

1

Top Properties at CMS Karl M. Ecklund Rice University 28 February 2013

Les Rencontres de Physique de la Vallée d'Aoste

Motivation for Top Properties

- Top is heaviest quark
 may play an unusual role
- Is top a SM quark?
 - in addition to production
 - measurement of properties, mass, and couplings
- Top mass: Precision needed to test Electroweak theory given a Higgs-like boson at 125 GeV
 - Global consistency
 - EW vacuum stability!

New

Outline

Top mass

- hadronic, semi-leptonic, dileptonic channels
- complementary techniques)
- Newl

 study of kinematic dependence for mt measurement
 - Top couplings
 - lewl
 bottom quark content in top decay using t-tbar events: IVtbl
 - Wtb couplings from W Helicity analysis
 - From t-tbar events in dilepton channel
 - From single top topologies

First public presentation at this conference!

CMS Mass Measurements

CMS Preliminary

Most precise measurements in all channels

28 Feb 2013 La Thuile

CMS Mass Measurements

CMS Preliminary

Most precise measurements in all channels

28 Feb 2013 La Thuile

CMS Mass Measurements

CMS Preliminary

Precision of combination equal to Tevatron combination

28 Feb 2013 La Thuile

EPJC 72 (2012) 2202 mt in dilepton channel 9934 Events

- 5.0 fb⁻¹ pp @ $\sqrt{s}=7$ TeV $t\bar{t} \rightarrow WbWb \rightarrow (\ell^+ \nu_\ell b)(\ell^- \bar{\nu_\ell} b)$
- Analytical Matrix Weighting Technique
 - take combination with largest weight w

$$w = \left\{ \sum f(x_1) f(x_2) \right\} p(E_{\ell^+}^* | m_t) p(E_{\ell^-}^* | m_t)$$

Sum over initial state partons u<u>u,</u> d<u>d,</u> gg

probability density for E_1 in top rest frame

- Leading systematic uncertainties:
 - JES & flavor dependence
 - renormalization/factorization scale
- Best mt measurement using dileptons

mt=172.5 ± 0.4 (stat) ± 1.5 (syst) GeV

28 Feb 2013 La Thuile

- At least 6 jets, two b-tagged
- Kinematic fit using m_W and m_t=m_{tbar} (3 dof)
 - improves jet-parton assignment & resolution
 - Require $P_{gof}(\chi^2) > 0.09$
 - $^\circ$ Take permutation with best χ^2
- Model multijets from data using event mixing in preselected sample

28 Feb 2013 La Thuile

- CMS Preliminary, 3.54 fb⁻¹, √s=7 TeV CMS data tt component multijet background combined tt and multijet uncertainty on f CMS Preliminary, 3.54 fb⁻¹, √s=7 TeV 2 A In(L) 150 100 172 m_t [GeV] 50 250 100 150 200 300 350 m^{fit} (GeV)
- Measure m_t with Ideogram method
 - analytic event-by-event likelihood
 calsbrietedausing roims+lation
- M_{to} st precise m_t using the deckade of t

JHEP 12 (2012) 105 mt in I+jets channel 7 TeV

$$\mathcal{L}(\text{sample}|m_t, \text{JES}) = \prod_{\text{events}} \left(\sum_{i=1}^n c P_{\text{gof}}(i) P(m_{t,i}^{\text{fit}}, m_{W,i}^{\text{reco}} | m_t, \text{JES}) \right)$$

- Ideogram method
 - Analytic Likelihood function
 - calibrated using simulation
- Jointly fit for mt and light-flavor
 Jet Energy Scale
- Leading systematic uncertainties
 - color reconnection
 - b-jet energy scale

mt=173.49 ± 0.43 (stat+JES) ± 0.98 (syst) GeV

Best single analysis measurement of m_t!

Top Properties at CMS - Karl.Ecklund@rice.edu

 w_{event}

MC@NLO+Herwig6

0

0

0

0

300

JUZ

Statistical uncertainty of m [GeV]

ัษ 2 4500 ณ

4000 3500

3000

2500 2000

500

 $\sqrt{s} = 7$ TeV, lepton+jets

Data (5.0 fb⁻)

MG, Pythia Z2 MG, Pythia P11

MG, Pythia P11noCR MC@NLO, Herwig

Se 1500 1000

150

200

250

15

CMS PAS TOP-12-029 mt and color reconnection

 $\Delta R_{qq} = (\Delta \eta^2 + \Delta \varphi^2)^{\frac{1}{2}}$

- **Empirical model**
 - finite probability for color reconfiguration
 - MadGraph+PYTHIA
 - MC@NLO+Herwig 6
- Largest systematic for I+jet mt
- Pythia P11 and P11noCR
- No sign of extreme effects here!

