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Introduction

The amplitude of γ∗ γ∗ → P, (P = π0, η, η′, ηc,) contains only one form factor:

⟨γ∗(q1)γ∗(q2)|P(p)⟩ = iϵε1ε2q1q2FPγγ(q2
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2).
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QCD factorization theorem predicts at asymptotically large spacelike momentum transfers
q2

1 = −Q2
1 < 0, q2

2 = −Q2
2 < 0:

FPγγ(Q2
1,Q

2
2)→ 2e2

c

1∫
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dξϕass
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Q2
1ξ + Q2

2(1 − ξ)
, ϕass

P (ξ) = 6 fPξ(1 − ξ),
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Introduce Q2 ≡ Q2
2, 0 ≤ β ≡ Q2

1/Q
2
2 ≤ 1 (Q2

2 is the larger virtuality):

FPγγ(Q2
1,Q

2
2) =

6e2
c fP

Q2 I(β), I(β) =
1 + 2β log β − β2

(1 − β)3 , I(0) = 1, I(1) = 1/3.

Experimentally relevant kinematics is Q2
1 ≃ 0 and Q2

2 = Q2 large.

For the pion
Q2Fπγ(Q2)→

√
2 fπ fπ = 0.130 GeV.

Similar scaling relations emerge for η and η′ after taking into account the mixing effects.
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The η and η′ data is not in contradiction with saturation Q2F(Q2) ∼ const
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The BaBar pion form factor seems more compatible with Q2Fπγ(Q2) ∼ log(Q2).
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QCD sum rule in LD limit

The basic object is the 3-point function ⟨AVV⟩ = ⟨0|T ( j5µ jα jβ)|0⟩,
j5µ =

1√
2

(
ūγµγ5u − d̄γµγ5d

)
; jα = 2

3ūγαu − 1
3d̄γαd; j5 = 1√

2

(
ūγ5u − d̄γ5d

)
;

5
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The amplitude has the general decomposition (p = q1 + q2):

Tµαβ(p|q1, q2) = pµϵαβq1q2iF − (q2
1ϵµαβq2 − q1αϵµq1βq2)iF1 − (q2

2ϵµβαq1 − q2βϵµq2αq1)iF2.

In the language of hadron intermediate states, the pseudoscalar contributes to the structure ∼ pµ:

Tµαβ(p|q1, q2) ∼
pµ

m2
P − p2

iϵαβq1q2 fPFPγγ(q2
1, q

2
2) + . . .

Thus, the form factor F(p2, q2
1, q

2
2) contains the pseudoscalar contribution.
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Consider also the amplitude induced by j5:

⟨γ(q1)γ(q2)| j5|0⟩ = −ϵαβq1q2ε
α
1ε
β
2F5(q2

1, q
2
2, p

2).

The two-photon amplitude of the divergence of the axial current

⟨γ(q1)γ(q2)|∂µ j5µ|0⟩ = −ϵαβq1q2ε
α
1ε
β
2(p2F − q2

1F1 − q2
2F2).

For the form factors Fi one can write spectral representation in p2:

Fi(p2, q2
1, q

2
2) =

1
π

∞∫
4m2

ds
s − p2 ∆i(s, q2

1, q
2
2).

The spectral densities ∆i(s, q2
1, q

2
2) obey the classical equation of motion

s∆(s, q2
1, q

2
2) − q2

1 ∆1(s, q2
1, q

2
2) − q2

2 ∆2(s, q2
1, q

2
2) = 2m∆5(s, q2

1, q
2
2).

The form factors then satisfy

p2F(p2, q2
1, q

2
2) − q2

1F1(p2, q2
1, q

2
2) − q2

2F2(p2, q2
1, q

2
2) = 2m F5(p2, q2

1, q
2
2) − 1
π

∞∫
4m2

ds∆(s, q2
1, q

2
2|m).
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In pQCD, one obtains ∆(s, q2
1, q

2
2|m) as an expansion

∆(s, q2
1, q

2
2|m) = ∆(0)

QCD(s, q2
1, q

2
2|m) +

αs

π
∆

(1)
QCD(s, q2

1, q
2
2|m) + O(α2

s).

The integral
∞∫

4m2

ds∆(0)
QCD(s, q2

1, q
2
2|m) =

1
2π
,

independently of the values of m and q2
1,2 and represents the axial anomaly.

The exact relation (no radiative corrections on the r.h.s., Adler-Bardeen theorem)

∞∫
4m2

ds∆(s, q2
1, q

2
2|m) = 1

2π.

