

The CUORE experiment at LNGS

Sergio Di Domizio Università di Genova and INFN

Neutrinoless double beta decay

Decay: allowed in some even-even nuclei **Signature:** 2 electrons with fixed sum energy in the 2 – 5 MeV region **Implications:** $\Delta L=2$, Majorana neutrinos

Faint peak

- Large source mass
- Low background
- Good energy resolution

Never observed to date

Current 0vDBD half-life lower limits are in the range $10^{22} - 10^{26}$ y

Light majorana neutrino exchange

assumptions must be made on the decay mechanism

- An array of 988 TeO₂ bolometers operated at 10 mK
- Arranged in 19 towers
- Will search for 0vDBD of Te-130 (Q = 2527.5 keV)
- Mass: 742 kg of TeO₂ (206 kg of ¹³⁰Te)
- Background goal: 0.01 counts/(keV·kg·y)
- Energy resolution goal: 5 keV FWHM

Built with few selected ultra-clean low-radioactivity materials

Located underground in the hall A of Laboratori Nazionali del Gran Sasso (3600 m w.e. overburden)

Adv. High En. Phys. 2015 (2015), 879871

- An array of 988 TeO₂ bolometers operated at 10 mK
- Arranged in 19 towers
- Will search for 0ν DBD of Te-130 (Q = 2527.5 keV)
- Mass: 742 kg of TeO₂ (206 kg of ¹³⁰Te)
- Background goal: 0.01 counts/(keV·kg·y)
- Energy resolution goal: 5 keV FWHM

CUORE sensitivity in 5 y $S^{0\nu}(^{130}Te) = 9.5 \times 10^{25} \text{ y} (90\% \text{ CL})$ translates into m_{$\beta\beta$} < 50 – 130 meV

$$S^{0\nu} \propto \eta \sqrt{\frac{M \cdot t}{b \cdot \Delta E}}$$

η: isotopic abundance
M: detector mass
t: measurement time
b: background index
ΔΕ: energy resolution

Adv. High En. Phys. 2015 (2015), 879871

Measure the temperature rise of the absorber crystal: Δ

$$\Delta T = \frac{E}{C}$$

5s

ΔR/ΔE ~ 3 MΩ/MeV

Pilot experiment: CUORE-0

- A single CUORE-like bolometer tower
- 52 crystals, 11.3 kg of 130Te
- Took data from 2013 to 2015 at LNGS
- Proved that the target parameters for CUORE are within reach
 - Energy resolution: 5 keV FWHM at 2.6 MeV
 - Background induced by α particles: 0.016 ± 0.001 counts/(keV·kg·y)

 $T_{1/2} (0v) > 4.0 \times 10^{24} \text{ y @90\%C.L.}$ (combined with Cuoricino)

Half-life limit: Phys. Rev. Lett. 115 (2015) 102502 Analysis paper: Phys. Rev. C 93 (2016) 045503 2vDBD measurement: Eur. Phys. J. C (2017) 77:13 Detector description: JINST 11 (2016) P07009

Consisted of 3 steps 1. Gluing

Semi-automatic absorber-sensor coupling system ➤ NTD sensors

> Joule heaters for thermal gain calibration

All operations performed in glove boxes to avoid radon recontamination

- Consisted of 3 steps
- 1. Gluing
- 2. Tower assembly

- Copper support structure
- Teflon supports
- Crystals
- \succ tapes for signal readout

All operations performed in glove boxes to avoid radon recontamination

- Consisted of 3 steps
- 1. Gluing
- 2. Tower assembly
- 3. Sensor bonding

All operations performed in glove boxes to avoid radon recontamination

Tower construction completed in June 2014

Then towers were stored in nitrogen atmosphere, waiting to be installed in the cryostat

- Custom cryogen-free dilution refrigerator
 - ~1 ton of detectors at 10mK
 - ~20 tons cooled below room temperature
 - Multi-stage suspension system: mechanically decouple the detectors from the cryostat
- Commissioning completed in Mar 2016
 - base temperature: 6.3 mK
 - Long term stability demonstrated

- 12 Thoriated tungsten source strings
- 6 strings deployed between CUORE towers to ensure uniform illumination
- Strings lowered and cooled to 10mK at each calibration cycle, then warmed up at room temperature after calibration

NIM A 844 (2017), 32–44

- Towers installed in August 2016
- 1 tower/day
- First and only time when the towers were exposed to air with reduced radon level

- Cryostat closed in fall 2016
- Cool down started in December 2016
- Base temperature reached in Jan 2017: 8 mK

CUORE operation has started early this year

First CUORE pulse observed on Jan 27 2017

A lot of activities in the last months

- Electronics and DAQ debugging
- Noise and vibrations optimization
- Working point measurements at different temperatures
- External lead shield deployment
- Optimization of trigger thresholds

- CUORE is a ton-scale bolometer array searching for neutrinoless double-beta decay in Te-130
- The detector installation completed successfully in 2016
- The experiment reached base temperature in early 2017
- Detector operation has started
- Physics data to come soon!