28 Feb 2013 La Thuile

CMS PAS TOP-12-029 mt and color reconnection

150

200

200

150

Data (5.0 fb⁻¹)

MG, Pythia Z2

MG, Pythia P11

MC@NLO, Herwig

MG, Pythia P11noCR

250

p_{T,t,had} [GeV]

Data (5.0 fb⁻¹

MG, Pythia Z2

MG, Pythia P11

MG, Pythia P11noCR

MC@NLO. Herwia

p_⊤ hadronically decaying top

- MC@NLO best match for Nentries for lowest pT bin
- No significant dependence below 200 GeV
 - 2D fit compensates 0
 - Onset of jet merging at 200 GeV 0
- No sign of extreme effects here!
 - all MC models track well 0

28 Feb 2013 La Thuile

Top Properties at CMS - Karl.Ecklund@rice.edu

250

p_{T,t,had} [GeV]

300

CMS PAS TOP-12-029 mt and initial/final state radiation

- Measure of ISR
- Small dependence compensated by 2D fit

p_⊤ top-antitop system

28 Feb 2013 La Thuile

Top Properties at CMS - Karl.Ecklund@rice.edu

160

160

смя рая тор-12-029 Study of mt dependence on kinematics

- 12 observables studied
- Global agreement is good:
 - $^{\circ}$ χ^2 =68.58/78 dof P=0.77
- All MC simulation codes & tunes following trends well within statistics
 - MadGraph+PYTHIA Z2, P11, P11noCR
 - POWHEG+PYTHIA Z2
 - MC@NLO+HERWIG

Observable	$m_{ m t}^{ m 1D}~\chi^2$	JES χ^2	$m_{ m t}^{ m 2D}~\chi^2$	Ndf	
$\Delta R_{q\overline{q}}$	1.01	3.41	1.49	3	-
$\Delta \phi_{q\overline{q}}$	2.31	2.18	2.89	3	Color
$p_{T,t,had}$	9.40	7.83	2.41	4	reconnection
$\eta_{t,had}$	0.41	3.33	3.17	3	
H_{T}	3.18	1.19	2.24	4	
$m_{t\bar{t}}$	2.52	2.98	2.25	4	
p _{T.tī}	3.39	1.67	2.18	4	ISN/FON
Jet multiplicity	1.47	2.00	1.56	2	
p _{T,b,had}	0.81	2.35	2.17	4	
$ \eta_{\rm b,had} $	2.64	0.30	0.48	2	B-jet kinematics
$\Delta R_{b\overline{b}}$	4.87	2.61	8.01	3	
$\Delta \phi_{\rm b\overline{b}}$	2.87	3.85	6.86	3	
Shown					

- First mass measurement binned in kinematic variables
 - including variables suggested by theoretical community
- Based on single most precise measurement
- Results rule out extreme or dramatic effects
- Valuable input for interpretation of m_t measurements for EW fits
- Builds confidence in systematic & theoretical effects for mt meas.

CMS PAS TOP-12-029 Study of m_t dependence on kinematics

- 12 observables studied
- Global agreement is good:
 - χ²=68.58/78 dof P=0.77
- All MC simulation codes & tunes • following trends well within statistics
 - MadGraph+PYTHIA Z2, P11, P11noCR
 - **POWHEG+PYTHIA Z2** 0
 - MC@NLO+HERWIG

Observable	$m_{ m t}^{ m 1D}\chi^2$	JES χ^2	$m_{ m t}^{ m 2D}~\chi^2$	Ndf	
$\Delta R_{q\overline{q}}$	1.01	3.41	1.49	3	-
$\Delta \phi_{q\overline{q}}$	2.31	2.18	2.89	3	Color
<i>p</i> _{T,t,had}	9.40	7.83	2.41	4	reconnection
$\eta_{t,had}$	0.41	3.33	3.17	3	
H_{T}	3.18	1.19	2.24	4	
$m_{t\bar{t}}$	2.52	2.98	2.25	4	
p _{T.tī}	3.39	1.67	2.18	4	100/200
Jet multiplicity	1.47	2.00	1.56	2	
<i>p</i> T,b,had	0.81	2.35	2.17	4	
$ \eta_{\rm b,had} $	2.64	0.30	0.48	2	B-jet kinematics
$\Delta R_{b\overline{b}}$	4.87	2.61	8.01	3	
$\Delta \phi_{b\overline{b}}$	2.87	3.85	6.86	3	
Shown					

"Street Cred"

for precise m_t

- First mass measurement binned in kinematic variables
 - including variables suggested by theoretical community 0
- Based on single most precise measurement
- Results rule out extreme or dramatic effects
- Valuable input for interpretation of m_t measurements for EW fits
- Builds confidence in systematic & theoretical effects for m_t meas.

