \rightarrow K^* \mu^+ \mu^-$$
 at low q^2 (BR, A_{FB} and F_L)

► $B \rightarrow K^* \mu^+ \mu^-$ at high q^2 (BR, A_{FB} and F_L)

Much more parameter space allowed, if more than 2 Wilson coefficients are considered simultaneously

Sc	$BR(B_\mathtt{S} o \mu^+ \mu^-)$	$BR(B_{\mathtt{S}} o au^+ au^-)$	$ \langle A_7 \rangle_{[1,6]} $	$ \langle A_8 \rangle_{[1,6]} $	$ \langle A_9 \rangle_{[1,6]} $	$\langle S_3 \rangle_{[1,6]}$
1	$[1.0, 5.6] \times 10^{-9}$	$[2, 12] \times 10^{-7}$	0	0	0	0
2	$[1.0, 5.4] \times 10^{-9}$	$[2, 12] \times 10^{-7}$	< 31%	< 15%	0	0
3	$<5.6\times10^{-9}$	$<12\times10^{-7}$	< 22%	< 17%	< 12%	[-6%, 15%]
4	$< 5.5 \times 10^{-9}$	$<12\times10^{-7}$	< 34%	< 20%	< 15%	[-11%, 18%]
5	$[1.4, 5.5] \times 10^{-9}$	$[3, 12] \times 10^{-7}$	< 27%	< 14%	0	0
6	$<3.8\times10^{-9}$	$< 8 \times 10^{-7}$	< 22%	< 18%	< 12%	[-3%, 18%]
7	$< 4.1 \times 10^{-9}$	$< 9 \times 10^{-7}$	< 28%	< 21%	< 13%	[-7%, 19%]

- 1: real LH currents (C_i real, $C'_i = 0$)
- 2: complex LH currents (C_i complex, $C'_i = 0$)
- 3: complex RH currents ($C_i = 0$, C'_i complex)
- 4: generic NP (C_i and C'_i complex)

- 5: LH modified Z couplings + complex C₇
- 6: RH modified Z couplings + complex C_7'
- 7: generic modified Z couplings + complex C_7 , C_7'

(ranges for $BR(B_s \to \ell^+\ell^-)$ assume absence of scalar contributions)

- ▶ in the presence of non-standard CP violation, $\langle A_7 \rangle$ and $\langle A_8 \rangle$ can be as large as $\pm 35\%$ and $\pm 20\%$
- ▶ in the presence of RH currents, $\langle A_9 \rangle$ and $\langle S_3 \rangle$ can be as large as $\pm 15\%$

Direct CP Violation in $D \rightarrow K^+K^-$ and $D \rightarrow \pi^+\pi^-$

(see also talk by Jernej Kamenik)

New Physics in Charm Decays?

Direct CPV in singly Cabibbo suppressed D^0 decays ($D \rightarrow K^+K^-$ and $D \rightarrow \pi^+\pi^-$) is strongly suppressed in the SM (interference of tree diagram with highly suppressed gluon penguin)

$$A_{\text{CP}}^{\text{dir}}(K^+K^-) \sim \frac{V_{ub}V_{cb}}{V_{us}V_{cs}} \frac{\alpha_s}{\pi} \sim 10^{-4}$$

→ considered excellent probe of NP (Grossman, Kagan, Nir '06)

LHCb evidence for charm CP violation (3.5σ) (arXiv:1112.0938 [hep-ex], talk by Emilie Maurice)

$$\Delta A_{CP} = (-0.82 \pm 0.21 \pm 0.11)\%$$

- ▶ ΔA_{CP} is to a good approx. the difference of the direct CP asymmetries in $D \to K^+K^-$ and $D \to \pi^+\pi^-$
- Precise SM prediction is difficult due to large uncertainties in hadronic matrix elements.
- ▶ Recent SM predictions (post-dictions?) give values

$$\Delta A_{CP} \simeq -0.4\%$$
 Brod, Kagan, Zupan '11 $\Delta A_{CP} \simeq -0.25\%$ Cheng, Chiang '12

 SM explanation of the LHCb measurement cannot be fully excluded

Possible New Physics Interpretations

 NP effects in loop induced flavor changing chromomagnetic operators

$$m_c \bar{c}_R(\sigma G) u_L$$

- \blacktriangleright can give chirally enhanced contributions to ΔA_{CP}
- are least constrained by other flavor data (Isidori, Kamenik, Ligeti, Perez '11)
- can arise in SUSY models with non-standard sources of flavor violaton (Giudice, Isidori, Paradisi '12)
- 2) Tree level induced 4 fermion operators

$$(\bar{c}\Gamma_1 u)(\bar{q}\Gamma_2 q)$$

- ▶ are typically strongly constrained by $D^0 \bar{D}^0$ mixing
- ► Constraints become stronger for heavier NP particles!
- → Most tree level explanations (Z's, heavy gluons, diquarks, ...) do not work

Few can be made viable in corners of parameter space (WA, Primulando, Yu, Yu '12)

Possible New Physics Interpretations

1) NP effects in loop induced flavor changing chromomagnetic operators

$$m_c \bar{c}_R(\sigma G) u_L$$

- \blacktriangleright can give chirally enhanced contributions to ΔA_{CP}
- are least constrained by other flavor data (Isidori, Kamenik, Ligeti, Perez '11)
- can arise in SUSY models with non-standard sources of flavor violaton (Giudice, Isidori, Paradisi '12)
- 2) Tree level induced 4 fermion operators

$$(\bar{c}\Gamma_1 u)(\bar{q}\Gamma_2 q)$$

- ▶ are typically strongly constrained by $D^0 \bar{D}^0$ mixing
- ► Constraints become stronger for heavier NP particles!
- → Most tree level explanations (Z's, heavy gluons, diquarks, ...) do not work

Few can be made viable in corners of parameter space (WA, Primulando, Yu, Yu '12)

Example:

Scalar octet with small flavor changing $c_R \rightarrow u_L$ coupling

- $\rightarrow \epsilon'/\epsilon$ suppressed by 1st generation guark masses
- \rightarrow Constraint from $D^0 \bar{D}^0$ mixing can be avoided for small masses
- → strong constraints from colliders (4 jet final states)

Summary

Low energy flavor observables probe New Physics at the TeV scale and beyond

- ▶ Previous hints of some non-standard effects (large B_s mixing phase at CDF and D0, no zero-crossing of A_{FB} in $B \to K^* \mu^+ \mu^-$ at Belle) have not been confirmed by LHCb
- ▶ There are still many observables where large New Physics effect can show up $(B_{s,d} \to \mu^+ \mu^-, CP$ asymmetries in $B \to K^* \mu^+ \mu^-, ...)$
- ► LHCb (+CDF) evidence for charm CP violation might be a signal of New Physics
- \rightarrow Looking forward to upcoming results on flavor observables!

Buona Pesca!