In the hadron language,

∆(s, q2
1, q

2
2|m) = π fπFπγγ(q2

1, q
2
2)δ(s − m2

P) + hadron continuum
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A remarkable relation emerges for both real photons and massless fermion:

p2F(p2, q2
1, q

2
2) − q2

1F1(p2, q2
1, q

2
2) − q2

2F2(p2, q2
1, q

2
2) = 2m F5(p2, q2

1, q
2
2) − 1

2π2

F(p2, 0, 0) = − 1
2π2p2 (exactly!)

F(p2, 0, 0) = −
fπFπγγ(0, 0)

p2 + excited states

In the chiral limit and for both real photons remarkable quark- hadron duality relation :

one HtriangleLdiagram ® one hadron state

The anomaly should be reproduced by confined bound states of the theory leading to the exact
anomaly sum rule

π fPFPγγ(q2
1, q

2
2) +

∞∫
cont

ds∆hadr(s, q2
1, q

2
2|m) = 1

2π.
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The anomaly sum rule

π fPFPγγ(q2
1, q

2
2) +

∞∫
cont

ds∆hadr(s, q2
1, q

2
2|m) =

∞∫
4m2

ds∆QCD(s, q2
1, q

2
2|m) =

1
2π
.

Duality implemented in a standard way as a low-energy cut on the spectral representation gives

π fPFPγγ(Q2
1,Q

2
2) =

seff(Q2
1,Q

2
2)∫

4m2

ds∆QCD(s,Q2
1,Q

2
2|m).

The effective threshold should depend on external kinematical variables, seff  IQ1
2, Q2

2M

E.g., at large Q2
2 ≡ Q2 → ∞ and fixed ratio β = Q2

1/Q
2
2, the effective threshold seff(Q2

1,Q
2
2) may be

determined by matching to the asymptotic pQCD factorization formula.

One finds that seff(Q2 → ∞, β) in the general case m , 0 indeed depends on β.
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The only exception, in the massless fermion m = 0: in this case the asymptotic factorization
formula is reproduced for any β if one sets

seff(Q2 → ∞, β) = 4π2 f 2
π

For Q2
1 = 0 and m = 0, the LD expression for the form factor for the one-flavour case reads:

FPγ(Q2) =
1

2π2 fP

seff(Q2)
seff(Q2) + Q2 .

Independently of the behaviour of seff(Q2) at Q2 → 0, FPγ(Q2 = 0) is related to axial anomaly.

The LD model for the transition form factor emerges when one assumes
that at finite values of Q2, seff(Q2, β) may be well approximated by its value at Q2 → ∞

seff(Q2, β) = seff(Q2 → ∞, β).
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P® ΓΓ* transition form factor in quantum mechanics

Fπγ(Q2) =
1
fπ

seff(Q2)∫
0

∆pert(s,Q2) ds, seff(Q2 → ∞)→ 4π2 f 2
π .

Quantum mechanics:
Here is the exact effective threshold obtained for a quantum-mechanical model with HO potential.
The parameters are chosen such that the ground state has a typical hadron size 1 Fm.
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For “light” quarks, the LD threshold gives a very good approximation to the exact threshold at
Q > 1.5 GeV. For “charm” quarks, works at Q > 3 − 4 GeV.
The accuracy of the LD approximation further increases with Q in this region.
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Ηc ® ΓΓ
*

transition form factor

One can consider ⟨AVV⟩ and from ⟨PVV⟩. LD model for each case may be constructed. From
matching to pQCD factorization formula, we find seff(Q2 → ∞, β):
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Assuming that seff(Q2, β) = seff(Q2 = ∞, β):
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Try to go to Q2 = 0? Exp: Fηcγ(Q
2 = 0) = 0.08 ± 0.01 GeV−1.

⟨AVV⟩ yields Fηcγ(0) = 0.067 GeV−1, ⟨PVV⟩ yields Fηcγ(0) = 0.086 GeV−1.
Optimistically: LD model for ⟨PVV⟩ gives reliable form factor for all Q2.

Notice: Asymptotics is reached “relatively” fast!
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Η, Η '® ΓΓ
*

transition form factor

η − η′-mixing scheme:

Fηγ = cos(ϕ)Fnγ − sin(ϕ)Fsγ, Fη′γ = sin(ϕ)Fnγ + cos(ϕ)Fsγ, ϕ ≃ 380

with n→ 1√
2
(ūu + d̄d) and s→ s̄s.