CMS PAS TOP-12-035 b content in top decay: IV_{td}

16.7 fb⁻¹ pp @√s=8 TeV

New!

- $t\bar{t} \to WqWq \to (\ell^+ \nu_\ell q)(\ell^- \bar{\nu_\ell} q)$
 - high purity sample 70-90% 0
 - two isolated leptons e or μ : p_T>20 0
 - at least two jets p_T>30
 - for ee, $\mu\mu$: missing E_T > 40 GeV

$$\mathcal{R} = \frac{\mathcal{B}(t \to Wb)}{\sum \mathcal{B}(t \to Wq)} = \frac{|V_{tb}|^2}{\text{3 Gen. SM}}$$

- Measure top only with kinematics & no b-tags
- Count b-tags to measure R

 Use kinematic info for data-driven Drell Yan

- Use M(lb) kinematics
- Categorize by # jets from top: 0, 1, 2

- Measure b-tag efficiency with independent sample of dijet events
- count b tags
- compare with datadriven probabilities

28 Feb 2013 La Thuile

(9 vego

Fit for R from measured b-tag multiplicities using data-driven b-tag efficiency & probability functions

- Fit for R using analytic data-driven probability functions for number of tags in each category (36 total)
 - e.g. for 2 jets, 2 b-tags, 2 tops reconstructed

$$P = \mathcal{R}^2 \varepsilon_b^2 + 2\mathcal{R}(1 - \mathcal{R})\varepsilon_b\varepsilon_q + (1 - \mathcal{R})^2 \varepsilon_q^2$$

- \circ $\epsilon_b = b$ -jet tag efficiency ; $\epsilon_q = light flavor tag efficiency$
- measured in dijet events, (p_T,η) dependent

28 Feb 2013 La Thuile

Top Properties at CMS - Karl.Ecklund@rice.edu

 $\mathcal{R} = 1.023^{+0.036}_{-0.034}$ $|V_{tb}| = 1.011^{+0.018}_{-0.017}$

28 Feb 2013 La Thuile

W Helicity in top decay

$$\mathcal{L}_{tWb}^{anom.} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_{L}P_{L} + V_{R}P_{R})tW_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}}(g_{L}P_{L} + g_{R}P_{R})tW_{\mu}^{-} + H.C,$$

- Probe Wtb couplings from polarization of W in top decay t→Wb
- Helicity fractions:
 - Normalized partial widths for L,R,Longitudinal(0) polarized Ws
 - SM predictions (V-A):
 - F₀=0.687(5)
 - F_L=0.311(5)
 - F_R=0.0017(1)
- Analysis of helicity angle θ* distribution:
 - Direction of charged lepton in W rest frame with respect to W direction in top rest frame

28 Feb 2013 La Thuile

смя рая тор-12-015 W Helicity in t-tbar dilepton events

- pp@ 7 TeV 4.6 fb⁻¹
- Two isolated leptons e (μ)
 - p_T>20 GeV & lηl<2.5 (2.4)
 - opposite sign
- Suppress DY for same flavor
 Veto Z: 76 < m(II) < 106 GeV
- Require one b-tagged jet
- Missing transverse energy
 - E_T>30 (20) GeV ee, μμ (eμ)
- Top reconstruction
 - W mass constraint used for neutrino solutions
 - Take jet-parton permutation with smallest M(tt)

Reconstructed kinematics of top important for determination of $\cos \theta^*$ and fit for helicity fractions

• top Q² scale in simulation

 $F_{L}= 0.288 \pm 0.035 \text{ (stat)} \pm 0.050 \text{ (syst)}$ $F_{0}= 0.698 \pm 0.057 \text{ (stat)} \pm 0.063 \text{ (syst)}$ $F_{R}= 0.014 \pm 0.027 \text{ (stat)} \pm 0.055 \text{ (syst)}$

Consistent with SM expectations/V-A structure Compatible with measurement in t-tbar I+jets (TOP-11-020)

