
Event Processing
Frameworks

Peter Elmer
Princeton University

SuperB Computing R&D Workshop
05 July, 2011

2SuperB Computing R&D WorkshopP. Elmer 05 July, 2011

Software Frameworks

In this talk I'm going to focus on the “Event Processing Framework”
and a few of the important services/associated-libraries

See Pere's talk last year for a more general description of frameworks
within the typical HEP software stack

3SuperB Computing R&D WorkshopP. Elmer 05 July, 2011

Event Processing Framework

● Basic idea: we don't have one “application”, but in fact
many applications.

● The generic terms “Simulation”, “Reconstruction”,
“Skimming” and “Analysis” cover a plurality of
possibilities

● Individual collaborators may want to run code with
different configurations or mix and match code from
others with their own

4SuperB Computing R&D WorkshopP. Elmer 05 July, 2011

Very Basic Picture
Basic architectural ideas:
 1) Separate the problem conceptually into “data” and algorithms
 operating on that data (“Event bus model”, “Whiteboard
 Model”)
 2) Those using the application write “modules” (“algorithms”)
 which can use individual data products to produce new
 event data products, make decisions (produce histos, etc.)
 The event data model is also extensible with new event data types
The (event-processing) “Framework” is responsible for getting data into and
out of the “event bus” and for running a series of “modules” in an event loop:

5SuperB Computing R&D WorkshopP. Elmer 05 July, 2011

Advanced Features
In practice event processing frameworks provide a number of other features:
 1) Dynamic configuration via a control script language (e.g. TCL, Python)
 2) Application building not only by “modules”, but also by groups of
 modules (“sequences”, “paths”)
 3) Multiple output modules (and at times multiple inputs), filtering choices
 to stop processing or writing to an output. Algorithmic code is
 independent of the specifics of how data is read or written.
 4) Encapsulation, interface standardization and eased interoperability
 with “other frameworks” (e.g. generators, Geant4, etc.)
 5) Various internal services (see later slide)

6SuperB Computing R&D WorkshopP. Elmer 05 July, 2011

Basic interface to override

(CMS Example)

7SuperB Computing R&D WorkshopP. Elmer 05 July, 2011

CMS “Analyzer” modules

8SuperB Computing R&D WorkshopP. Elmer 05 July, 2011

CMS “Producer” modules

9SuperB Computing R&D WorkshopP. Elmer 05 July, 2011

Services
● In addition to the “data/algorithm/event-loop” aspects,

the experiment frameworks usually include a number
of services:

– Access to calibrations (varying with event being
processed)

– Access to geometry descriptions (roughly static, except
perhaps across long shutdowns), magnetic field

– Storing of histograms

– Random number service

– etc.

10SuperB Computing R&D WorkshopP. Elmer 05 July, 2011

Resource Management
This type of “Event Processing Framework” implements implicitly
a CPU “resource management” strategy, namely “keep a single core busy
100% by serially running modules, one event after another.

Overall resources are kept occupied by starting one instance of such
an application per core and exploiting event-level parallelism. (Sometimes
more than one, to the extent that the applications fail to keep the cores
occupied.) This part of the resource management is managed by site/grid
“workload/job/queue management” systems.

Given that this is how the frameworks work, this is the resource utilization
strategy that has been used in the first part of the multicore era

11SuperB Computing R&D WorkshopP. Elmer 05 July, 2011

Future resource management
● It is likely that optimum use of future processors can't be easily

accomplished by this very simple strategy.

● The natural place to put in more sophisticated (and perhaps fine-
grained) resource management is within the experiments event
processing frameworks.

● Support for this must come from the underlying frameworks
and/or libraries.

● This of course implies additional expectations on any individual
“algorithms/modules”

● In addition data structures will need to be organized to support
efficient calculation (i.e. no more freewheeling OO ad-hoc data
classes in computationally intensive code)

12SuperB Computing R&D WorkshopP. Elmer 05 July, 2011

Types of parallelism
● Event level parallelism
● “module level” parallelism
● Algorithmic fine grained (openmp-like) parallelism
● Data (opencl-like) parallelism

● Parallelism at all levels will need to be made explicit
and exposed at some level to the Framework for
resource management

● Synchronization rather than inter-communication is also
a problem

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