Two LD expressions for these form factors:

Fnγ(Q2) =
1
fn

s(n)
eff (Q2)∫
0

∆n(s,Q2) ds, Fsγ(Q2) =
1
fs

s(s)
eff(Q2)∫
0

∆s(s,Q2) ds,

Two separate effective thresholds: s(n)
eff = 4π2 f 2

n , s(s)
eff = 4π2 f 2

s , fn ≃ 1.07 fπ, fs ≃ 1.36 fπ.
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No disagreement between the LD model and the data.
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transition form factor

For the pion transition form factor one observes a clear disagreement of the LD model with the
BaBar data.
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Left: CLEO+CELLO (black), BaBar (red)data vs LD prediction for Fπ.
Right: equivalent threshold for the BaBar data. It may be well approximated by a linear rising
function.
This means that - opposite to
(i) the η and η′ cases and
(ii) the lessons from quantum mechanics,
the violations of LD rise with Q even in the region Q2 ≃ 40 GeV2!

Puzzle: why nonstrange components in η, η′ and π0 should behave so much differently?
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Can ~ log IQ2M rise of Q2
 F IQ2Mbe understood?

Anomaly sum rule for one real and one virtual photon:
∞∫

0

ds∆(s,Q2) =

∞∫
4m2

ds∆QCD(s,Q2) =
1

2π
.

The absorptive part of F(p2,Q2) has the form

∆(s,Q2) = πδ(s − m2
π)
√

2 fπ Fπγ(Q2) + θ(s − sth) ∆I=1
cont(s,Q2).

Fπγ(Q2) then takes the form

Fπγ(Q2) =
1

2
√

2 π2 fπ

1 − 2π

∞∫
sth

ds ∆I=1
cont(s,Q2)

 .

Fq̄q(Q2) =
1

2
√

2 π2 fq

1 − 2π

∞∫
sth

ds∆I=0
cont(s,Q2)

 ,
F s̄s(Q2) =

1

2
√

2 π2 fs

1 − 2π

∞∫
sth

ds∆s̄s
cont(s,Q2)

 .
The calculation of the Pγ form factors requires an Ansatz for the continuum spectral densities
∆cont(s,Q2) for all three cases.
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Duality concept: for s→ ∞, ∆cont(s,Q2)→ ∆QCD(s,Q2).

A simple Ansatz for ∆cont(s,Q2):

∆cont(s,Q2) = θ(s − sth)R(s)∆(0)
QCD(s,Q2), with R(s) =

(
1 − r

s

)
.

One readily calculates the form factor

Q2F(Q2) ∼ Q2

Q2 + sth
(sth − r) + r log

(
Q2 + sth

sth

)
.

•Details of the R(s) at small s are irrelavant for large-Q2 behavior of the form factor; the presence
of higher-order terms O(1/s2) is irrelevant too: they do not modify the scaling behaviour of the
form factor Q2F(Q2) ∼ const.

• The log rise of Q2F(Q2) requires 1/s terms in the relation between ∆cont(s,Q2) and ∆QCD(s,Q2).
This correction however then leads to violation of pQCD factorization theorems.

The “best” fit to BaBar data on η, η′ and Belle data on π suggest r = 0.05 GeV2.
The “best” fit to BaBar data on π requires r = 0.17 GeV2.
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Summary and conclusions

We investigated the π0, η, η′, and ηc tranistion form factors by means of a LD version of QCD sum
rules. The key parameter—the effective continuum threshold—was determined by matching the
LD form factors to QCD factorization formulas.

Our main conclusions are as follows:

• For the Pγγ∗ form factors, the LD model should work well in the region Q2 ≥ a few GeV2. LD
model works reasonably well for ηc → γγ∗, η → γγ∗ and η′ → γγ∗ form factors. For π → γγ∗,
the BaBar data indicate extreme violation of local duality prompting a linearly rising (instead of
a constant) effective threshold. On the contrary, the Belle data indicate an agreement with the
predictions of the LD model.

• Nevertheless, a better fit to the full set of the meson-photon form factor data seem to prefer
a small logarithmic rise of Q2F(Q2). If established experimentally, this rise would require the
presence of 1/s duality-violating term in the ratio of the hadron and the QCD spectral densities.

• A good accuracy of the LD model has implications for the pion elastic form factor: one can
show that the accuracy of the LD model for the elastic form factor increases with Q2 in the region
Q2 ≈ 4 − 8 GeV2. The accurate data on the pion form factor suggest that the LD limit for the
effective threshold seff(∞) = 4π2 f 2

π may be reached already at Q2 = 5 − 6 GeV2. Should be tesable
with JLab upgrade.
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Elastic form factor

Some recent results on the pion elastic form factor are shown on the plot:
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No conclusive results have been obtained and we still have a strong discrepancy between the re-
sults from various theoretical approaches.

