

Thermal Effects in aLIGO

Chris Mueller

Outline

Intro to SIS

TCS

Model

Ring Heate Power

IFO Operation with RH

CO₂ Correction

The Future

Modeling Thermal Effects in Advanced LIGO with SIS.

Chris Mueller

University of Florida www.phys.ufl.edu/~cmueller

GWADW 2011 - 27 May, 2011

Outline

3

Thermal Effects in aLIGO Chris Mueller

- An Introduction to the Static Interferometer Simulator
- 2 The Advanced LIGO TCS System

Description of the FEM Model

- Outline

5 Operation of the Interferometer With and Without Ring Heaters

4 Determining the Ideal Ring Heater Correction for Different

6 What About CO₂ Correction?

IFO Power Levels

- 7 Conclusions and Future Work

An Introduction to the Static Interferometer Simulator

Thermal Effects in aLIGO

Chris Mueller

Outline

Intro to SIS

TCS

Model

Ring Heate Power

IFO Operation with RH

CO₂ Correction

- Written by Hiro Yamamoto
- Can presently be used to simulate FP cavities as well as two coupled cavities.
- Workflow:

Thermal Effects in aLIGO

Chris Mueller

Outline

Intro to SIS

тсѕ

Model

Ring Heate Power

IFO Operation with RH

CO₂ Correction

- Ring heaters correct thermoelastic expansion of the test mass surfaces.
- CO₂ laser projectors acting on compensation plates correct for the leftover thermal lens.
- The CO₂ system is essentially uncoupled from the ring heater system.

Thermal Effects in aLIGO

Chris Mueller

Outline

Intro to SIS

TCS

Model

Ring Heate Power

IFO Operation with RH

CO₂ Correction

- Ring heaters correct thermoelastic expansion of the test mass surfaces.
- CO₂ laser projectors acting on compensation plates correct for the leftover thermal lens.
- The CO₂ system is essentially uncoupled from the ring heater system.

Thermal Effects in aLIGO

Chris Mueller

Outline

Intro to SIS

тсѕ

Model

Ring Heate Power

IFO Operation with RH

CO₂ Correction

- Ring heaters correct thermoelastic expansion of the test mass surfaces.
- CO₂ laser projectors acting on compensation plates correct for the leftover thermal lens.
- The CO₂ system is essentially uncoupled from the ring heater system.

Thermal Effects in aLIGO

Chris Mueller

Outline

Intro to SIS

TCS

Model

Ring Heate Power

IFO Operation with RH

CO₂ Correction

- Ring heaters correct thermoelastic expansion of the test mass surfaces.
- CO₂ laser projectors acting on compensation plates correct for the leftover thermal lens.
- The CO₂ system is essentially uncoupled from the ring heater system.

Thermal Effects in aLIGO

Chris Mueller

Outline

Intro to SIS

TCS

Model

Ring Heate Power

IFO Operation with RH

CO₂ Correction

- Ring heaters correct thermoelastic expansion of the test mass surfaces.
- CO₂ laser projectors acting on compensation plates correct for the leftover thermal lens.
- The CO₂ system is essentially uncoupled from the ring heater system.

FEM Model Description

Thermal Effects in aLIGO

Chris Mueller

Outline

Intro to SI

TCS

Model

Ring Heate Power

IFO Operation with RH

CO₂ Correction

- Simplifications
 - Flat surfaces for suspension wires are neglected.
 - Residual gas effects are neglected.
 - Test masses are not wedged.
 - Ring heater is treated as a heat source applied directly to the optic.
 - The substrate absorption of the ITM is set at its worst case value of 3 ppm/cm.

LIGO

Needed Ring Heater Power at Full IFO Power

Model

Ring Heater Power

IFO Operation with RH

CO₂ Correction

The Future

Chris Mueller

GWADW 27 May, 2011

Required Ring Heater Power at Other IFO Power Levels

Thermal Effects in aLIGO

- Chris Mueller
- Outline
- Intro to SIS
- TCS
- Model

Ring Heater Power

- IFO Operation with RH
- CO₂ Correction
- The Future

 Sweeping the ring heater power similarly at other IFO power levels, we find that the required ring heater power is very linear in the arm cavity power;

$$P_{RH} = 1.05 \times 10^{-5} P_{arm} - 0.05 W.$$
 (1)

Note that the simulations were only run for equal amounts of ring heater power on both test masses, so this should be treated as a nominal value.

Simulation Setup

Thermal Effects in aLIGO

- Chris Mueller
- Outline
- Intro to SIS
- TCS
- Model
- Ring Heater Power

IFO Operation with RH

CO₂ Correction

- We treat the power recycling cavity coupled to the x arm of the interferometer taking into account the beamsplitter.
- The input beam is fixed at its cold state IFO value.
- Deformation and phase maps are generated using the FEM model and imported directly into SIS.
- Simulation was run once for an interferometer without any thermal compensation and once for an interferometer with ring heaters but no CO₂.
- Both the test mass curvatures and the integrated phase through the CP and ITM is included.

LIGO

Thermal

IFO Simulation Results

with RH

CO_2 Model

Thermal Effects in aLIGO

Chris Mueller

Outline

Intro to SI

TCS

Model

Ring Heate Power

IFO Operation with RH

 $\begin{array}{c} \mathsf{CO}_2 \\ \mathsf{Correction} \end{array}$

The Future

The CO₂ beam was naively modeled as a step function of radius, i.e.

$$150\frac{\mathsf{W}}{\mathsf{m}^2} * \Theta\left(r - \frac{3}{2}\omega_{ITM}\right). \tag{2}$$

 Varying the parameters while looking for a reasonably flat phase profile gives the above result.

LIGO

CO₂ Results

Thermal Effects in aLIGO Chris Mueller

Outline

Intro to S

TCS

Model

Ring Heate Power

IFO Operation with RH

Conclusions and Future Work

Thermal Effects in aLIGO

Chris Mueller

Outline

Intro to SIS

TCS

Model

Ring Heate Power

IFO Operation with RH

CO₂ Correction

The Future

Conclusions

- TCS will be invaluable to reaching Advanced LIGO's design goals.
- In particular, the CO_2 system will be necessary.
- Future Work
 - More realistic model of ITM and ETM (underway).
 - Compare FEM models to experiment (underway).
 - Allow for different ring heater powers.
 - More realistic CO₂ model.
 - How do these effects depend on substrate absorption?
 - Include measured ring heater profile in FEM models.
 - Development and modeling of TCS error signals.
 - Could adaptive mode matching help out?
 - Distinguish between carrier and sidebands in the PRC.