28 Feb 2013 La Thuile

Top Properties at CMS - Karl.Ecklund@rice.edu

 $\cos(\theta)$

CMS PAS TOP-12-020 W Helicity in Single Top Topologies

events

- W helicity fractions are also accessible in single top process
 - N.B. couplings in production & decay
- 7 TeV (1.14 fb⁻¹) & 8 TeV (5.3 fb⁻¹)
- Selection: $(t \rightarrow Wb \rightarrow \mu_V b)$
 - single isolated μ : $\eta < 2.1 \& p_T > 20$ (26) GeV
 - exactly two jets: lηl<4.5 & p_T>30 (60) GeV 0
 - exactly one b-tagged jet
- Substantial backgrounds
 - t-tbar (MC simulation)
 - Data-driven W+jets from 0 b-tag 0
 - Data-driven QCD multijet 0

смя рая тор-12-020 W Helicity in Single Top Topologies

- Separate likelihood fits with reweighting method
 - also for decays of t tbar pairs
 - \circ 2D (F₀,F_L) F_R from unitarity
- Systematic uncertainties
 - Q² scale & simulation
 - Jet Energy Scale & Resolution
 - W+jets shape

28 Feb 2013 La Thuile

Combination 7&8 TeV:

 $F_{L}= 0.293 \pm 0.069 \text{ (stat)} \pm 0.030 \text{ (syst)}$ $F_{0}= 0.713 \pm 0.114 \text{ (stat)} \pm 0.023 \text{ (syst)}$ $F_{R}=-0.006 \pm 0.057 \text{ (stat)} \pm 0.027 \text{ (syst)}$

couplings (combination)

Consistent with SM expectations/V-A structure Compatible with measurements in t tbar

Other Results

Too many to present here

- JHEP 06(2012) 109 top-antitop mass difference
- CMS PAS TOP-12-027 Top mass from endpoint (MT2)
- Properties
 - CMS PAS TOP-12-014 Associated production ttZ and ttW
 - Talk by R. Wallny earlier today
 - CMS PAS TOP-11-020 W Helicity in I+jet events
 - CMS PAS TOP-12-004 Spin correlations in t-tbar
 - CMS PAS TOP-12-016 Top polarization
 - ∘ Phys.Lett. B718(2012) 1252 Search for FCNC (t→Zq) in t<u>t</u>
 - CMS PAS TOP-11-031 Charge of top quark
 - CMS PAS HIG-12-035 Search for ttH production

Summary

- Top quark properties have been studied at CMS
 - <u>Mass</u>: precise measurement of high interest for electroweak fits (vacuum stability!)
 - <u>Mass</u>: theoretical effects from colored & unstable object investigated with study of m_t vs kinematic variables:
 - No sign of dramatic effects
 - Should aid interpretation of top mass measurements
 - $^{\circ}$ Couplings IV_{tb}I compatible with 3 generation SM CKM
 - <u>Couplings</u> W Helicity fractions from dilepton channel and single top topologies
 - as expected for V-A decay limits on anomalous couplings
- So far, top looks like a SM quark
- Outlook: Additional 8 TeV data analysis in progress

Backup Slides

EPJC 72 (2012) 2202

m_t in dilepton channel

- 5.0 fb⁻¹ pp @ √s=7 TeV
- $t\bar{t} \to WbWb \to (\ell^+ \nu_\ell b)(\ell^- \bar{\nu_\ell} b)$
- High purity sample selected
 - Two opposite sign isolated leptons
 p_T>20 GeV lηl<2.4
 - Two jets p_T>30 GeV lηl<2.4
 - At least one b-tag
 - Missing $E_T > 40$ GeV to Reject DY (except $e\mu$)
 - Veto Z peak 76 106 GeV
- Analytical Matrix Weighting Technique, scanning mt
 - up to 8 kinematic solutions
 - combination with largest weight w taken as reconstructed top mass

$$w = \left\{ \sum f(x_1) f(x_2) \right\} p(E_{\ell^+}^* | m_t) p(E_{\ell^-}^* | m_t)$$

Sum over initial state partons u<u>u</u> d<u>d</u> gg 28 Feb 2013 La Thuile probability density for E_1 in top rest frame

$m_t=172.5 \pm 0.4 \text{ (stat)} \pm 1.5 \text{ (syst)} \text{ GeV}$

- Leading systematic uncertainties:
 - JES & flavor dependence
 - renormalization/factorization scale

28 Feb 2013 La Thuile

CMS PAS TOP-12-029 Mem Mt and initial/final state radiation

- Only jets p_T>30 GeV
- More jets, larger probability of picking high-p_T ISR

Number of Jets

28 Feb 2013 La Thuile

28 Feb 2013 La Thuile