The basic object: ⟨0|T j5α jµ j5β|0⟩.

j5α, j5β - are the pion interpolating axial currents. jµ is the electromagnetic current.

In QCD this correlator may be calculated by applying OPE. Duality assumption says that the
contribution of the excited states is dual to the high-energy region of the perturbative diagrams.
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Using this assumption, the sum rule takes the form

f 2
π Fπ(Q2) =

seff(τ,Q2)∫
0

ds1

seff(τ,Q2)∫
0

ds2e−
(s1+s2)τ

2 ∆pert(s1, s2,Q2) +
⟨αsG2⟩

24π
τ +

4παs⟨q̄q⟩2
81

(13 + Q2τ)τ2 + · · ·

∆pert are double spectral densities of 3-point diagrams of perturbation theory.

We want to study the form factor at large Q. The form factor of a bound state should decrease
with Q; however, power corrections on the r.h.s. are polynomials in Q and thus rise with Q. So,
this expression cannot be directly used at large Q. To apply sum rule at large Q one of the few
possibilities is just set τ = 0.

The Local- duality HLDL limit Τ ® 0 : then "bad" power corrections vanish

Fπ(Q2) =
1
f 2
π

seff(Q2)∫
0

ds1

seff(Q2)∫
0

ds2 ∆
(VAV)
pert (s1, s2,Q2).

For any given prediction for the form factor Fπ(Q2), one can calculate the equivalent seff(Q2). The
problem is now how to determine the “true” seff(Q2).
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Properties of the spectral functions

• Vector Ward identity at Q2 = 0 relates 3-point and 2-point functions.

• Factorization at Q2 → ∞: the leading 1/Q2 behavior of the spectral function is given by

. .

.

+ . .

.

If we set

seff(Q2 = 0) =
4π2 f 2

π

1 + αs/π
seff(Q2 → ∞) = 4π2 f 2

π ,

then the form factor obtained from the LD sum rule satisfies the correct normalization at Q2 =

0 and reproduces the asymptotic behavior according to the factorization theorem for the form
factor at Q2 → ∞.

The two values are not far from each other, construct an interpolation function seff(Q2) for all Q2.
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The local- duality model for hadron elastic form factors :

a. Based on a dispersive three-point sum rule at τ = 0 (i.e. infinitely large Borel mass parameter).
In this case dangerous power corrections ∼ (τQ2)n vanish and the details of the non-perturbative
dynamics are hidden in one quantity — the effective threshold seff(Q2).

b. Makes use of a model for seff(Q2) based on a smooth interpolation between its values at Q2 = 0
determined by the Ward identity and at Q2 → ∞ determined by factorization. Since these values
are not far from each other, the details of the interpolation are not essential.

Obviously, the LD model for the effective continuum is a model which does not take into account the
details of the confinement dynamics. The only property of theory relevant for this model is factorization
of hard form factors.

The model may be tested in quantum mechanics for the case of the potential containing the
Coulomb and Confining interactions.

• The form factor satisfies factorization theorem similar to QCD. LD sum rules are very similar
to QCD; the spectral densities are calculated from diagrams of NR field theory.

• The exact form factor may be calculated and confronted with LD model, probing its accuracy.
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Elastic form factor

Results for elastic form factor in quantum-mechanical potential model
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The plots show the results for the elastic form factor in potential model. The potential containing
a Coulomb interaction and a confining part for several different confining parts: HO potential,
linear potential, and r1/2 potential.
Left: the exact form factors for these potentials
Right: the corresponding equivalent effective thresholds.

An important conclusion from these plots:

Independently of the form of the confining part, the accuracy of the LD model
increases with Q already starting with relatively low values Q ≃ 2 − 3 GeV.
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Results for elastic pion form factor in QCD:
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Left plot: the equivalent threshold extracted from the experimental data and the LD model. So
far one can see no disagreement between the two.
Right: the equivalent thresholds for other theoretical predictions are given on the right plot.
Obviously, these results imply that the accuracy of the LD model decreases with Q2 even at Q2 as
large as Q2 = 20 GeV2. Let us notice that this is in conflict with our experience from quantum
mechanics.
The future accurate data expected from JLab in the range up to Q2 = 8 GeV2 should decide.


